
A Topology Reconfiguration Mechanism for
Distributed Computer Systems

M. Bozyigit and Y. Paker
The Polytechnic of Central London, 115 New Cavendish Street, London W1M 8JS, UK

A topology reconfiguration algorithm for a densely distributed computer structure composed of computers of low
cost/performance ratio (e.g. microcomputers) is given. A distributed routing mechanism based on Baran's 'hot potato'
heuristic routing algorithm is discussed. This mechanism is applied to a multicomputer system (VTM—Variable
Topology Multicomputer system) proposed to be reconfigurable according to the application requirements. An
analysis of the algorithm regarding the initialization of a distributed computer system is given and the preliminary
system performance results in applying this algorithm are shown. The results of a run time implementation are also
compared with those of a traffic-load balancing algorithm which is basically a static fixed routing algorithm, suggested
by the authors for densely and uniformly distributed computer systems.

INTRODUCTION

Densely distributed computer systems constructed of
limited performance and low cost computers need non-
elaborate, easily implementable routing mechanisms,
whereby the information flows with minimum control
overhead. Fixed routing mechanisms which can utilize
optimum or nearly optimum paths between the nodes of
a distributed system require little overhead. Once a path
is assigned it remains fixed during the running period.
The authors have shown that for homogeneous, dense
and initially uniform computer networks the fixed paths
can be assigned such that the uniformity in the internal
run time traffic can be achieved.1 On the other hand, the
fixed routing is rigid and does not allow dynamic
reconfigurability of the system involved, which becomes
significant in a distributed processing environment.

An important requirement in distributed computer
systems (DCS) is the survivability (allied to reliability) in
case of link, or node, or link and node failures. It is
normally possible, assuming single fault case, to deter-
mine a new path where the old path has permanently
failed, provided that there is at least one possible new
path. The heuristic shortest path algorithms, well-known
for their versatility, need complete topology information
to be dynamically available for this purpose. This method
becomes computationally time-consuming and requires
high storage capacity at each node. A reliable system
needs an effective automatic mechanism to recover from
a failure. The system must be able to adapt itself to the
possible configurational changes in a finite time. The
routing mechanisms such as (1) random, (2) flooding, (3)
ideal observer, and (4) adaptive, can respond dynamically
to the changes. For the first two, a node is not necessarily
aware of the full system configuration. All available
nodes and links are used, to get to the destination. The
third method needs a system control centre which is
ideally assumed to watch the entire system and be
responsible for incorporating configurational changes as
well as the traffic flow conditions. The last technique is
basically a flow control mechanism which can also
respond to the topology changes in terms of some delay
function.

In this paper a reconfiguration and routing mechanism
is proposed which is implemented on a proposed
multicomputer system to achieve a degree of reliability
and maintain uniformity in initial traffic load distribu-
tion. The technique employs different routing criteria for
the data and the configuration control messages, similar
to ARPANET'S New Routing Algorithm.2> 3 The method
is deterministic and based on Baran's 'hot-potato'
algorithm.4-5 The performance thus experienced is
compared with another deterministic traffic-load balanc-
ing routing mechanism based on a shortest path finding
algorithm, under similar application requirements.6'7

IMPLEMENTATION ASPECTS

Given a network of bi-directional communication links
it first undergoes an initialization phase whereby the
nodes exchange the topology information until all the
nodes are aware of the system configuration. A change in
topology is indicated by an information unit which is
called topology message (TM).

Each node maintains a n n x m distance table (D)
where n is the size of the DCS involved and m is the
connectivity. An entry d(/,y) at a node k indicates the
distance from node k (host for D) to node i via the yth
neighbour. The distance table at a node k is associated
with a routing table (R). An entry r(/,y) at a node k is the
identification of the yth node next (adjacent) to A: on a
shortest path from k to i.

A node is assumed failed or inactive if it is not
accessible from any other node in the system. This
manifests itself as the failure of all the connections with
the neighbouring nodes. The functions that a node is to
carry out for this algorithm are to: (1) detect existing
connections by sensing successful completion of line
handshake procedures; (2) update the distance table to
reflect the current configuration; (3) prepare and send
the topology messages to indicate a change in configu-
ration; (4) receive topology messages and interpret the
topology changes; (5) record the shortest paths in the
routing table.

Initially a node detecting a new adjacent node confirms

CCC-O01O-462O/82/0O25-O087 $03.00
©Heyden& Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25. NO. 1,1982 8 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/87/527445 by guest on 10 April 2024

M. BOZYIGIT AND Y. PAKER

the changes by updating the proper entry of the distance
table. For each new neighbour a topology message is
formed and broadcast to other neighbours. Meanwhile
the new neighbour receives the full account of the
connection information available at the detecting node.
A topology message (TM) traversing through the system
will come to a stop at a node if it does not change the
shortest distance to the end-node to which the change is
directly related. Otherwise, it causes further TMs one for
each neighbouring node.

The reconfiguration algorithm consists of three sub-
algorithms; (1) new link detection and handling, (2)
failed link handling, (3) processing incoming topology
messages.

The three algorithms used are given in the Appendix.

ROUTING MECHANISM

The routing information is compiled from the distance
tables depending on the routing mechanism to be
employed.

The mechanism adapted here utilizes a round-robin
routing technique whereby the shortest paths are allo-
cated to the incoming traffic in turn. The row i of routing
table at a node k records the equal distance shortest paths
between the nodes k and i. Each path is identified by the
node on the other end of the line. The number of equal
distance paths cannot be greater than the number of
neighbour nodes.

Assume that i is the ultimate destination for an
information message arriving at a node k, c(i) is the
number of shortest paths from k to i, and j is the path
selection index initially set to zero at the system start.
Then the routing procedure for path selection is given as
follows:

(1) fetch the identification of destination node i: =
destination field of the TM

(2) path selection control
if/ = Othen./:=c(i);

(3) determine the next node adjacent to k on the selected
path
l:=r(i,j);
update path selection counter
j : = j - i ;

(4) send the message for /;
(5) exit.

Dynamic reconfigurability achieves high overall sys-
tem reliability. During the system running each topo-
logical change detected is soon incorporated in the system
by means of exchange of relevant topology messages.
The counter-effect of high reliability is the overhead
involved as compared to a fixed non-reconfigurable case
where no change can take place. In fact, intensive
reconfiguration requests can degrade the system exten-
sively, since the processing power is then shared between
the information and topology messages.

SIMULATION RESULTS

The reconfiguration algorithm is simulated on a VTM
(Variable-Topology-Multicomputer) system which is pro-
posed to be reconfigured to meet the requirements of an

IP cc

I
OP

LC

Figure 1. Node computer.

application.8 The system is basically a dense, uniform,
and low cost computer communication network. A node
is composed of a local computer (LC), a communication
computer (CC), an input port (IP), and an output port
(OP) as shown in Fig. 1.

The message transmission requests are externally
generated at LCs and put on the communication
subnetwork. The application is simulated such that
interarrival times of the communication requests between
the nodes follow exponential distribution and transmis-
sion handling time on a link is constant throughout the
system.

The system undergoes an initialization phase before
the actual application run takes place. Assuming that the
DCS consists of n nodes forming a cross-connected closed
topology we can derive an analytical approximation for
the total number of messages to be exchanged during the
initialization which is an indication of overhead involved
against the benefits of the reconfigurability achieved.

The node detecting a new live link sends the full
topology information available to the node on the other
end of that link, in the form of n — 1 messages which are
referred to as topology messages (TM). Each message, at
this stage, carries the shortest distance information to a
particular node from the detecting node. At an m link
node, for each new link a message is broadcast to the
remaining m — 1 links. Thus, each link during the first
stage of initialization would have (m — 1) + (« - 1) TMs
waiting on it for transmission. For m links m(n + m - 2)
TMs will be generated at each node.

A TM regarding a particular node is terminated if the
existing topology information on that node has not been
affected. Otherwise a new TM is formed to broadcast the
change. The total number of TMs depends on how soon
the system becomes aware of the full topology. In the
case of detection of a new node it involves the accessibility
of this node from all other nodes in the system. There are
n — (m + 1) such nodes per new node. Thus total number

Figure 2. A 16-node network.

8 8 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/87/527445 by guest on 10 April 2024

A TOPOLOGY RECONFIGURATION MECHANISM FOR DISTRIBUTED COMPUTER SYSTEMS

Figure 3. Topology message exchange tree.

of TMs is equivalent to the number of TMs of paths of
length 2 or more which, in terms of number of links, can
be given as £? = 2 Pi where Pt is the number of paths of
length / to/from the new node, and h is the length of the
longest path.

On a path at an intermediate node m — 1 new TMs are
formed and routed another step forward to indicate the
changes. This process is repeated until the terminal node
on the path is reached, where the configuration infor-
mation is no longer affected. To illustrate, the transmis-
sion takes place layer after layer as shown in Fig. 3
related to the topology shown in Fig. 2.

The number of TMs required to establish the shortest
paths to the new node becomes

(m - 0 I Pi (1)
1 = 2

per node provided that the first TM arriving at a node
carries the shortest path information.

The total number of TMs created by the incorporation
of the new node is then

h

TMnode = m[m + n - 2) + (m - 1) £ Pt (2)
i = 2

This equation represents a lower limit for the total
number of TMs.

Often the first TM arriving at a node does not carry the
shortest path information, either because of the queueing
effect or the TM handling sequence employed. For
example, if the handling procedure was such that the
TMs related to a live link are handled and routed before
attempting the next link waiting for detection then Eqn
(1) becomes

(m - 1) (3)
i=lj=2

where Py indicates the number of paths of lengthy needed
for a node to be aware of a change, h indicates the length
of the longest shortest path travelled; provided that
/ — 1 links have previously been detected and handled.

Expression (3) cannot take smaller values than Expres-
sion (1) since it can be opened up as

(4)
j=2 « = 2 j = 2

where the first term is equal to Expression (1), providing
the proof that Expression (3) is greater than that of (1).

Assuming that the entire system comes up simultane-
ously and the links are handled accordingly then
Expression (2) becomes

TMsystem = n\ m(m + n - 2) + (m - 1) £ pA (5)
L Ji = 2

A
J

After replacing the number of shortest paths by
(n — m — 1) we have

TMsystem = n{n - l)(2m - 1) (6)

Equation (6), when applied to the network in Fig. 2
gives 1680 for TMs. This is a lower limit to the total
number of TMs that can be generated to complete the
initialization.

The simulation model, on the other hand, which
reflects a real situation, gave a total of 1776 TMs. The
result is as expected. The simulation model is constructed
under the same assumptions used for theoretical
derivations.

The total number of TMs becomes important as a
performance factor, especially because of system settle-
ment time and the buffer allocation requirements which
are, similarly, functions of system size, connectivity,
rules for handling configurational changes, and the
communication protocols.

The reconfiguration rules proposed in this work suggest
that all the TMs related to the changes are generated
first, followed by transmission in a strict order whereby
the receiving nodes become aware of the changes in the
same order. This technique appears to provide fewer
TMs, shorter settlement time (ST) but longer output
buffer requirements.1 The 16-node cross-connected to-
pology system needed as high as 19 TMs to be stored per
detected live link before the transmission is attempted.
The length of the ST is tied to the processing speed of the
processors involved as well as other factors such as buffer
lengths and communication protocols. Since any specific
timing figures require the selection of a particular
processor such quantifications are deliberately avoided.
For comparative analysis see Ref. 1.

The reconfiguration algorithm has provisions for
link/node failures/coming-ups which can be incorporated
during the course of normal operation. The settlement
time incurred for such changes is closely connected to the
level of the existing traffic. High traffic levels dictate
longer delays for TMs to flow through due to the queueing
effect unless such messages are given higher priority.

PERFORMANCE OF THE ALGORITHM

The second phase, after initialization, is the actual
network operation when subject to a given traffic flow.
The routing mechanism is based on the utilization of
equal length shortest paths assigned during the initiali-
zation, in a round-robin fashion.

The cumulative distribution of the message response
time is as shown in Fig. 4 where the vertical axis
represents the cumulative relative frequency. This result
is very near to that of the traffic-load balancing fixed
routing algorithm discussed in Ref. 1. That algorithm,
however, does not accommodate any configurational
changes. The approach taken is based on the preference
of the least distance path while establishing a balance in

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 89

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/87/527445 by guest on 10 April 2024

M. BOZYIGIT AND Y. PAKER

1.0-

0.8-

0 5 10 15
Delay time * 1000 unit time

Figure 4. Distribution of message delay.

o

3?

3

E
o

5 10 15
Link entry (messages)

Figure 5. Cumulative distribution of link entries:
(reconfigurability); • fixed (balanced).

20 25

round-robin

Table 1. Performance data of reconfiguration

External input in number of messages
Throughput in number of messages
Delay in unit time
Buffer length in number of messages

Non-failure

477
469

4783
1.28

A link failure

477
461

6319
1.60

A node failure

465
437

6613
1.70

A node com
up

442
396

7146
3.50

traffic flow provided that there are at least one or more
shortest paths between node pairs.

The distribution of link entries shows that the round-
robin routing is slightly better in terms of uniformity in
link utilization with a standard deviation from the mean
of 3.6 against 5.6, at an average link load of 15 messages
(see Fig. 5). In addition it provides alternative paths and
system reconfigurability dynamically.

The disadvantage of such a reconfigurable algorithm
is the overhead incurred during the actual system
operation, because of reconfigurations. The performance
data for three separate operations is tabulated in Table
1. The first column is non-failure case. The second
column is link failure and the third is the node failure
with all its link to the external world down. The major
configurational changes such as node failure or node
return are the source of longer response time, lower
throughput, and longer buffer space requirements. The
last column shows the case where an inactive node comes
up after a certain time during the system operation. As
expected, heavier traffic load (application + reconfigur-
ation) can cause system degradation. In the case of a
node coming up more TMs need to be exchanged since
the new node also needs the reconfiguration tables to be
built up.

CONCLUSION

The reconfiguration algorithm discussed in this paper
achieves a degree of uniformity regarding the distribution
of the internal traffic flow in homogeneous and dense
network type DCS. The simulation model showed that

this mechanism is successfully applicable to DCS. In
fact, it is inherently a distributed algorithm.

The alternatives to this algorithm vary from fully
broadcast to fully dynamic adaptive techniques. The
former needs to duplicate all the messages and the latter
needs a routing function to be computed for each message
arrived. Therefore the former can require unnecessarily
high buffer space utilization and the latter, on the other
hand, can demand high processing power to control the
flow with all the tables it needs to maintain. The
reconfiguration algorithm which is adaptive in nature
but designed for configurational changes only, is a
deterministic algorithm.

The ARPANET'S New Routing Algorithm2-3 has a
significant resemblance to the reconfiguration algorithm
discussed in this paper. The routing technique employed
for the exchange of update information, in both cases, is
basically a 'flooding' mechanism. In ARPANET'S
algorithm the update information based on the link
delays is periodically (or non-periodically for up/down
states) exchanged, thus affecting the routing decision
taken at individual nodes. This requires, at each node,
the maintenance of an up-to-date data base which
contains delay information over each link in the network.

The reconfiguration algorithm discussed in this paper
employs routing tables updated by the information
received from the immediate neighbours only. A topo-
logical change related to the state of a link is propagated
until it has no effect on the routing decision-taking
process. Summarizing the above, this technique has the
following limitations: (1) the system adapts to the
topological changes but not to the congestion of any sort;
(2) data routing mechanism is based on the shortest path
information made available by the exchange of the

9 0 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/87/527445 by guest on 10 April 2024

A TOPOLOGY RECONFIGURATION MECHANISM FOR DISTRIBUTED COMPUTER SYSTEMS

reconfiguration information; (3) it is assumed that a
topological change regarding a link in the network is
reflected at a node only after the previous change related
to the same link has been handled. The frequent
transitory changes may cause inconsistent update of
routing tables, especially if they are not handled in the
order they are generated. Such changes can also be a
source of unnecessary activities, if they are not accounted
for.3

An implementation of this algorithm on an Intel 8080
microcomputer covering downs (failures) and coming-

ups (repairs), required under 300 instructions only. In a
microprocessor based distributed computer environment
this algorithm could provide effective implementation of
transaction exchange, meanwhile establishing reliability
and reconfigurability.

Acknowledgements

We express our thanks to the referee for his helpful comments on the
relevance of this algorithm including its limitations, to the ARPANET'S
New Routing Algorithm.

REFERENCES

1. M. Bozyigit, A Dense Variable Topology Multicomputer System:
Specifications and performance. PhD Thesis, Polytechnic of
Central London (1979).

2. J. M. McQuillan, I. Richer and E. C. Rosen, An overview of the
new routing algorithm for the ARPANET, Proceedings of the
Sixth Data Communication Symposium, Pacific Grove, California
(November 1979).

3. E. C. Rosen, The updating protocol of ARPANET'S New Routing
Algorithm. Computer Networks 4 (No. 1), 11-19 (February
1980).

4. P. Baran, On distributed communication networks. Institute of
Electrical and Electronics Engineers, Transactions, Communi-
cations Systems CS-12, 1-9 (March 1964).

5. W. D. Tajibnapis, A correctness proof of topology information
maintenance protocol for a distributed computer network.
Communications of the ACM 20,477-485 (1977).

6. L. E. Hitchner, A comparative investigation of the computational
efficiency of shortest path algorithms. Oper. Res. Ctr. Rep., 66-
75 (November 1968).

7. M. Bozyigit and Y. Paker, A fixed routing problem in large and
high connectivity networks. The Computer Journal 22, 246-250
(1979).

8. Y. Paker and M. Bozyigit, A variable topology multicomputer.
Euromicro76, 141-151 (1976).

9. A. T. Berztiss, Data Structures: Theory and Practice, Academic
Press, London (1971).

Received December 1980

© Heyden & Son Ltd, 1982

APPENDIX

Nomenclature for the reconfiguration algorithms

a = source node
b = destination node
c = node adjacent (neighbour) to node a

db, = distance between a and b via theyth neighbour
of a (the superscript a is omitted wherever it is
obvious)

r% = the first neighbour on shortest path between a
and b indicated by a neighbour of a on that
path

TMJ = topology message compiled at a to be sent to b
c«- TM£ = send TMJ to c

VJ = shortest distance between a and b
Wj! = weight of link between a and c
X? = ith neighbour of a

t = a temporary variable

Algorithm-1: Handles a new link coming up at node-a

1. (a new link detected at the local node a)
link (a, c) becomes live;

2. (update distance and routing tables)
d*, : = 1 where yth neighbour = c,
V"-= 1
r?:=c;

3. (prepare topology message)
(set distance field of topology message)
dist(TMc

a):=l,
(set destination field of topology message)
dest(TM?): = c;

4. (send topology message to neighbouring nodes)
Xf <- TM§ fory = 1,2, . . . , m and X? / c;

5. (send available topology information to new
neighbour)
(form topology message)
dist(TM?):=Vf,
dest (TM?): = i for i = 1,2,. . . , n.
(send topology change messages to new neighbour)
TM?:=TMf;

6. Exit.

Algorithm 2: Handles link failures at node a

1. (a link failure detected at node a)
link (a, c) failed;

2. (update the distance table)
(save distance vector corresponding to failed link)

(set vector dy to infinity)
djj: = oo where XJ = c, and / = 1,2,3,. . . , n;

j = index of the failed link
3. (update routing tables and prepare topology messages)

for i: = from 1 to n with step 1 do
ifVf=tjthen

V? :=min[d?J,yem
rf : = X; where Vf = dfJ,
TM?:=Vf,
(send topology message).
TMf : = TM? fory = 1,2,. . . , m,

except for Xf= c,
fi,

od;
4. Exit.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 9 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/87/527445 by guest on 10 April 2024

M. BOZYIGIT AND Y. PAKER

Algorithm 3: Handles arrived topology message at node a Algorithm 4: Round-robin routing algorithm

1. (detect topology message at local node a)
TMb arrives at a;

2. (update distance and routing tables)
(assign new distance for (a, b) path)
db,,:=TMe

b + Wc
a,

(find new min distance (a, b) path)
tb :=min[db J] ,yem
(assign the shortest path)
iftbnot = Vbthen

it : = X ; where tb = db,,
V b : = t b ,

(prepare topology messages)
dist(TMb):=Vb)
dest(TMb):=ba,
(send topology message to neighbours)

X;-^TMb for
fi;

3. Exit.

1. (input a message at a) TMb arrives
2. (find the shortest path (c, b))

if c = (m — l)then
c:=0

fi,
(next node)
c:=r£;

3. (message joins output queue)
OQc:=TMb;

4. Exit.

9 2 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/87/527445 by guest on 10 April 2024

