The Theory and Practice of Constructing an

Optimal Polyphase Sort

M.C.Er

Department of Computing Science, University of Wollongong, Wollongong, NSW 2500, Australia

B. G. T. Lowden

Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

The construction of both an optimal read-forward polyphase sort and a near optimal read-backward version is
described. The former minimizes the merge volume, for a given distribution of strings, without the use of auxiliary data
structures, and incorporates a new technique for computing the positions of dummy strings. In the case of the read-
backward version, an approach is developed which achieves a merge volume nearest to the minimum, inasmuch as the
theoretical optimal read-backward polyphase sort cannot be realized. A dispersion algorithm is also described which
optimizes the distribution of strings so that minimum merge volume is assured.

INTRODUCTION

The concept of the polyphase sort has been associated
with computing for about 20 years, and has been well
described in the literature.! Techniques, however, for
the construction of an optimal polyphase sort algorithm
are still far from satisfactory. One of the basic problems
is that if replacement selection is employed to generate
the initial strings, then the exact number of strings
formed cannot be determined, in general, until comple-
tion of the presort phase. This is because the entropy of
the file to be sorted is usually uncertain, even though the
total number of records may be known in advance. Most
of the algorithms described in the literature require that
this piece of information be known in order that dummy
strings may be allocated to those positions which are
involved most frequently in merging, so that an optimal
polyphase sort can be achieved without the need for a
redistribution pass.

Shell?> proposed an optimal read-forward polyphase
sort algorithm, which not only demands a knowledge of
the total number of initial strings, but also uses large P
and Q vectors to guide both the dispersion and merging
processes. Clearly, the space occupied by these vectors
could otherwise be used as part of the heap space in
replacement selection and I/O buffer space in the merge
phase. Improvements were suggested by Zave® which
eliminated the huge vectors, but instead introduced a
sizeable V-matrix to guide the merge process. The
simplest approach, suggested by Malcolm* avoids large
data structures, but does not achieve an optimal poly-
phase sort since positions most frequently involved in
merging are not taken into account.

Further, the literature is relatively silent regarding the
construction of an optimal read-backward polyphase sort
as compared with proposals for an optimal read-forward
version.

This paper illustrates a way to construct an optimal
read-forward polyphase sort using no auxiliary data
structures, and also a near optimal read-backward version
using a compact vector. The problems associated with
the construction of an optimal dispersion algorithm are
also discussed.

For a more detailed and rigorous treatment of the
material presented in this paper, including programming
code for all the algorithms discussed, the reader is
referred to Ref. 5.

READ-FORWARD POLYPHASE SORT

The polyphase sort is organized in two distinct phases. In
the first phase, which is called the presort phase, input
data are converted into a number of relatively short
sequenced strings called unit strings (US). Most com-
monly, these are generated using replacement selection.
In the second or merge phase, strings are successively
merged into longer strings until one string is left, which
is the complete sorted file.

The merge volume is the total amount of data passed
during the merge phase, expressed in terms of unit strings
and can therefore be regarded as a measure of total work
done during the sorting process.

A simple example should suffice to remind the reader
of the basic operations involved in the polyphase sort,
and also define some terminologies and symbols to be
used subsequently in this paper.

Assuming there are T tape-drives available, the presort
phase would distribute sorted strings onto (7 — 1)
working tapes as they were formed. A W-way merge,
(W =T — 1), may now commence, after rewinding all
the tapes and optionally replacing the input tape by a
working tape. W strings, one string from each input tape,
are next merged into one longer string and written to the
initially vacant tape; this process is repeated until one of
the input tapes is depleted. The depleted input tape and
the output tape are simultaneously rewound, leaving
other tapes as they are, to prepare for the next phase of
merging. In subsequent merge passes, the previous
depleted input tape becomes the receiving tape, and the
rest serve as input tapes. Merging continues in this
manner until all strings are merged into one.

The read-forward polyphase sort treats each tape as a
FIFO queue; strings written first onto the tape will be
read back first. The rewind time, which is that needed to
rewind the longest of either the depleted or receiving

CCC-0010-4620/82/0025-0093 $04.50

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 93

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

M. C. ER AND B. G. T. LOWDEN

tape, cannot therefore be eliminated. Figure 1 shows the

status of each tape at the end of every pass for T =4,
assuming 13, 11 and 7 strings are distributed on tapes 1,
2 and 3 respectively during the presort phase.

Pass Tape 1 Tape 2 Tape 3 Tape 4 Merge volume
Presort 13, 11, 74 —
rewind rewind rewind rewind &
replace
1 61 41 - 73 21
rewind rewind
2 2, — 4; 3, 20
rewind rewind
3 — 24 2; 14 18
rewind rewind
4 1,4 19 15 — 17
rewind rewind
5 - - - 1 31 3 1
rewind rewind rewind rewind

107 US

Note: Y, means y strings of length z US.

Figure 1.

The simplest way to determine those configurations,
which guarantee W-way merging can be maintained
throughout the merge phase, is to work backwards from
the last merge pass. Figure 2 illustrates the configurations
for a generalized order of merge, such that the number of
stringson ¢, t,, 3, . . . are presented in descending order,
and the receiving tape discarded.

~
>
~
N
~
&
~
¥
|
~
~
¥
I
n~
¥

5 16 16 16 14 12 8
4 8 8 8 7 6 4
3 4 4 4 4 3 2
2 2 2 2 2 2 1
1 1 1 1 1 1 1
0 1 0 0 0 0 0
-1 0 1 0 0 0 0
-2 0 0 1 0 0 0
3-w0 0 0 1 0 0
2-wO 0 0 0 1 0
1—-wo 0 0 0 0 1
Note: For L < 0, the numbers for tapes are artificial
values
Figure 2.

The above configurations are called ideal distributions,
each level is called a perfect level and the number of
strings on each tape, at each perfect level, is called an
ideal number.

Let F" denote the ideal number on tape ¢ at perfect
level L. The properties and relationships between ideal
numbers are listed in the Appendix, (A.1) to (A.9), and
analysis reveals they are based on a W-generalized
Fibonacci series.

DUMMY STRINGS AND MERGE NUMBERS

In practice, the number of strings generated during the
presort phase rarely turns out to be ideal. The standard

94 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982

approach, therefore, is to bring the total number of
strings, on each tape, up to the next perfect level using
dummy strings. Since the latter can be manipulated by
an internal book-keeping operation, the cost of processing
these dummy strings is negligible compared with real
string processing. Minimum merge volume would there-
fore be achieved if dummy strings were allocated to those
positions involved most frequently in the merge process.

Define merge number to be the number of times a string
initially distributed onto a tape, is involved subsequently
in merging during the merge phase.

Figure 3 shows merge number for W = 3 and perfect
level L in the range 0 to 5.

L=0 1 2 3 4 5
Positon t=123 123 123 123 123 123
0 100 111 222 333 444 555
1 11 222 333 444
2 22 333 444
3 1 222 333
4 33 444
5 22 333
6 2 333
7 44
8 33
9 33
10 22
11 3
12 2

Figure 3.

From Fig. 3, it may be seen that positions with largest
merge numbers are scattered along the tapes and so the
simple idea of placing dummy strings at these positions
turns out, in practice, to be a non-trivial task.

In order to construct an optimal polyphase sort it is
necessary to resolve the following problems.

(1) How to compute merge numbers at a given perfect
level as shown in Fig. 3.

(2) How to allocate real strings at those positions with
smallest merge numbers on a tape.

(3) How to initially distribute real strings onto W tapes
taking all the positions with smallest merge numbers
into account.

Problems (2) and (3) will be tackled in the next two
sections, and we now turn our attention to a discussion of
the first.

A close study of Fig. 3 indicates that the patterns of
merge numbers for tapes 2 to W are precisely a
duplication of tape 1 with fewer strings, and so the
problem of generating merge numbers for all W tapes
reduces to the task of generating merge numbers for tape
1. As has been pointed out, it is possible to derive merge
numbers for a given perfect level by working backwards
from perfect level 1, however, this can be a lengthy
process and we now describe a method of generating
merge numbers for any perfect level without the need to
involve merge numbers at lower perfect levels.

Figure 4 illustrates the merging pattern for tape 1,
given an initial distribution of 13, 11, 7, a binary ‘1’
indicating one involvement, in a merge pass, of the string
occupying the position in question.

Thus in the first pass strings 06 are merged to form

© Heyden & Son Ltd, 1982

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

THE THEORY AND PRACTICE OF CONSTRUCTING AN OPTIMAL POLYPHASE SORT

Pass
Position{p) 1 2 3 4 5 Merge number
0 11111 5
1 11101 4
2 117011 4
3 11001 3
4 10111 4
5 10101 3
6 10011 3
7 01111 4
8 01101 3
9 01011 3
10 01001 2
1 oo0111 3
12 00101 2

Figure 4.

part of the first seven strings on the receiving tape. On
the second pass strings originally occupying position 0-3
together with strings 7-10 are merged together and so on.
In the final pass all strings are involved in the merge
process to form a single string—the sorted file. The merge
number for each string position is, therefore, simply the
sum of ‘1’ bits over all merge passes.

Consider now Fig. 5 which shows the result of taking
the ones complement of the bit pattern of Fig. 4 and
assigning a ‘weight’ to each bit.

Weight
Positon(p) 7 4 2 1t 1 Merge number
0 00000 b5
1 00010 4
2 00100 4
3 00110 3
4 01000 4
5 01010 3
6 01100 3
7 10000 4
8 10010 3
9 10100 3
10 10110 2
11 11000 3
12 11010 2

Figure 5.

The weighting function may be seen to be precisely
F%. Let BP; be the ith bit from the right most digit of the
bit-pattern (BP). Further, assume that Q(BP) be the
number of 1’s in the BP. Then the bit-patterns shown in
Fig. 5 have the following duality property. They can be
interpreted both as positions (P) and also as merge
numbers (m) at the positions concerned. This duality can
be expressed formally as Eqns (1) and (2).

L-1
p=) BPi+Fj (1)
i=0
m =L~ Q(BP) @
where
L-1
Q(BP) = ¥ BP, 3)

Further, the bit-patterns in Fig. 5 turn out to satisfy
the Generalized Zeckendorf Theorem which is described
as follows.

© Heyden & Son Ltd, 1982

Generalized Zeckendorf theorem

Every positive integer / has one and only one unique
representation in a W-generalized Fibonacci number
system, such that

G I= Z BP; + Fib,
i=0
and

(ii) The unique representation using minimum numbers
of 1’s. Where Fib!, is the ith number of w—generalized
Fibonacci series.

The construction of a successor function based on the
Generalized Fibonacci number system subject to the
constraints of the Generalized Zeckendorf Theorem is
described in Ref. 5.

AN OPTIMAL READ FORWARD POLYPHASE
SORT

After the presort phase is complete, the number of real
strings S, distributed on tape t is known before the merge
phase starts. The number of dummy strings D, needed for
tape t is, therefore, the difference between the ideal
number FL and S, (see next section for a discussion of
determining the optimal perfect level).

The position of dummy strings should be computed in
such a way that the positions with largest merge number
are allocated to first, then the positions with second
largest merge number and so on until dummy strings are
depleted. Note that it is unnecessary to compute the exact
position of every dummy string with merge number
greater than m, where m is the smallest merge number
occupied by dummy string(s). We merely subtract the
number of dummy strings for each merge number greater
than m from D,. Only when allocating dummy strings for
each merge number m do we need to keep track of the
exact positions in order to determine the boundary
between dummy strings and real strings with merge
number m. Once the boundary is determined, the merge
phase can commence immediately. Also, during the
merge pass, it is unnecessary to remember all the dummy
strings’ positions since they can easily be computed once
the boundary is known.

Two questions arise from the foregoing discussions:

(1) How tosuccessively enumerate the positions of merge
number m so that the boundary between real and
dummy strings may be determined.

(2) How to distinguish the positions of dummy strings
from those of real strings using the boundary value.

From Fig. 6, which is a reconstruction of Fig. 5, we see
that dummy strings should cover those positions with the
smallest value of Q(BP) (i.e. position 0) followed by
positions with the next smallest value of Q(BP) (i.e.
positions 1, 2, 4, 7) and so on until all dummy strings are
depleted. We therefore consider how to compute the
number of each type of Q(BP) and how to successively
enumerate the position occupied by the members in each
column.

Define each level uniquely defined by a perfect level
and a merge number as a sub-level (i.e. by tabulating the
merge numbers at various perfect levels). Let "NE denote

THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 95

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

M. C. ER AND B. G. T. LOWDEN

Q(BP)
Position 0 1 2 3
4] 00000
1 00010
2 00100
3 00110
4 01000
5 01010
6 01100
7 10000
8 10010
9 10100
10 10110
11 11000
12 11010
Figure 6.

the number of strings with the type of merge number m
on tape ¢ at perfect level L.

Further, let 4} denote the number of bit-patterns of ¢
1’s for tape t at perfect level L. Then 4t is related to
mNE formally as shown in Eqn (4).

Lemgl —mNL for L > 1 (C))

Therefore, to calculate 94X is equivalent to evaluate
L-aNL Hence, the relationships of "N can be extended
to 24L.

From Fig. 7, it should be clear that the bit-pattern of
minimum values for each Q(BP) is the right-justification
of all 1's in the pattern subject to the constraint of the
Generalized Zeckendorf Theorem such that the complete
groups of two 1’s appear right most as shown in Fig. 7.
With this approach, the bit-patterns of minimum values
may be generalized to any order of merge.

In order to compute the boundary between the dummy
strings and real strings with Q 1’s in the bit-patterns it
is necessary, after subtracting 4L for ¢=0, 1, 2, ...
(Q — 1) from D,, to enumerate the bit-patterns with Q
1’s, starting from the minimum value, until the dummy
strings are depleted.

Q(BP) Bit-patterns for minimum values

0 00
1 010
2 0110
3 010110
4 0110110
5 010110110
6 0110110110
7 010110110110

Figure 7.

Once the bit-pattern of the boundary is established,
whether a position should be occupied by a real string or
a dummy string can be decided fairly easily. A position
counter is set aside to record the relative logical position
of the strings (real or dummy) being merged with respect
to the first logical strings at the start of each merge pass
on all W tapes. Since the position counter has the duality
property at any instant, it may be used together with the
boundary of a tape, to determine whether the position in
question should be occupied by a real string or a dummy
string as shown in Fig. 8.

96 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982

test Q(position counter's BP) < Q(boundary BP)
then dummy string
or test Q(position counter’'s BP) > Q(boundary BP)
then real string
or test (position counter’s BP) < (boundary BP)
then dummy string
or real string

Figure 8.

Note that the last test in Fig. 8 evaluates both bit-
patterns in the binary number system. It is valid because
both Fibonacci and Binary number systems preserve the
same monotonicity.

Apart from the position counter, a dummy string
counter is set aside for each tape, during the merge phase,
to keep track of the number of dummy strings on the tape
concerned.

Also at the start of each successive merge pass, revised
boundaries may be computed for those tapes incorporat-
ing dummy strings.

DISPERSION PROBLEMS

Now, we consider how initially to distribute real strings
onto W tapes so that the distributions support the optimal
read-forward polyphase sort algorithm discussed in the
previous section. In other words, distribution should be
done in such a way that it minimizes the merge volume.

Consider the merge volume when some of the positions
are occupied by dummy strings. Let S be the total number
of real strings formed in the presort phase, such that
F'=' < § < F'. If dummy strings are used to bring the
total numbers of strings up to a perfect level L, such that
L > i and dummy strings occupy only those positions
with merge numbers >m then the merge volume of S
real strings starting from perfect level L, V%, can be
expressed as Eqn (5).

m-—1 m-—1
V= Y j*jNL+m*<S-— y jNL) 5)
j=mianL j=minM"

where ,i»MF is the minimum merge number of tape 1 at
perfect level L.

The diagram of In (V§) vs In (S) for W = 3 is shown in
Fig. 9, where V% denotes the merge volume of S real
strings at perfect level L.

n+1
. n
Q
£ n—1
=
°
>
)
(%3
=
= n—2
Strings
Figure 9.

Define the optimal perfect level to be the perfect level
which minimizes the merge volume for a given S.

© Heyden & Son Ltd, 1982

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

THE THEORY AND PRACTICE OF CONSTRUCTING AN OPTIMAL POLYPHASE SORT

Further, define the critical point to be the point where
adding a real string would result in a change of perfect
level from L to L + 1.

From Fig. 9, it is clear that the critical points are
precisely the intersection points, of two curves, for
perfect levels L and L + 1, for L > 0, or the upper end
point of the curve for perfect level L.

In order to achieve minimum merge volume, it is
necessary to distribute strings such that the distribution
follows the curve for perfect level L up to the critical
point when the direction should be changed to follow the
curve for perfect level L + 1.

It should be observed that each portion of the curves
which minimizes the merge volume are made up of sub-
levels (as defined in the previous section) and critical
points. Tabulation of the sub-levels and critical points
for W = 3, is shown in Fig. 10.

Dispersion

level L & [2Y ty Total
1 1 1 1 -1 3

2 2 2 2 1 5

3 3 3 2 1 6

4 3 4 3 2 9

5 4 6 5 3 14
6 4 7 6 4 17
7 5 12 10 6 28
8 5 13 11 7 31
9 6 18 14 8 40
10 6 23 19 12 54
1 7 37 30 18 85
12 7 41 34 20 95
13 8 52 40 22 114
14 8 73 60 37 170
15 8 74 61 37 172
16 9 112 89 52 253
17 9 122 98 659 279
18 10 151 114 62 327

Figure 10.

Define each row shown in Fig. 10 as a dispersion level
(DL), and the numbers for each tape at a dispersion level
as dispersion numbers. Further, define optimal dispersion
to be the dispersion of real strings such that the minimum
merge volume can be achieved.

It may now be seen that, in order to achieve optimal
dispersion, the dispersion algorithm should be guided by
dispersion levels rather than perfect level. Each row of
dispersion numbers can be read in when they are needed.
The algorithm for computing the dispersion numbers is
described in Ref. 5. The question still unanswered is
whether or not such an optimal dispersion exists for any
order of merge.

Define anomalous dispersion to be the situation of at
least one of the tapes at perfect level (L + 1) having less
strings than the corresponding tape at perfect level L at
the critical point concerned. Empirical results® suggest
that anomalous dispersion rarely happens; and when it
does, it incurs not more than 0.5% increase over the
theoretical minimum merge volume.

READ-BACKWARD POLYPHASE SORT

The objective of developing the read-backward polyphase
sort was to eliminate tape rewind time. This is achieved

© Heyden & Son Ltd, 1982

by basing its operation on the principle of a LIFO stack
rather than the FIFO queue of the read-forward version.

The LIFO stack operates as follows: Strings are always
written forwards and read backwards. This requires
extra hardware to provide a read-backwards facility, and
also fast switching between the two modes. Strings
written forwards in ascending order would therefore
appear in descending order when read backwards and
vice versa. In order to maintain a 7= (W — 1)-way merge
throughout, the strings being merged, at any given
moment, must be ordered in the same direction. This
may be achieved by arranging that the strings are initially
distributed in such a way that adjacent strings are ordered
in opposite directions. Figure 11 illustrates the process
for W=3and L=35.

Pass t ty ty ty Merge column
Presort|D1<—
A1l
D1 D1
Al A1 Front of tapes
D1 Dt
Al A1
D1 D1 D1
A1l Al A1l
D1 D1 D1
A1 A1 A1
D1 D1 Dt
Al Al A1
D1 D1 D1 —
1 A3
D1 D3
A1 A3
D1 D1 D3
A1l A1 A3
D1 D1 D3
A1l AT — A3 21
2 D5
A5 A3
D1 D5 D3
Al - A5 A3 20
3 P9 D5
— A9 A5 A3 18
4, D17 D9 DS — 17
5, — — — - A31 31
107 US

Figure 11.

The merge volume shown in Fig. 11 equals that shown
in Fig. 1 and, since both relate to the same perfect level
and both have the same ideal distribution, much of the
analysis carried out above, for the read-forward poly-
phase sort, is still applicable to the read-backward
version. Nevertheless, stack operations and alternating
string direction add an extra degree of complexity.

Figure 12 illustrates the distribution of merge numbers
within the read-backwards polyphase sort for W = 3.

From this we observe that the merge numbers on tapes
t, — t,, are exactly a duplication of that on ¢,. Also the
duplication starts from the rear and is truncated at the
front to make up a perfect level. Therefore, once the

THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 97

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

M. C. ER AND B. G. T. LOWDEN

Position | L =5 L=4 L=3 L=2 L=1 L=0
t t; 1y o ot 1 ty t ot t, ty, 3 6, t; & tn t;

0 3D3D3D 2A3D3D 1D2A3D 1D1D2A 1D1D 1D 1A

1 2A 4A 4A 3D 2A4A 2A 3D 2A 2A 2A

2 3D3D5D 2A 3D 3D 3D 2A

3 4A 2A 4A 3D 4A 2A 2A

4 3D 3D 3D 4A 3D

5 2A 4A 4A 3D 2A

6 3D 5D 3D 2A

7 4A 4A

8 5D 3D

9 4A 4A

10 3D 3D

11 4A

12 3D

Figure 12.
merge numbers on ¢, are determined, those for the other Yi=1 ©)
(T — 1) tapes may easily be derived. L L-1 L L1 L
. . =Ykl _ - <p<
Consider the example as shown in Fig. 13 for W =3 Yo =Yefp-s +1 for Fy—Fi <p<Fr (1)

and L =5. Yy =Ypih-r for0<p<Fi™! ®

Step
P 1 2 3 4 5 Merge number
oji0 0 11 1L 11 3
110 o 11t 0o 11| 2
2(0 11 11 0 1 3
3({o0o 11 14 1t 1| 4
410 11 0 1} 1 3
510 11 0 0 1|2
6 |1 1 0 O 11 3
7411 14 0o 11 1} 4
8 (11 11 11t 1| 1 5
911 1 11 0 1] 4
10 1t 0o 1 0 11 3
1111 0 1) 11 1} 4
1211t 0 O 1] 11 3

Note: T upwards direction
| downwards direction

Figure 13.

Instep 1, startin% rom the last position and moving to
the front, seven (F1~!) 1’s fill positions p =12 to p = 6,
and 0’s fill the rest.

In step 2, we split all positions determined in step 1
into two homogeneous groups. Starting from the last
position in step 1, we fill four (Ff~2) 1’s from p = 6 to
p =9 in a forwards direction; similarly, we fill four 1’s
from p = 2 in backwards direction. Zeros fill the rest.

In step 3, the same principle is applied as in step 2 by
splitting all positions into four homogeneous groups as
determined in step 2. Starting from where we left off in
step 2 (i.e. p=2 and p =9), we fill two (FF~3) 1I’s for
each group in opposite direction, zeros fill the rest.

In step 4, the same principle is applied again and
again.

In the last step, all positions are trivially filled with 1’s
because all strings are involved in the last merge pass.

Finally, the sum of binary numbers as determined
from step 1 to step 5 is seen to be the merge number for
the corresponding position on tape 1.

The relationship between merge numbers for succes-
sive perfect levels may be formally expressed as (6)—(8),
where Y% denotes the merge number at perfect level L
occupying position p.

98 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982

Let max p* denote the position of maximum merge
number on tape 1 at perfect level L. Then (9) holds.

max p- = FF —maxpt~—! — 1 9)

The relationship between merge numbers at the same
perfect level is not immediately apparent. However, by
introducing the notion of a ‘mirror’, part of the bit-
pattern at some positions may be viewed as the mirror
images of others, thus providing some clue for analysis.
The idea is illustrated in Fig. 14, which is a modification
of Fig. 13 but includes the ‘mirrors’.

Step
p 1 2 3 4 5 Merge number
o0 o0 11 1} 11 3
1{0 0 1 0 1 2
20 11 11 0o 11 |3
3|0 11 1) 11 1 |4
4o 11 0 14 11 |3
5|10 11 0 o0 1 2
6 [11 11 0o o 11 |3
7 (1 11 0 11114
8 |11 11 11 14 11 |5
9 |11 11 110 1] |4
1011 0 1, o 11 |3
11011 0 1 11 1) |4
12[171 0 o 1) 11 |3
Note: —— Mirror
Figure 14.

From Fig. 14 it may be seen that bit-patterns at p = 5
to p =0 are mirror images of bit-patterns at p =26 to
p = 11 respectively. Similarly, bit-patterns at p = 10 to
p = 12 are the mirror images of bit-patterns at p=9
to p = 7 respectively and so on. We may therefore draw
the following conclusion: the merge number of a mirror
image is exactly one less than the merge number of the
corresponding object. Based on this simple concept a
generalized algorithm® for enumerating the merge num-
bers of the read-backward polyphase sort for any given

© Heyden & Son Ltd, 1982

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

THE THEORY AND PRACTICE OF CONSTRUCTING AN OPTIMAL POLYPHASE SORT

perfect level, may be constructed which does not depend
on evaluating merge numbers at lower perfect levels.

By comparing Fig. 13 with Fig. 4, it may be seen that
the read-backward polyphase sort merely rearranges the
position of merge numbers without increasing or decreas-
ing the total of each type of merge number. Hence the
merge volume formulae, and certain others, developed
for the read-forward case, are still appropriate for the
read-backward version.

DISPERSION DIFFICULTIES

Apart from the general dispersion problems, already
discussed, the read-backward polyphase sort exhibits an
extra degree of difficulty resulting from the alternating
nature of adjacent strings. In general, if ((L — 1) rem
T)=0, for any W > 1, then the direction of all first
strings at perfect level L is the same, otherwise the
direction of one of the first strings (i.e. on the object tape)
has odd parity at the perfect level concerned.

In reality, the directions of the first strings have to be
decided as soon as the distribution of real strings
commences, without prior knowledge of the total number
of real strings and the eventual perfect level. Under such
constraints, it is not always possible to achieve optimal
dispersion. One approach is to use extra dummy strings
to proceed to the next higher perfect level which coincides
with the initial guess but may involve a non-optimal
perfect level. A better approach is to always start the
direction of the first strings with one ascending string
and (W — 1) descending strings (assume the final sorted
sequence is ascending). If the perfect level, however,
demands that the direction of all first strings be the same,
a dummy string can be assumed to exist in front of the
relevant tape. To cater for this, whenever ((L — 1) rem
T) = 0, the total number of real strings distributed on the
tape, whose first string is ascending, must be at least one
less than the corresponding ideal number. Clearly, the
advantage of this approach is that the merge volume is
closer to the minimum merge volume than is the case of
going up one level higher than the optimal.

NEAR OPTIMAL READ-BACKWARD
POLYPHASE SORT

The construction of an optimal read-backward polyphase
sort demands the allocation of dummy strings at those
positions with the largest merge numbers. However, due
to the inherent alternating direction of adjacent strings,
a single dummy string (or indeed any odd number of
strings) may not be inserted without causing interference
tothe subsequent merge pattern. An alternative approach
is to insert dummy strings in pairs (or any even number).
Since no adjacent merge numbers have equal value, the
insertion of ‘pairwise’ dummy strings no longer guaran-
tees that all positions with the largest merge numbers are
filled first. Consequently, the theoretical optimal read-
backward polyphase sort cannot always be achieved with
the pairwise insertion approach.

Nevertheless, due to the fact that any pair of adjacent
strings can be considered to comprise an object and its
mirror image, the merge number of the mirror image is

© Heyden & Son Ltd, 1982

only one less than the merge number of the corresponding
object. The pairwise approach always guarantees, there-
fore, that a near optimal read-backwards polyphase sort
can be constructed and the resulting merge volume is in
excess of the theoretical minimum merge volume by a
value equal to the number of ‘wrongly’ allocated dummy
strings. The additional volume passed through, is in
general, far less than would result from a redistribution
pass.

With the added complication of pairwise insertion of
dummy strings, there would appear to be no simple
principle to guide the merge phase of the read-backward
polyphase sort and a compromise solution is to record
those positions occupied by dummy strings using vectors.

During the presort phase, strings are distributed to W
tapes in line with the principle of achieving optimal
dispersion discussed earlier in this paper.

Following the presort phase, a vector of merge numbers
(VMN) may be generated using the algorithm for
enumerating merge numbers, since the optimal perfect
level and the ideal numbers of all W tapes are known at
this stage.

Further, in order to speed up the scanning process of
finding the next dummy string position, it is worth
building a small vector of numbers of each merge number
type (VNMN).

A vector of positions of dummy strings (VPIDS), for
each of W tapes which have dummy strings, can then be
constructed with the aid of VMN.

If a dummy string is required to be inserted in front of
the first real string then the first string position should be
selected and the total number of dummy strings remain-
ing, on that tape, reduced by one. If, however, the total
number of dummy strings left on the tape is an odd
number, thus reducing the value to an even number.
Subsequently, pairwise selection can commence.

Once a string’s position p is selected, its merge number
m in VMN is changed to zero and the position p is
recorded in VNMN, causing both the total number of
dummy strings left on that tape, and the amount of the
type of merge number m in VNMN be decremented by
one. Therefore, the VNM isscanned from the last string’s
position to the front until the largest merge number m (at
position p, say) is found as indicated by VNMN. If the
adjacent position (p — 1) or (p + 1) contains a non-zero
merge number, bothp and (p — 1) or (p + 1) are selected
as a pair. However, if position (p— 1) and (p +1)
contain zeros it is not possible to select p and (p — 1), or
p and (p + 1), because (p— 1) and (p + 1) had been
selected previously; however, the merge number at p is
still changed to zero, and the amount of the type of merge
number m in VNMN is decremented by one. Hence the
search for largest merge number can always be based on
the information provided by VNMN. The searching
process is repeated until the number of dummy strings
for the tape concerned is reduced to zero and finally,
VPIDS is sorted into sequence.

The same procedure is repeated to create VPIDS for
othertapes, and although VMN needs to be re-established
every time, its length may be shortened by zeroing the
first (F} — Fl)string positions.

Figure 15 illustrates the selection of 8 dummy strings,
including the first string position, for ideal number 13 on
tape 1 at perfect level 5 for W = 3.

Note that none of the vectors described above, exist

THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 99

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

M. C. ER AND B. G. T. LOWDEN
VMN VNMN VPIDS @
3234323454343 10264 1;- 8
0234323454343 102541]0 7
0234323454340)02441|012 6
0234323004340 {02430/|01287 4
0234323004000]02320{012871110 2
0234323000000]02320|01287 1110 2
0200323000000 |02210|01287 1110 3 210
0200323000000 |02210j0 237 8101112]0
Note: @ is total dummy strings left
Figure 15.
until the presort phase has been completed and so they in Pass |t L)
no way affect initial string lengths. Also the space Presort{fD1 D1 — —
occupied by VMN and VNMN can be released prior to Al A1l
the start of the merge phase. A VPIDS for the receiving D1 D1
tape during the merge phase is needed as well, although Al A1
space relating to these vectors, may be reduced by D1 D1
packing several values to a computer word. 31 3:
During the merge phase a dummy string is assumed, if Al A1
the string position under consideration appears in VPIDS D1 D1
of the tape concerned, otherwise a real string is read from Al Al
the tape. If all the input tapes present dummy strings at D1 D1
a string position, the corresponding dummy string A1
position on the output tape is recorded on its associated D1
VPIDS. To avoid searching VPIDS, it is possible to hold
a pointer to the next dummy string position. The merge 1 D1 D1 A2 rewind
phase proceeds in read-backwards and write-forwards 31 31 23 ‘;’:‘:’Iace
manner until one string is left. Al A1 D2
D1 A2
A1 D2
ELIMINATION OF REWIND TIME A2
The development of the read-backward polyphase sort 2 D1 — A2 D4
was aimed at eliminating tape rewind and hence saving A1 D2 A4
rewind time. However, itis possible, with a read-forwards A2 D4
facility only, to reduce tape rewind time by overlapping Ad
tape rewinding with merging.® That is, when one tape is
being rewound, merging continue on the remaining 3 — D7 A2 D4
tapes. This is known as the tape-splitting polyphase sort. A7 A4
Such an approach achieves W = T — 2 throughout the 4 D13 D7 — D4
merge phase, although minimum of four tape drives is
required. 5 — — A24 —
As discussed earlier, the only rewind time incurred in
the read-backward polyphase sort is the rewinding of the Figure 16.

initial input tape and final output tape. Further, there is
no reason why a (W — 1) way merge, suchthat W =T —
1, could not be performed whilst rewinding and replacing
the initial input tape. That is, strings are distributed onto
W tapes, during the presort phase. While the input tape
is being rewound and replaced, a (W — 1)-way merge can
be carried out, and the resulting strings written onto that
empty tape. The approach is illustrated in Fig. 16 for 24
real strings with T = 4, assuming tape 4 is the initial
input tape.

During the presort phase, the dispersion algorithm
distributes ideal numbers of strings on tape 1 to tape
(W — 1) for a perfect level L of W-way merge leaving
tape W empty. More precisely, dispersion is aimed at
distributing FT stringsontape tforl <t < W — 1. (A.4)
guarantees that, in pass 1 of a (W — 1)}way merge,

FL-! strings can be merged from (W — 1) tapes and.

written onto tape W leaving F5 ! on tape s for 1 <1<
W. Close study of Fig. 12 confirms that after pass 1 of the

100 THE COMPUTER JOURNAL, VOL. 25, NO. 1, 1982

(W — 1)-way merge, the directions of strings on all W
tapes exactly coincide with the string direction pattern at
perfectlevel (L — 1). A W-way read-backward polyphase
sort, therefore, can proceed from there onwards (i.e.
applying the near optimal read-backward algorithm).

If, however, a full complement of strings on tape 1 to
tape (W — 1) are not fully attained in the presort phase,
strings are merged such as to leave F.7! strings on tape
t for 1 <t < W after the first merge pass, and then the
near optimal read-backward polyphase sort algorithm
applied described earlier. It is still possible to merge
F{~! strings from each of (W — 1) tapes; however, in
view of the fact that the merge strings produced in pass
1 are (W — 1) times as long as the initial strings, on
average, and the corresponding merge numbers are
consequently proportionally increased, then heuristically
it is better to reduce the number of such strings.

© Heyden & Son Ltd, 1982

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

THE THEORY AND PRACTICE OF CONSTRUCTING AN OPTIMAL POLYPHASE SORT

Notice that, quantitatively, it might appear possible to
distribute F-~! + FL~'ontapetfor] < t < W;however,
after merging Fj~' strings from each of (W — 1) tapes
and writing onto tape W in pass 1, the directions of the
strings will not exactly match the required direction
pattern and hence in practice this would not be a viable
approach.

REMARKS

In this paper, we have shown how to construct an optimal

read-forward polyphase sort and a near optimal read-
backward version. Moreover, the underlying principles
and the dispersion problems have also been discussed. It
is worth pointing out that the duality of bit-patterns,
developed for the read-forward polyphase sort, is also
applicable to the tape-splitting polyphase sort.

Acknowledgments

The authors are indebted to J. Washbrook of University College,
London, for his constructive comments on the first draft of this paper.
The referee’s comments greatly improve the presentation of this paper.

REFERENCES

1. D. E. Knuth, Sorting and Searching. Addison-Wesley, Reading,
Massachusetts (1975).

2. D. L. Shell, Optimising the polyphase sort. Communications of
the ACM 14 (No. 15), 713-719 (1971).

3. D. A. Zave, Optimal polyphase sorting. SIAM Journal on
Computing 6 (1977).

4. W. D. Maicolm, String distribution for the polyphase sort.
Communications of the ACM 6, 217-220 (1963).

5. M. C. Er, The theory and practice of constructing an optimal
polyphase sort, MSc. Thesis, available from the University of
Essex Library (1978).

6. R. L. McAllester, Polyphase sorting with overlapped rewind.
Communications of the ACM 7, 158-159 (1964).

Received December 1980
© Heyden & Son Ltd, 1982

APPENDIX
Fr=db =1 Llg perco @A) F"=§F-’“forL>1—W A7)
' 710, otherwise : & = '
Fl=1forl<t<sW (A.2)
Fh=FL-'forL>1 (A.3) w
L __ L —i

Fr=FL'yFiiforL>1andl<t<W-1 (A4 F -—;F forL2>1 (A-8)
FL>FL forL>0andl<t< W—1 (A.5)

w
Fr=Y FloiforL>1and1<t< W (A.6) Fi~ ™' =Fl—Ff forL>1

i=1

© Heyden & Son Ltd, 1982

andl <t<W-1whereT=1+W (A9

THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 101

¥202 I4dy 01 uo 1senb Aq 641/2G/€6/1/52/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

