Triodic Logic and its Use in Structured Program

Design

N. E. Goller

Operational Research Executive, NCB, Coal House, Lyon Road, Harrow, Middlesex, UK

A triode is a program block with one entry and two exits. This paper examines some of the consequences of taking
triodes to be the basic units of program structure. The result is a useful generalization of the existing theory and

practice of structured programming.

1. INTRODUCTION

The triodic notation developed in this paper is a
streamlined, but otherwise quite modest generalization
of structured programming notations already in use. Two
benefits have been found to result from this in practice.
Firstly, the notation is particularly concise and flexible.
Therefore it is rewarding to use, and easy to modify and
debug. Secondly, the idea of taking triodes as basic
building blocks has proved a valuable way of thinking
about program design.

Sections 2 and 3 describe the basic structures of triode-
based logic; section 4 gives some elementary examples of
their use. Section 5 describes how these structures may
be implemented in a program design language intended
for mechanical translation into FORTRAN. Section 6
describes some changes to the notation which have been
found desirable in practice. Section 7 shows how the
basic structures may be enhanced by a notation for
quantified loops. Sections 8 and 9 give a brief account of
some practical experience of using triodic structures for
error-handling and for parsing respectively. Conclusions
are presented in section 10.

For the past two years the author has made constant
use of the methods discussed here in the course of writing
applications and systems programs for the Operational
Research Executive of the National Coal Board. The
programs written by these means have carried out a fair
mixture of scientific, algorithmic, and data-processing
tasks and have ranged in size from a few lines to a few
thousand lines.

2. THE BASIC BUILDING BLOCKS

The swiftest way to define the concepts we need is by
flow diagrams. A triode is any program block (Fig. 1) that
has one entry and two exits. These will be called the main

Main
exit

Alternative exit

Figure 1. A triode.

and alternative exits, and in diagrams here will be shown
as emerging from the right and from the bottom
respectively. If the alternative exit does not occur we get
a special case (Fig. 2) called a diode.

Figure 2. A diode.

If more formal definitions are required, we say that a
triode is a triple (P, M, A) where P is a Turing computible
procedure and (M, A) is a partition of its halting states
into the two disjoint classes M, A. This triode is a diode
if A is empty. Any procedure can be naturally identified
with a corresponding diode by assigning all its halting
states to the main exit.

Let B be a boolean expression. Then test (B) will
denote a procedure that evaluates the expression; in the
event that this procedure halts it will take the main exit
if B is true and the alternative exit if B is false (Fig. 3).

True

False
Figure 3. The triode test (B).

When this notation is used in a program text, we shall
permit it to be abbreviated to (B) alone; the parentheses
are retained but the keyword test omitted.

3. NEW TRIODES FROM OLD

Let T1and T2 be triodes. We define two binary operators,
semicolon and hash, by displaying their results T1; T2
and T1# T2 in Fig. 4. These operators obey the
associative law, that is to say

{T1; T2}; T3 =T1; {T2; T3}
and
{T1 # T2} # T3 =TI # {T2 # T3}

CCC-0010-4620/82/0025-0218 $04.50

218 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

© Heyden & Son Ltd, 1982

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

TRIODIC LOGIC AND ITS USE IN STRUCTURED PROGRAM DESIGN

T1 T2 —> T1 y >
Main Main
exit exit
\ 4
< Y
v T1;T2 T2
Alternative exit
T1#T2
v

Alternative exit

Figure 4. The semicolon and hash operations.

making the brackets in these expressions unnecessary.
We shall decree that semicolon is evaluated inside hash,
reducing further the need for brackets: thus

T1 #T2; T3 # T4; T5; T6
denotes
T1 # {T2; T3} # {T4; TS, T6}.

When bracketing is still needed we shall use the
keywords tri . . . irt in place of the brackets {. . .}.

The next three operators are unary, and use keywords
that imply bracketing; for example do. . .od is understood
asdo{...} od.

rev T ver interchanges the exits of T (Fig. 5).

Figure 5. The triode rev T ver.

do T od loops the main exit to the entry (Fig. 6)

Figure 6. do T od.

if T fi amalgamates the exits (Fig. 7).

Figure 7. if T fi.

The result of do. . .od or if. . .fi is always a diode.

It should be clear that the semicolon and hash
operations are analogous to boolean ‘and’ and ‘or’. The
rev. . .ver construct is analogous to boolean ‘not’. The

© Heyden & Son Ltd, 1982

analogy is exact if we let B, C be boolean expressions and
set

T = test (B), U = test (C).
Then

T;U=test(B&C)

T # U = test (B|C)

rev T ver = test (— B).

Further constructs to be given in section 7 will
be analogous to (B implies C), (3x € S-B(x)), and
(V xe S-B(x)).

4. EXAMPLES

The use of the constructs so far given can be made plain
by giving the triodic equivalents of some standard
program structures:

Standard structure Triodic equivalent
if B then D1 else D2 if (B); D1 # D2 fi
while B do D do (B); Dod
repeat D until B doD; (—B)od

The next example illustrates the Euclidean algorithm
to find the greatest common divisor of two positive
integers X and Y, firstly in the notation of Dijkstra (Ref.
1, p. 45):

xy=XY,
dox>y—>x=x—y
Qy>x—-y=y—x

print (x)
and next the triodic equivalent:

xy=X,Y;
do(x>y);x=x—y
#(y>x)y=y—x
od.

pri,nt (x)

The two notations correspond to one another exactly
in this example. It should however be noted that
Dijkstra’s [] notation causes the alternatives to be tested
at random (by an unpredictable demon!) whereas my #
notation causes the alternatives to be tested in sequence.
Therefore differences in meaning between the notations
will occur if the boolean tests are not mutually exclusive.

The following program tests successive fields of a

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 219

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

N. E. GOLLER

record, performing instead an error routine PX if any test
fails. The first version is that of Jackson (Ref. 2, p. 123):

PCARD pesit good card
PGOOD seq
quit PCARD if error F1;
do P1;
quit PCARD if error F2;
do P2;
quit PCARD if error F3;
do P3;
PGOOD end
PCARD admit
do PX;
PCARD end

The triodic version is as follows:

if (—F1); P1; (—F2); P2; (—F3); P3
#PX
fi

S. AN IMPLEMENTATION

Assume now that the triodic constructs so far given are
to be incorporated into a source language for program-
ming, and that this source language is to be translated
into a target language such as Fortran which has not the
triodic constructs but has labels and gotos.

We may design a program to do this translation as
follows. It will read the source text sequentially while
manipulating a stack of labels.

We start with the stack instructions shown in Table 1.

Table 1. Operations on stack of labels

Instruction Meaning

ext invent new label, push on top of stack

label produce label in target text matching top element of
stack

goto produce goto in target text whose destination is the

(top — 1) element of stack

cgoto (B) produce statement in target text of the form: if (not B)
goto top element of stack

pop pop top element of stack

copy push duplicate of top element on to stack

swap swap top and (top — 1) elements of stack

As the translating program reads the source text it
converts triodic notation into the stack instruction
sequences shown in Table 2. The bracketing conventions
are automatically observed, at the cost of some extra
labels that will not always be needed.

This translator, though usable as it stands, is fairly
crude. Two improvements are discussed in Appendix 1
(the treatment of ‘unreachable code’) and Appendix 2
(an optimization that removes some redundant labels).
Complete removal of redundant labels requires the use of
a ‘tree-walking’ translator (see Ref. 3, p. 29) rather than
the present ‘string-walking’ kind.

We must add a mechanism for diodic and triodic
procedure calls. If the target language is Fortran, a
callable diode becomes a Fortran SUBROUTINE called

220 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

Table 2. Implementation of triodic constructs by stack instruction

sequences

Source text Instructions

test (B) cgoto (B)

; (none)

goto; label; pop; ext
do ext; label; ext

od goto; label; pop; pop
if ext; ext

fi label; pop; label; pop
tri ext; ext

irt goto; label; pop; goto; label; pop
rev ext

ver goto; label; pop

out pop; goto; label; pop

in the usual way. A callable triode is written in the
following manner as a Fortran LOGICAL FUNCTION.

Suppose that T is the textual sequence for the triode
that would be used if it was written in line. Then the
corresponding text for the same triode written as a
separate callable module will be:

LOGICAL FUNCTION functionname (parameters)
if T; functionname: = true

functionname: = false

fi

The calling sequence, which in the calling program
replaces the text of T in line, is:

test (functionname (parameters))

If the callable triode is to have no parameters then in
the Fortran version we pass a dummy parameter so that
the same method of translation may still be used.

6. USEFUL MODIFICATIONS TO THE SYNTAX

Without increasing the computational power of the
language we can modify the syntax in ways that are
useful in practice.

6.1. An end of line acts like a semicolon, except when it
occurs after a comma or within an unclosed parenthesis.
In the latter cases it is non-significant. (This rule provides
the ‘continuation convention’.)

6.2. A comment is introduced by an exclamation mark
and terminated by end of line; the end of line is
significant or not just as in 6.1.

6.3. The presence or absence of semicolon is immaterial
before or after: hash, another semicolon or (as in 6.1, 6.2)
virtual semicolon, or any of the keywords of sections 3,
6.5 and 7. Thus we may if we choose write

do;if; T; U; # Vi, #Wod X
in place of
doif T, U# VAi# WodX

(The above conventions are adapted from existing
languages such as Ratfor* and BCPLS).
6.4. The test keyword may be omitted, as already stated
in section 1; the retained parentheses making the
abbreviation unambiguous.

© Heyden & Son Ltd, 1982

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

TRIODIC LOGIC AND ITS USE IN STRUCTURED PROGRAM DESIGN

6.5. Sooner or later one discovers the frequent need for
aconstruct that joins a diode in series with the alternative
exit of a triode (Fig. 8). The notation tri T # D out will be

!

Figure 8. tri T # D out.

used for this construct, this being more convenient than
writing tri T # rev D ver irt. More generally tri T1 #
T2# ... Tn#Doutistomean tri T1 # T2 # ... Tn #
rev D ver irt.

Note that this slightly distorts the grammatical
structure developed so far, in that tri T # D out cannot
be thought of as tri {T # D} out since the connection
between T and D is no longer that expressed by T # D in
isolation. This distortion has no serious consequences,
however; the reason for this is that we can choose to
regard out as an abbreviation for ;test (false) irt in which
case the grammar fits neatly into place.

(It is worth mentioning that the present notation was

only arrived at after much experiment. Some proposed
notations were too fiddly. Others turned out to entail
grammatical changes of a serious nature, for example
having to replace Table 4 by a more complicated
grammar that kept diodes and proper triodes rigidly
separated).
6.6. Various forms of ‘assertion’ statement® are useful
for purposes of debugging and error-handling. We
therefore define canthappen to be a diode whose effect,
when executed, is to cause a message to be written saying
‘false assertion at line . . . of source text’.

If B is a boolean expression, we define assert (B) to be
a triode equivalent to:

tri (B) # canthappen out

This construct results in the same flow of control as test
(B) but additionally causes a false assertion message to be
written if B is false. The programmer encountering the
false assertion message can then refer to the designated
line of source text in order to find out what unwanted
circumstance caused the message to be written.

Other forms of ‘assertion’ statement can set a globally
accessible error flag instead of writing a message. This is
particularly useful when the error occurs inside a low-
level module, so that the programmer can call the module,
then test the flag, and thereby construct error messages
that relate to the intended application of the module
rather than to its internal workings.

© Heyden & Son Ltd, 1982

7. QUANTIFIED LOOPS

Constructions resembling the following are among the
commonest in programming :

i=1;do (i <n); (array (i) = value); i=i+ 1 od; (i <
n)
i=1;do(i<n);array (i) =value;i=i+1od

The first searches an array for a specified value, ending
with 7 set to the index of the first such value found. The
final test of (i < n) makes the construction into a triode
that takes the alternative exit if value is not found.

The second construction sets all elements of array to
value.

Such constructions may be cobbled together easily
enough using do . . . od loops, and this is often the best
way to write them. Where the required construction
sticks closely to the fixed pattern shown in the above
examples, however, it is natural to seek a more concise
notation. In the notation to be developed here the above
examples will in fact become:

find i = 1 < n; (array (i) = value) found
for i = 1 < n exec array (i) = value alldone

To explain this notation in its generality we must
introduce a new kind of building block. A quantode is
any program block (Fig. 9) that has two exits (main and
alternative) and also two entries (initial and secondary).

Initial entry Main exit
———b
Q
l¢————
Alternative exit Secondary entry

Figure 9. A quantode.

These are positioned conventionally for diagrammatic
purposes as shown in the figure.

A quantode may be thought of as an operator on
triodes. Figure 10 shows how a new triode results when

!

Figure 10. A quantode operating on a triode.

a triode is operated on by a quantode. Each quantode
described here acts as a program block that after suitable
initialization generates successive elements of some set.

To construct a quantode from scratch we use the
notation:

first F next N check T finish

Here F, N are diodes, T is a triode, and the resulting
quantode is defined to be that of Fig. 11. Where the set

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 221

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

N. E. GOLLER

4

N A E—

Figure 11. The quantode first F next N check T finish.

to be generated is a set of consecutive integers, we define
an abbreviated notation:

i='m < ndenotes first i =mnext i =i + 1 check (i <
n) finish

i=n>mdenotes first i =nnexti =i — 1 check (i >
m) finish

(If in fact m > n, each quantode generates the empty
set, as a consequence of these definitions).

We next define some operations on quantodes. Let Q1,
Q2 be quantodes, then Q1;Q2 is defined as in Fig. 12.

Q1 Q2

44—

l¢— —

Figure 12. The semicolon operation on quantodes.

<— &
< <

Figure 13. A triode regarded as a quantode.

Figure 14. find Q found.

Now if T is any triode, we shall allow it also to be
regarded as the quantode shown in Fig. 13: the secondary
entry coincides with the alternative exit. Under this
interpretation the semicolon operation on quantodes is a
generalization of the same operation on triodes.

The hash operggion is not defined on quantodes. The
two remaining operations are the following:

find Q found converts a quantode to a triode by
forgetting the secondary entry (Fig. 14). Note now, in
view of the preceding definitions, that Fig. 10 represents
find Q; T found.

If Q is a quantode and T a triode then for Q exec T
alldone is defined to be the triode shown in Fig. 15, which
is equivalent to rev find Q; rev T ver found ver.

The implementation of quantodic operations by stack
instruction sequences is shown in Table 3. Quantodic

Table 3. Implementation of quantodic constructs by stack in-
struction sequences

Source text Instructions

; (none)

find copy

found pop

for ext; copy

exec ext

alldone goto; label; pop; pop; goto; label; pop
first ext

next ext; goto; label; swap
check label; pop; swap
finish pop

procedure calls can be implemented as follows for
translation into Fortran. Suppose the quantode is first F
next N check T finish. We invent a new boolean variable
INIT. The callable version of the quantode is the triode
(ready for translation into a Fortran LOGICAL FUNC-
TION as in Section 5):

if(UNIT); F#Nfi; T
The calling statement is

first INIT = true next INIT = false
check (functionname (parameters, INIT)) finish

A

4
v

=
\E__
[

Figure 15. for Q exec T alldone.

222 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

© Heyden & Son Ltd, 1982

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

TRIODIC LOGIC AND ITS USE IN STRUCTURED PROGRAM DESIGN

Table 4. A BNF grammar for triodic program design®

;.= halt
| (goto statement)
. .= (monode)
| (assignment statement)
| {procedure cally
| (label statement)
|do (H-group) od
|if (H-group) fi
.. = {diode)
| test ({boolean expression))
| tri (H-group) irt
| tri (H-group) # (D-group) out
|rev {(H-group) ver
| for <Q-group) exec (H-group) alldone
| find <Q-group) found
.. = triode)
| first (D-group) next (D-group) check (H-
group) finish
.= {diode) | <D-group); (diode)>
.= (triode) | <T-group); <triode)
::=<{quantode) |<Q-group); {quantode)
= (T-group) |(H-group) # (T-group)

{monode)

{diode)

{triode)

{quantode)

{D-group)
(T-group)
{Q-group)
(H-group)

® All problems concerned with unreachable code have been ignored
in the above grammar.

The BNF grammar shown in Table 4 is included to
make clear which operations on triodes and quantodes
are syntactically allowable.

The following examples will briefly illustrate the uses
of quantodes.

Example 1

T and U are triodes: then for T exec U alldone is
equivalent to rev T; rev U ver ver (Fig. 16), the triodic
analogue of boolean implication.

W/

l

Figure 16. The analogue of boolean implication.

Example 2

Suppose B (x) is a boolean function, Q a quantode that
generates elements x of a set S, and let T = test (B(x)).
Then find Q;T found is equivalent to test (3xeS - B(x))
and for Q exec T alldone is equivalent to test (VxeS -

B(x)).

© Heyden & Son Ltd, 1982

Example 3

To multiply two matrices:

fori=1<m;k=1<pexecc(i k) =0;
for j =1 < nexec c(i, k) = c(i, k) + a(i,) *b(j, k)
alldone

alldone

Example 4

Find non-zero element of matrix to act as pivot. Then
carry out pivoting operation on all elements other than
those in pivotal row and column. This example illustrates
well the economy of the notation.

if
find ipivot = 1 < m; jpivot = 1 < n; (a(ipivot,
Jpivot) # 0)
found;

fori=1 < m; (i # ipivot); j =1 < n; (j # jpivot)
exec a(i, j) = a(i, j) — a(i, jpivot) * a(ipivot,
Dlalipivot, jpivot)
alldone
! handle case of all elements zero

fi

8. BREAKS AND ERROR-HANDLING

The alternative exit of a triode may be used as a kind of
‘break’ so that when an error is detected it is prevented
from causing further damage. The Jackson example at
the end of Section 3 illustrates this use of triodic notation.

One might wish to implement other forms of ‘break’,
such as occur in many programming languages. My own
shortlist of break constructs worth implementing consists
of (i) halt (break from program, leaving all files in a
standard ‘closed’ state); (ii) labels and goto. The first of
these is necessary for example to halt from within an
error-handling submodule. The second is not often
needed once one has learnt to use triodic constructs
effectively, but still worth preserving for occasional use.
(Itis taken for granted that a main program will halt, and
a subprogram will return, at the end of its program text.
Only ‘halts’ and ‘returns’ from other textual positions are
to be regarded as breaks, and only these need to be
notated explicitly.)

Other types of break, that have been tested in the
triodic context but have proved not worth the trouble of
implementing, are the following: break (from current
construct—jumping over hashes, whereas the ordinary
alternative exit just jumps as far as next hash); break n
(to break out of n nested constructs); break constructname
(assuming constructs may be named, as in Jackson’s
notation); return.

The trouble with all of these is that they cause more
incomprehensibility than, and have no recognizable
advantage over, the explicit use of labels and gotos. For
example the presence of a label at the end of a subprogram
alerts one to the unusual control flow, whereas a return
somewhere within the text might be overlooked.

On detecting an error, it is almost always best to handle

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 223

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

N. E. GOLLER

it locally, rather than ‘going to’ somewhere else. The
following example illustrates this.

Suppose that any instance of triode T being activated
and terminating at its main exit ought to be followed by
an instance of triode U being activated and terminating
at its main exit. We are prepared to handle alternative
exit from T, and we are prepared to handle main exit
from U, but we are not prepared to handle the exceptional
case of alternative exit from U. If we can guarantee that
this exceptional case will not occur, then the natural
program structure is if T; U fi.

Suppose now that, owing to some error, T;U exits
from the alternative exit of U. We wish to handle this
differently from the correct cases of main exit from U or
alternative exit from T. Figure 16—which has a ‘break’
in just the right place—seems the obvious way of doing
this.

Having ‘broken’ from the alternative exit of Fig. 16
what do we do now? It is improbable that we shall be
able to do anything more profound than the following:
perform some fudging action D (a diode) that deludes the
rest of the program into thinking that no error has
occurred; and write an error message to warn the human
observers that the program has become deluded.

The straightforward way to handle an error is to do so
without changing the shape of the error-free flow of
control. Therefore we stop thinking about ‘breaks’ and
write if T; if U # canthappen; D fi fi. If there is no good
way of fudging the error, then D simply becomes halt.

This advice on error-handling may appear unsophis-
ticated ; surprisingly so, perhaps, since the triodic concept
might seem to be particularly well suited to dealing with
errors. Unfortunately, a program cannot deal with errors
in any other than an unsophisticated way unless it
maintains within itself a dynamic model of its own
execution. This is the real problem of error-handling,
and has nothing to do with triodes.

9. PARSING

Considerable experience has been gained with the use of
triodic parsers. From the point of view of an applications
program, of course, any sequential input file is a sentence
in some language, to be interpretively executed; the
concept of parsing is not limited to overtly linguistic
problems.

The key concept for building triode-based parsers
seems to be the following. We say a triode T gets a
language L if the following conditions are met.

(1) If the ‘input tape’ contains an instance of a sentence
in L, starting from the current position of the read
head, then T advances the read head to the symbol
following this sentence, and terminates in main exit.

(ii) If not, then T does not advance read head (or having
advanced it restores it to its original position) and
terminates in alternative exit.

The idea behind this is that if one parsing attempt fails
then we are all set to try again with a different parse.

In practice, condition (ii) is not always attainable and
we may have to settle for the weaker condition:

(ii") if not, then either T does not advance read head, and
terminates in alternative exit; or T writes an error

224 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

message, after which its behaviour is allowed to be
undefined, but (we hope) not too silly.

Suppose now that the triode T gets the language L, and
the triode U gets the language M. Then, modulo quite a
number of difficulties, we find that:

T;U gets LM
T#UgetsLUM
do T od gets L*

if T fi gets L U null

We can clearly build triodes to get individual symbols.
(In practice we parameterize so some of these triodes can
get a symbol class.) By induction, then, we can build a
triode to get any regular language (i.e. Type 3 language—
see Ref. 7). Furthermore, the structure of this triode will
exactly model the structure of some regular expression
that describes the language. This feature is clearly an
asset when the language changes and the program has to
be maintained. Of course we are not actually limited to
regular languages, since we may store some context on a
stack, or arrange to call triodes recursively.

Now for the difficulties. The two most serious are those
associated with the semicolon construct and with null
strings. Both difficulties seem easier to solve in practice
than in theory; perhaps because one wants to write
parsers for fairly ‘sensible’ kinds of language. Only the
first-mentioned difficulty, that associated with the semi-
colon construct, will be discussed here.

The statement above, that T; U gets LM, is false. If
T; U finds a sentence of L not followed by a sentence of
M then after alternative exit from T;U the read head is
in the wrong place. We must use a save-restore mecha-
nism (a ‘movable bookmark’) to get the read head back
to its starting point. Practical save-restore mechanisms
are limited to a buffer of finite length. An approach that
works is to design the input language to consist of
‘commands’ each of which may at least be disambiguated
without having to read beyond an end-of-line. One line
at a time is held in the buffer. Now, up through the levels
of character, token, command, and file we use the save-
restore mechanism to try alternative parsings within the
limits of the current line. Any ambiguity that cannot be
resolved within the current line must be due to an input
error, and we implement condition (ii’) in whatever way
seems best.

It should be clear that from the point of view of
linguistic theory the triodic parsing method has no great
power : a finite-state machine with a 2-way read head and
a finite number of movablie bookmarks can still only
recognize a regular language. Nevertheless, from a
practical point of view a triodic parser delivers a great
deal of power for not very much effort. Parsers designed
in this way are in my experience sturdy, efficient, pleasant
to write, and easy to modify. Some examples follow of
the use of these techniques.

Example 1

We have already written the following modules.

triode getchar (buffer, readposition, char): get next char-
acter from buffer if and only if it is identical
to the character passed as char.

triode geteol (buffer, readposition, fileid): get next token
from buffer if and only if it is an end-of-line

© Heyden & Son Ltd, 1982

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

TRIODIC LOGIC AND ITS USE IN STRUCTURED PROGRAM DESIGN

possibly preceded by blanks; and if so, refill
buffer from file specified by fileid.

triode getinteger (buffer, readposition, integer): get next
token from buffer if and only if it is a
string of digits, possibly with leading
blanks, that represents a legal (non-
overflowing) integer; if so, return value
in integer, otherwise leave passed value
of integer intact.

We can now write :

triode getkeyword (buffer, readposition, keyword,
keywordlength):
! get next token from buffer if and only if it is
! identical, except possibly for added leading
! blanks, to the character-string passed as
! keyword.
savedposition = readposition
do (getchar (buffer, readposition, ‘b)) od
tri
for i =1 < keywordlength
exec (getchar (buffer, readposition, keyword (i)))
alldone
#
readposition = savedposition
out
(Note: for translation of this module to some target
languages, e.g. many versions of Fortran, the keyword
will need to be unpacked before its individual characters
keyword (i) can be made accessible).

triode getpartnoscmd (buffer, readposition,
partnosarray, partnosarraylength)
! get command of the form
! PARTS p NUMBERSnin2...np
savedposition = readposition
tri
(getkeyword (buffer, readposition, ‘PARTSY’, 6))
(getinteger (buffer, readposition,
partnosarraylength))
(getkeyword (buffer, readposition, ‘NUMBERS®YH’,
8)

for i =1 < partnosarraylength

Example 2

Schematic program to recognize and execute the language
{command 1|command 2|. .. command n}* endoffile

do (getcmdI(parms)); handle cmd of type 1
(getcmd2(parms)); handle cmd of type 2

(getcmdn(parms)); handle cmd of type n

od ! No more valid commands left, so we must have
! reached either end of file or an error

if (getendoffile)

write message ‘error in input at line number . . .’

fi

10. CONCLUSIONS

The triodic concept leads to a sound and effective method
of program design. A number of operations on triodes
are described in this paper. The notation used for these
operations is a generalization of existing structured
programming notations, and is suitable as a source text
for mechanical or manual translation to a language such
as Fortran.

The constructs test (B), T; U, T # U, rev T ver,do T od,
if T fi, tri T irt, tri T # D out, together with diodic and
triodic procedure calls, and halt, provide an excellent
base for designing well-structured programs. Once ex-
perience is gained in using these constructs, the use of
‘gotos’ or ‘breaks’ is seldom necessary. This remains true
even when the program includes error-handling.

The further constructs find Q found and for Q exec T
alldone form a desirable addition to the language, though
equivalent constructs can instead be written less concisely
using do . . . od loops.

The methods described in this paper have been
developed and used by the author for the past two years
when designing a variety of systems and applications
programs in the Operational Research Executive of the
National Coal Board. It has been found that programs
designed in this way are concise to write, quick to debug,
efficient, and easy to modify.

Acknowledgements

exec (getinteger (buffer, readposition,

Id partnosarray (1)) I am grateful particularly: to E. W. Dijkstra, whose writings stimulated
alldone .. . my interest in the first place; to Mr George Mitchell, Director of the
(geteol (buffer, readposition, fileid)) Operational Research Executive, for permission to publish this work;

to the referee for his helpful comments on the presentation of this
readposition ‘= savedposition paper; to my colleagues in O.R.E. and to Dr Gautam Mitra of Brunel
out ’ University for their interest and encouragement.
REFERENCES

1. E. W. Dijkstra, A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey (1976).

2. M. A. Jackson, Principles of Program Design. Academic Press,
New York (1975).

3. R. Bornat, Understanding and Writing Compilers. Macmillan,
London (1979).

4. B. W. Kernighan and P. J. Plauger, Software Tools. Addison-
Wesley, Reading, Massachusetts (1976).

5. M. Richards and C. Whitby-Stevens, BCPL—the Language and
its compiler. Cambridge University Press, Cambridge (1979).

© Heyden & Son Ltd, 1982

6. R. W. Floyd, Assigning meanings to programs. Mathematical
Aspects of Computer Science 19, 19-32 (1967).

7. J. E. Hopcroft and J. D. Ullman, Formal Languages and their
Relation to Automata. Addison-Wesley, Reading, Massachu-
setts (1969).

Received April 1981

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 225

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

N. E. GOLLER

APPENDIX 1. UNREACHABLE CODE

Two types of problem will be encountered relating to
‘unreachable code’.

(i) Thedetection of unreachable parts of the source text.
For example if D is a diode then T is unreachable in
if D # T fi. Such a program was probably written in
error (but it could be a skeleton intended for later
enhancement), and the translator should issue a
warning.

(i) The avoidance of unreachable text in the target
language, even though all the source text is reachable.
This happens for example if Table 2 is used to
translate if (B); halt # T fi. A redundant and
unreachable goto statement is produced. Typical
Fortran compilers produce correct code from this
but complain about it.

One’s objectives in doing something about this will
typically be the following:

(a) The Fortran translation should avoid any obvious
redundancies or stupidities.

(b) The translator should produce warning messages if
the source text is not correct.

(c) A correct source text should produce Fortran that
compiles as intended without triggering warning
messages from the compiler.

A summary will be given here and in Appendix 2 of a
method that appears to meet all these objectives to an
acceptable standard.

1. Attributes of labels

Stack of attributes corresponds to stack of labels; can be
coded in sign of label.
When carrying out the following stack instructions:

(i) ext:label created is given attribute URL (‘unreach-
able label’).
(ii) goto, cgoto: label accessed has URL attribute
removed.
(iii) copy: pair of duplicate labels given URL attribute
in (top), not-URL in (top —1).
(iv) swap: attributes are swapped along with labels.

2. Attribute of current text position

(1) Aftertranslating a monode, set current text attribute
to URTX (‘unreachable text’).

(ii) After translating a {label command) in source text,
or after executing label as a stack instruction except
in the ext; label; ext sequence that translates do:
remove URTX attribute if present.

(iii) If any body text (i.e. not a triodic operator) other
than a {label command) is translated while URTX
set, then issue warning message ‘text unreachable
after a halt or goto or after a construct that contained
a diode where triode expected’.

3. Modifications to stack instruction sequence if attributes
set

(1) Stack instruction: goto
Attribute: URTX
Modification: omit goto instruction
(i) Stack instruction sequence: label; pop
Attribute: URL
Modification: omit label instruction; set URTX

attribute
If this occurs
while translating: then instead:
fi (either half) omit label; don’t
touch URTX

(iii) Stack instruction: pop (not preceded by label)
Attribute: URL
Modification: except when this occurs while trans-
lating out keyword, issue warning message ‘diode
found where triode expected’.

This description of a method for handling unreachable
code has assumed that these actions by the translator are
additional to the enforcement (by error messages) of the
grammar shown in Table 4. This enforcement can be
managed by a keyword stack that runs in parallel with
the label stack.

APPENDIX 2. DEFERRED LABEL GENERATION

The translating of irt and alldone keywords by the stack
instruction sequences of Tables 2 and 3 is liable in certain
circumstances to produce a translation containing alter-
nate labels and gotos in a pattern such as:

9 CONTINUE
GOTO 7

8 CONTINUE
GOTO 6

7 CONTINUE
GOTO 5

6 CONTINUE

226 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

which is obviously objectionable. The translator can
improve on this by deferred label generation, which
works on the following principle.

The instruction sequence ‘goto; label’ is replaced by
‘goto; deflab’. The deflab instruction stores the value of
a label but does not write it. Subsequently translation
proceeds normally until an instruction, ‘x’ say, is
encountered that calls for writing more target text. If
instruction ‘x’ is a ‘goto’, and its relevant label (top — 1 of
stack) has URL attribute set, then this label is replaced
in the stack by the stored deflab value: this completes the
execution of both ‘deflab’ and ‘x’. In all other circum-
stances the deferred label is firstly written to the target
text and then translation of ‘x’ continues normally.

© Heyden & Son Ltd, 1982

20z UoSe\ 0Z uo 1s9nB Aq 87708€/81.2/2/G2/S10IE/|Uloo/Woo"dno-oiapeo.//: Sy WOy PapeojumoQ

