The Explicit Quad Tree as a Structure for

Computer Graphics

J. R. Woodwark

School of Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

A quad tree, stored without links and with a location for every possible node, is proposed as a structure for holding an
image under construction. In this form, picture coherence is not exploited to reduce storage requirements, but to
improve the speed of interrogation and modification. Basic operations on this structure are outlined, and an efficient

addressing scheme presented.

INTRODUCTION

The technique developed by Warnock! for hidden-
surface elimination has proved to be one of the most
fruitful approaches to the problem. He implemented a
divide-and-conquer approach, not on the structure of the
scene to be processed, but on the picture area. This is
divided into successively smaller rectangles until either
an area contains a piece of picture sufficiently simple to
be output directly, or the resolution of the graphics
device, for which the picture is being prepared, is
reached. In this case an approximation may be made
from the colours of the still unresolved picture
components.

This approach to processing pictures has a counterpart
as a storage scheme. It is called the quad tree (Fig. 1). A
square picture is divided into four sub-squares. If possible
these are characterized directly as wholly black or white
for a binary image, or as a single shade for a coloured
one. Otherwise these sub-squares are further decom-
posed, until a smaller sub-square, or quad, can be
classified. As with the Warnock algorithm, a limiting
resolution must exist to prevent unchecked growth of the
structure. This may be imposed by storage considerations
or by the desire to limit times for processing. Alterna-
tively, it may be a function of the application, such as the
resolution of a device.

Two main reasons exist for the application of quad
trees. First, because they exploit the coherence of many
pictures, whether acquired or synthesized, they are an
efficient method for picture storage. Klinger and Dyer?
present examples of the extent of data compaction to be
expected on some small scenes. The author and his
colleagues® are developing the use of the quad tree in
graphics hardware design, where the quad tree also
constitutes a compact data transmission format. The
second property of quad trees is that they express, as well
as exploit, picture structure. In picture processing, rather
than generation, this allows algorithms to obtain ‘impres-
sions’ of the picture at varying resolutions, and to focus
attention quickly on areas of interest.

Because of the wish in both types of application to
exploit the coherence of pictures to reduce storage
requirements, quad trees are usually stored in the form of
a linked tree structure. This has links from each father
quad to its four sons, and possibly additional links from
son to father for backtracking, although this may often

.

// ::ﬂ
%
: AN
XV AVAAN]
VONNNN ’/\\\\\ N
NN & 7

NN
\\\\s\\i
ZANN \\\\ k

Figure 1. A quad tree representation of an 8 x 8 pixel three colour
‘picture’.

N
RN §

be more economically implemented using a stack. Some
picture processing applications of the quad tree have
also utilized links to horizontally and vertically

CCC-0010-4620/82/0025-0235 $02.00

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 235

20z udy 01 U0 1s8nB Aq £8108€/SEZ/2/GZ/310ME/|UlL00/WO0d"dNO"oILEPEDE//:SARY W) PAPEOUMOQ

J. R. WOODWARK

adjacent quads. Hunter and Steiglitz* introduce
‘ropes’, or sideways links from leaf nodes, into their
quad tree structure for image processing. However,
links of this sort nullify some of the simplicity inherent
in the quad tree concept. The quad tree representation
may also be converted to other commonly used digital
picture forms, such as the raster, and Samet and
others®'® present a number of algorithms for such
transformations.

In picture generation, the quad tree, as a structure
rather than a strategy, is not widely used. The author of
this paper has been concerned with the derivation of
graphics from volume models.'!!? In this work it has
been necessary to maintain and to update a synthesized
image as model evaluation progresses. The quad tree
structure developed for this process is presented here in
the belief that it will find application in other similar
areas. ,

As stated above, most quad tree applications have
either focused on, or atleast utilized, the data compression
obtainable from the quad tree, and this has implied a
linked tree structure. An explicit structure, in which a
storage location is assigned to every location in a quad
tree down to a defined pixel level of leaf quads, does not
at first seem to be useful. The number of storage locations
required is approximately 1.3 times that needed for a
pixel plane representation of the picture, which in any
case is exactly what the bottom layer of the tree
comprises. However, because the quad tree exploits area
coherence, it is possible to write to and to read from the
quad tree much faster than to the corresponding pixel
plane. Comparing the explicit quad tree with the linked
quad tree, the absence of links in the former makes it
more storage efficient than might be expected. This is
particularly the case when the number of bits required to
store the data at each quad is small. As the number of
bits assigned to the links depends on the maximum
number of quads allowed in the tree, linked quad trees
for data with small values consist mainly of links, not
data. This sort of situation occurs when a picture is being
prepared for a relatively low colour resolution graphics
device.

A further problem occurs with the linked quad tree
when the amount of storage available is insufficient to
allow the picture to be handled in one piece. If data is
being acquired from a low resolution device, such as a
diode camera, this does not arise, but it may occur when
a picture is being prepared for a high spatial resolution
raster scan device. In this case, the picture must be
constructed as a series of sub-pictures, and the coherence
of the whole picture cannot be fully exploited. This is
because, if a linked quad tree is used to hold each sub-
picture in turn, the amount of storage allocated would
have to be sufficient for the sub-picture with the lowest
expected coherence. If a less coherent sub-picture is
discovered, the program fails. An explicit quad tree takes
advantage of sub-picture coherence when it occurs, but
will accommodate a sub-picture which has no coherence
at all.

Finally, an explicit quad tree allows an increase in the
speed of data input into, and retrieval from, the quad
tree. Links do not have to be processed, and it is possible
to travel up or down the tree with equal facility. An
efficient addressing technique to realize these advantages
is presented as part of this paper.

- 236 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

AN EXPLICIT QUAD TREE STRUCTURE

The creation of a usable explicit quad tree does not
initially seem to present any problems. It is necessary
first to decide the number of bits of data for each quad.
This determines the number of data values or colours a
quad may have, less two values which must be given
special meanings, and are therefore not available as
colours. One of these reserved values is a code for neutral,
indicating that no colour has yet been assigned to a quad
during the construction of the image. The second is a
code for transparent. This indicates that a quad is not a
single colour, and that the quads below that one must be
consulted.

When the data width has been decided, storage
locations of the appropriate size can be reserved. The
number required is determined by the resolution required
from the tree, which in graphics applications corresponds
to the pixel size. One location is taken by the root quad,
four for its sons, sixteen for theirs and so on. The size of
the pixel layer will be limited by the amount of storage
that is available and, where the whole picture can not be
stored at once, will determine the size of sub-picture that
can be handled.

A simple scheme to address such a structure is to
determine the offset of each pixel from the first storage
location in its layer using the x and y indices of each
quad, as one might address any two-dimensional array.
Figure 2 shows an example of the resulting quad

13 14 | 15 | 16

1 2 3 4

Figure 2. The second and third layers of a quad tree, showing
standard rectangular array addressing.

numbering. However, such an arrangement involves a
certain amount of computation to move up or down the
tree, as this must be performed using the x and y indices.
Additional operations are then required to generate the
quads’ addresses from the indices. An alternative scheme
used by the author allows the tree to be traversed by
single operations on the quads’ addresses directly, using
the numbering shown in Fig. 3.

10 14 1 15
2 3 (1010) | (110) | (1011} | (1111)

(0010) | (0110) | (0011) | (0111)

8 12 9 13
0 1 (1000) | (1100) | (1001) | (1101)

(00) (01) 0 A 1 5
(0000) | (0100) | (0001 | (0101)

Figure 3. The second and third layers of a quad tree, showing the
improved addressing scheme.

© Heyden & Son Ltd, 1982

20z udy 01 U0 1s8nB Aq £8108€/SEZ/2/GZ/310ME/|UlL00/WO0d"dNO"oILEPEDE//:SARY W) PAPEOUMOQ

THE EXPLICIT QUAD TREE AS A STRUCTURE FOR COMPUTER GRAPHICS

In this scheme, the lowest bits of any quad’s address
are determined by the address of its father. The next
highest two bits are determined by its own position
within its father. The low bit is set if it is at high x, the
high bit if it is at high y. This continues down the tree,
the two bit increase in address length at every level
corresponding to the fourfold increase in the number of
quads. To move up this structure, it is merely necessary
to remove the highest two bits of the current address. To
move down, the address is logically combined with the
four possible permutations of the two bits higher than
the current address width. To visit each son in turn, the
addresses may be generated as follows:

son 1 = father

son 2 =father OR...01...
son 3 =fatherOR...10...
son 4 =fatherOR ... 11...

Alternatively, the following scheme:

son 2 =fatherOR...01...
son4=son20R...10...

son3=son4XOR...01...
sonl =son3XOR...10...

allows the same variable to be used for all the addresses.
The father’s address remains unchanged at the end of the
operation, as it is the same as that of son 1, the last to be
accessed.

A quad’s brothers may be generated directly in a
similar manner:

brother 2 = brother 1 XOR ...01...
brother 3 = brother 1 XOR ... 10...
brother 4 = brother 1 XOR ... 11...

This structure may be entered directly from a quad’s
geometric position using a lookup table. This yields an
address both for the x and for the y component of the
position of the quad’s bottom left hand pixel. These are
ORed together, and the result is the address of the quad.
One x and one y table serve for all levels in the tree, and
the length of each corresponds to the width of the pixel
layer.

OPERATIONS ON QUAD TREES FOR
PICTURE GENERATION

Using this addressing scheme, the author has identified
and implemented four primitive actions on a quad tree,
as a basis for picture generation.

Ancestor check

Before entering the quad tree from the geometric position
of a quad, it is necessary to check the fathers of that quad
to discover whether the quad is actually below a leaf
quad. This test is performed by generating the addresses
of the ancestors, starting with the root, by stripping
leading bits off the quad’s address. If any quad is found
not to be transparent, this test terminates.

Division to a quad

If a quad is to be set rather than read, then the discovery,
in the test above, of an ancestor that is not transparent

© Heyden & Son Ltd, 1982

causes that ancestor to be set transparent, and its property
to be transferred to its sons. This process is repeated on
all the sons down to and including the quad to be set.

Tree traversal

If it is desired to search the whole quad tree, or-the tree
below a particular quad, then that tree must be traversed.
A depth first traversal is performed by generating the
sons of the quad from which the process is to start, and
repeating the process on each of these in turn. This may
be implemented in systems that do not support recursion
by a stack or, because in most cases the possible depth of
division is small, by coding each division level separately.
The author has found this technique to be extremely
fast running within an implementation in extended
FORTRAN.

Reassembly

After a quad is set, it may be that it has the same data
value as its three brother quads. In this case, the data
value is transferred to the father quad to maintain the
quad tree’s structure at a minimum level of division. This
process is repeated on the father quad and so on until a
quad with different brothers, or the root, is encountered.
It has already been stated how a quad’s brothers’ and
father’s addresses may be generated.

With these four primitives available, more complex
operations on pictures or part-pictures may be performed;
five of these, sufficient to allow pictures to be prepared
and output, are mentioned below.

Zeroing. To zero an explicit quad tree, it is only necessary
to insert the code for neutral into the root quad.

Superimpose. One method of hidden surface elimination'?
is to generate all parts of the scene, in reverse order of
distance from the viewer. These are loaded into a picture
buffer, and the final picture consists of the surfaces
nearest the viewer, which are those he would see if
looking at a real scene. To superimpose a quad on an
existing picture, an ancestor check is performed down to
the target quad. If an ancestor is other-coloured or
neutral, the division process is performed down to the
quad to be set. After setting the quad, reassembly is used
to reform the quad tree if necessary.

Insertion behind current picture. This process is useful if the
scene is being considered in order of distance from
viewer, and updates to the pictures must be behind the
current contents of the quad tree. This is more complex
than superimposition, but may allow computation on
portions of the scene that are actually hidden to be
avoided. The ancestors of the quad to be set are checked.
If any are coloured, the process terminates. If a neutral
ancestor is found, division down to the quad to be set
takes place. In this case the quad can be set directly, and
the process finishes. The process also finishes if the quad
is coloured. If it is neutral, it may be coloured and any
reassembly performed. If the target quad is transparent,
the quads below must be searched. If any neutral quads
are found, each is set to the required colour, and
reassembly is invoked.

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 237

20z udy 01 U0 1s8nB Aq £8108€/SEZ/2/GZ/310ME/|UlL00/WO0d"dNO"oILEPEDE//:SARY W) PAPEOUMOQ

J. R. WOODWARK

Checking the status of a quad. Before computing part of a
scene, it may be appropriate to examine the quad tree to
see if the corresponding portion of the picture is
completely coloured, in which case the computation may
be omitted. To check a quad, its ancestors are checked
first. If either a neutral or a coloured ancestor is found,
the state of the quad is completely determined. This is
also true if the quad itself is coloured or neutral. If the
target quad is transparent, then it is necessary to search
the quad tree below that quad. As soon as a single neutral
quad is found the process can finish as the area of the
quad to be examined is clearly not all opaque. If no
neutral quad is found, however, then the entire quad
under examination is coloured.

Output After the quad tree has been fully computed, it
must usually be output to a device as part of a picture.
This process is basically a tree traversal starting from the
root. However, a problem with the addressing scheme
outlined here is that there is no quick transformation
back to the quad origin coordinates from the quad
address. Instead, the quad coordinates can be obtained
by starting with the coordinates of the root quad, and
updating them with each descent of the tree, so that the
coordinates of the current quad are always known. This
operation can also be done with logical operators alone.
Finding the sons of a quad with their origin coordinates
takes the following form:

son 2 =fatherOR...01...
X =x OR size

son4 =son20OR...10...

y =y OR size

son3 =son4XOR...01...
X = x XOR size

sonl =son3XOR...10...
y =y XOR size

where ‘size’ is the width in pixels of the son quads, which
can be obtained by lookup, and consists of a zero field
except for a single bit which is set. Both x and y are
returned to their original values after the operation, as
the origin of the first son is the same as that of the father.

CONCLUSIONS

The explicit, or full, quad tree has been presented as a
little used data structure which may nevertheless have
important applications, particularly with raster scan
graphics devices. The obvious storage penalty of the
structure is less than might be imagined, and access to its
contents may be extremely efficient.

Acknowledgements

The author is grateful to the Science and Engineering Research Council
for supporting this work.

REFERENCES

1. J. E. Warnock, A Hidden-surface Algorithm for Computer
Generated Pictures, University of Utah Computer Science
Department Report TR4-15 (1969).

2. A.Klinger and C. R. Dyer, Experiments on Picture Representa-
tion using Regular Decomposition, Computer Graphics and
Image Processing 5, 68-105 (1976).

3. D. J. Milford, P. J. Willis and J. R. Woodwark, Exploiting
Coherence in Raster Scan Displays, Proceedings of the
Electronic Displays 81 Conference, London, Network, pp. 34—
46 (1981).

4. G. M. Hunter andK. Steiglitz, Operations on Images using Quad
Trees. /EEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-1 (No. 2), 145-153 (1979).

5. C.R.Dyer, A. Rosenfeld and H. Samet, Region Representation:
Boundary Codes from Quad trees, University of Maryland
Computer Science Center Report TR-732 (1979).

6. H. Samet, Region Representation.: Quadtrees from Boundary
Codes, University of Maryland Computer Science Center
Report TR-741 (1979).

7. H. Samet, Computing Perimeters of Images Represented by
Quadtrees, University of Maryland Computer Center Report
TR-755 (1979).

* 238 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

8. H. Samet, Region Representation: Quadtrees from Binary
Arrays, University of Maryland Computer Science Center
Report TR-767 (1979).

9. H.Samet, Region Representation: Raster-to-Quadtree Conver-
sion, University of Maryland Computer Science Center Report
TR-766 (1979).

10. H. Samet, Region Representation: Quadtree-to-Raster Conver-
sion, University of Maryland Computer Science Center Report
TR-768 (1979).

11. J. R. Woodwark and K. M. Quinlan, The Derivation of Graphics
from Volume Models by Recursive Subdivision of the Object
Space, Proceedings of the Computer Graphics 80 Conference,
Brighton, Online Publications, pp 335-343 (1980).

12. J. R. Woodwark and K. M. Quinlan, Reducing the Effect of
Complexity on Volume Model Evaluation, Computer Aided
Design Journal 4 (No. 2) (1982).

13. I. E. Sutherland, R. F. Sproull and R. A. Schumacker, A
Characterisation of Ten Hidden-Surface Algorithms, ACM
Computing Surveys 6 (No. 1) 1-55 (1974).

Received May 1981
© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982

20z udy 01 U0 1s8nB Aq £8108€/SEZ/2/GZ/310ME/|UlL00/WO0d"dNO"oILEPEDE//:SARY W) PAPEOUMOQ

