A Comparison of Pascal and Ada

B. A. Wichmann

Division of Numerical Analysis and Computer Science, National Physical Laboratory, Teddington, Middlesex TW11 OLW,

UK

This paper compares the two programming languages, Pascal and Ada. While Ada is based upon Pascal, its design
objectives are very different. Pascal was designed for teaching whereas Ada was designed for major military software
systems. The simplicity of Pascal is advantageous only if its restrictions does not jeopardize the programming of an
application. The improved modularity of Ada, as provided by packages, should be an important aspect for commercial

development.

INTRODUCTION

The new programming language Ada is based upon
Pascal.! It is natural, therefore, to compare them, in
spite of the fact that they have been designed with quite
different objectives in mind. Pascal was designed by
Wirth as an educational tool.? The facilities it gives are
just sufficient for modest undergraduate projects. The
discipline of such a Spartan language is ideal in such an
environment, but cannot be recommended for major
commercial or industrial projects. On the other hand,
Ada was designed to meet a wide range of objectives
specified by the US Department of Defense,” which
would inevitably lead to a larger and more complex
language. The requirements document prepared by
David Fisher was certainly ambitious, even contradic-
tory, but at least it provided the language design teams
with a clear statement of the objectives. This paper does
not survey the Ada language for which the reader can
consult Barnes.*

OVERVIEW

The Ada language is five or six times the size of Pascal.
One can see this at a superficial level by counting
syntactic productions, pages in the manual or number of
lexical units. All the indications are that compilers will
be five or six times the size of that of Pascal (given
comparable code quality). At a deeper level, one can
enumerate the facilities that Ada contains that have no
equivalent in Pascal. This gives the diagram (drawn to
scale):

Ada

Pascal subset
of Ada

Dynamic Arrays
Floating point precisions
Fixed point

Overloading User-defined operators

Tasking
Separate compilation (secure)
Exceptions
Representation Specifications
PACKAGES
Private Types
Generics

Above the dotted line are features which ‘could’ be
added to a Pascal-like language without radical revision.
Below the line are facilities of Ada which have a major
influence on the whole language design.

It is tempting to analyse a language in terms of a list of
features alone, but this is not possible because of the
interaction of the features themselves. The Ada design is
a serious attempt to provide a coherent structure to a
limited set of facilities that are essential for the intended
application domain of the language.

One might suppose that Pascal would have a significant
advantage over Ada in terms of having a stable and
precise definition. Unfortunately, the Pascal report is
defective in almost every detail, whilst giving adequate
information for the ordinary programmer. Hence a
formal standard was needed which would encompass the
de facto definition,> but would specify every detail
appropriate for an international standard. The work was
undertaken first by BSI® and then by ISO, both groups
being led by Dr A. M. Addyman. It soon became
apparent that merely giving more substance to the Jensen
and Wirth report was not, in itself, adequate. Hence a
language design effort was being undertaken on Pascal at
the same time as that for Ada.

HOW SIMPLE IS PASCAL?

It has been claimed by many that Pascal is a very simple
language. That it is much simpler than Ada is not in
question, but a glance at the ISO standard for Pascal
soon shows that it is not truly simple. This lack of
simplicity can more easily be illustrated by considering
a number of examples:

Type equivalence

The Jensen and Wirth report did not say when two types
were ‘the same’. In an important paper,’ two approaches
were considered; structural equivalence, meaning that
the constituents were the ‘same’ (to be applied recur-
sively), or name equivalence meaning that the identical
identifier is used for the name of the types. Both Ada and
ISO Pascal use name equivalence. However, Pascal
cannot just use name equivalence because a string such
as ‘ABC’ has no type name associated with it. Hence it
is structurally equivalent to a packed array [1 ... n] of

CCC-0010-4620/82/0025-0248 $02.50

248 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

© Heyden & Son Ltd, 1982

20z udy 60 U0 189n6 Aq 1ZG08€/872/2/SZ/10Me/|ul00/W0d"dNo"oILePED.//:SARY W) PAPEo|UMOQ

A COMPARISON OF PASCAL AND ADA

char (for some n). Also, to make the passing of procedures
and functions as parameters secure, ISO Pascal requires
that the parameter specification is given for such
procedures, for example :

function INTEGRATE (function F (x: real): real;
lower, upper: real): real;

Any function can be passed as an actual parameter
corresponding to F if it has the same parameter structure
(a single real parameter by value, returning a real result).

Welsh et al., consider having a language with only
name equivalence but this would require more changes
to Pascal than could be accepted as part of its
standardization.

Array parameters of different actual sizes

The Jensen and Wirth definition of Pascal required that
formal and actual array parameters were of the same
type which implied that they were of the same size.
Hence standard numerical computation or even a sort
procedure is not possible in original Pascal. ISO Pascal
introduces an enhancement (at level 1) to overcome this.
It effectively introduces structural equivalence in the
parameter position for formal array parameters which
are appropriately declared, for example:

procedure MATRIXMULT (a: array [allow

alhigh,
a2low ... a2high] of
real;

b: array [bllow
blhigh,
b2low ... b2high] of
real;

c: array [cllow
clhigh,
c2low ... c2high] of
real);

The subscript bounds are passed over effectively as
additional parameters, accessible as constants within the
procedure.

This significant addition to Pascal has met with some
opposition, but it provides a much wider application area
for ISO level 1 Pascal, which I hope will encourage its
implementation. (Procedures for string handling, similar
to those of UCSD Pascal can now be written in the
standard language).

Overloading

In Pascal, the function abs takes a real or integer
parameter and returns a value of the same type. It is as if
one had two functions:

function abs (x: real): real; . ..
function abs (x: integer): integer; . . .

This cannot be written in standard Pascal since an
identifier cannot be declared twice in one scope. In
contrast, in Ada this is permitted and mirrors the
facilities with the operators such as ‘+’ and ‘*’, which
the user can define himself.

© Heyden & Son Ltd, 1982

Default parameters

Input-output procedures and functions have a single
default parameter (the file ‘input’ or ‘output’ as appro-
priate) in order to provide a more convenient interface to
the user. In contrast, Ada has a standard method for
default parameters which is, in consequence, available
for user-defined procedures.

Input-output statements

Pascal has ‘procedures’ read, read1n, write and writeln
for input-output, which take a variable number of
parameters. Apart from the initial (possibly defaulted)
file parameter, the remaining parameters are the values
to be output or variables to be input. Implicit conversions
to/from characters are performed for files of the special
type ‘text’. In contrast, Ada introduces no special
language features for input-output, relying upon over-
loading, default parameters and packages to provide a
comparable system to that of Pascal. To output an integer
and real in Pascal to the default file one would write :

write (1, X);

whereas in Ada, with the fixed number of parameters
one would have:

PUT (I); PUT (X);

where PUT is overloaded for the integer and real types
involved.

THE EXTRA FACILITIES OF ADA

None of the additional facilities of Ada can be conveni-
ently expressed in terms of the basic Pascal-like subset.
Moreover, there is a clear need for these facilities in
writing large real-time systems for which Ada was
designed. For those who think that Ada is too complex,
please consider how applications demanding these
facilities should be programmed. The major facilities are
as follows:

Arrays whose size is determined at scope entry

Algol 60 allows one to declare arrays whose size is
dependent upon the data. Pascal is a backward step in
this case, but an essential one if different types are to be
freely composed into records and arrays. Ada provides
the Algol 60 array mechanism, but has restrictions on
how dynamic arrays can appear in records. Hence Ada
provides the functionality of both Algol 60 and Pascal at
the cost of some complexity in extreme cases.

Varying integer and floating point sizes

Pascal cannot be used seriously for much numerical work
because it does not permit varying precision of floating
point or different integer sizes. Ada provides this by
allowing compilers to implement several sizes of integer
and floating point types. Dependence upon the particular

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 249

20z udy 60 U0 189n6 Aq 1ZG08€/872/2/SZ/10Me/|ul00/W0d"dNo"oILePED.//:SARY W) PAPEo|UMOQ

B. A. WICHMANN

hardware can be avoided by using the derived type
mechanism. For example with

type REAL is digits 5;
type INT is range — 1000 . . 1000;

the compiler implements REAL and INT with a
hardware type which has at least the necessary precision
or range. Operations on type REAL and INT are then
derived from those on the hardware types. By this means,
users can write truly portable Ada programs which is not
possible in FORTRAN or Algol 68.

Fixed point data types

Input and output signals from sensors are essentially
fixed point rather than floating point. Although fixed
point is awkward to program because of the scaling that
is necessary, there are a few, but important, applications
for which fixed point is essential. Floating point is not
adequate in such situations, because the machine may
not have the necessary hardware or perhaps because of
the additional space required for floating point data. The
standard functions such as SIN and COS are often
programmed in fixed point (in assembler) whereas these
can now be done in Ada using either fixed or floating
point.?

Exceptions

In many real-time systems it is essential for them to
continue to offer a service (perhaps degraded) in spite of
hardware malfunction. A telephone exchange control
program or chemical plant control program would be
typical. Many error situations are easily anticipated and
can be handled directly at the point of detection. Others
are more difficult in that the remedial action needed
depends upon the circumstances which interacts with
several levels of the system design. Exceptions in Ada
allow one to program for these circumstances without the
error handling code submerging the straightforward case.
An exception can be raised at one level and then handled
at a higher level, depending upon the calling sequence of
the events which led to the exception. Ada also defines in
a way that even ISO Pascal does not, which errors must
be trapped by a compiler and those which give rise to a
run-time error (i.e. an exception).

Tasking

The addition of concurrency facilities to languages like
Pascal is a growth area for both academic study and
serious exploitation (not incompatible!). Ada continues
this tradition. The rendezvous mechanism for mutual
exclusion in Ada is elegant but largely untried. Of all the
extensions in Ada, this is the most ambitious and yet the
one which has met with the least opposition. Only time
will tell how good the particular design is.

Packages

Alllarge Pascal programs suffer from an essential defect :
they lack any clear module structure (i.e. between a

250 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

procedure and a program). For instance, a compiler is
naturally broken down into lexical, syntactic, semantic
and code generation phases. Pascal compilers (almost
always written in Pascal) only show this structure by
means of comments. In practical terms, packages are
probably the most important improvement of Ada over
Pascal because they allow for the effective exploitation of
program components. A package can consist of two
parts: a specification and a body (which implements the
specification). Typically, the specification and the body
will be compiled separately—the first during program
design and the latter during the (longer) implementation
phase. Code using a package can be compiled as soon as
the specification has been compiled, so that the language
naturally supports top-down program development.

Apart from providing the natural unit for separate
compilation, packages are also the unit for the imple-
mentation of abstract data types. Pascal, for instance,
has the concept of a file built into the language. This is
not necessary in Ada because files can be (and are in the
standard input-output package), implemented as abstract
data types. This is done as follows:

package I_O_PACKAGE is
type FILE is limited private;
procedure OPEN (F: in out FILE);
procedure CLOSE (F: in out FILE);
procedure READ (F: in FILE;
INTEGER);
procedure
INTEGER);
private
type FILE is
record
NAME: INTEGER: = 0;
end record,;
end]_ O PACKAGE;

The part after ‘private’ contains hidden details of the
abstract type FILE so that effective compilation of users
of this package is possible. (Users can declare objects of
type FILE, hence the space and alignment rules for these
objects must be known to the compiler). Note that the
specification is quite small since it only contains the
interface between the users and the implementation. In
contrast, the package body is much larger, which in
outline might be:

package body I_O_PACKAGE is
LIMIT: constant: = 200;
type FILE DESCRIPTOR is record . . . end record;

ITEM: out

WRITE (F: in FILE; ITEM: in

DIRECTORY: array (1 LIMIT) of FILE
DESCRIPTOR;
procedure OPEN (F: in out FILE) is
begin . . . end;
procedure CLOSE (F: in out FILE) is
begin . . . end;

procedure REAI.).(F :inFILE; ITEM:out INTEGER)
is
begin . . . end;
procedure WRITE (F:in FILE; ITEM:in INTEGER)
is
begin . . . end;
begin

end 1 O PACKAGE:

© Heyden & Son Ltd, 1982

20z udy 60 U0 189n6 Aq 1ZG08€/872/2/SZ/10Me/|ul00/W0d"dNo"oILePED.//:SARY W) PAPEo|UMOQ

A COMPARISON OF PASCAL AND ADA

The procedure bodies for OPEN etc are not provided,
the specification of them being repeated for clarity.
Objects like LIMIT are also hidden from users since it
does not form part of the specification. Moreover, the
package body can be changed without recompiling code
using it provided it meets the same specification (which
is checked by the compiler).

Compile-time evaluation of expressions

In Ada the expression (1 + 1) is always equivalent to 2.
Any subexpression which only involves literal values is
evaluated by the compiler. In contrast, in Pascal one
cannot write:

const
N=10;
M=N+1;

so one is forced to write:

const
N=10;
M=11;{=N+1}

Such subterfuges are clearly a hinderance to program
maintenance. Ada also requires the evaluation of literal
expressions by the compiler when the literals are reals
i.e. approximate values. This places more of a burden on
the compiler (which could well use a rational arithmetic
package) but is in keeping with the general philosophy of
allowing the programmer to write with maximum clarity
at the expense of requiring the compiler to do more work.

Generics

One consequence of the strong type mechanism is that an
ordinary procedure call will not suffice since the formal
and actual parameters are of a different type even though
the body of the procedure required is identical. As a
practical example, consider two vectors X and Y and a
scaler 4. The ability to perform Y=Y + 4*X is needed
for a variety of scaler types: real, double length, complex,
etc. Provided the scaler type has the operations ‘+’ and
‘«’, the body of the procedure will be correct textually
even though different machine code will be needed for
the various types.” Such a procedure is made generic
having the type as a generic parameter:

generic
type T is private;
type T VECTOR is array (INTEGER range { »)of T;
with function ‘+’ (X, Y: T) return T is {);
with function ‘*’ (X, Y: T) return T is {);
procedure AX PLUSY (A:inT;
X:in T VECTOR;
Y:inout T VECTOR) is
begin . . . end;

The callable procedures are then constructed by instan-
tiating the generic by inserting the appropriate types:

procedure REAL AX PLUS Y is new AX PLUS Y
(REAL, VECTOR);

© Heyden & Son Ltd, 1982

IS ADA TOO LARGE?

The last section illustrated that the major extensions of
Ada compared with Pascal are required to meet the
application area of the language. Could the language
nevertheless be simplified without seriously reducing the
application area? Is the size of the language a serious
impediment to its use?

Firstly, it would seem possible to reduce the size of the
language without materially affecting the applications.
However, the size reduction is marginal—no more than
10%. Moreover, the changes are bound to make program-
ming more difficult. My own candidates for the reduction
would be as follows: (1) Delete the pragma INCLUDE.
This textual macro could be handled by a pre-processor,
if needed. (2) Delete families of entries. This facility
allows for multiple queues for services, but an additional
task could do this. (3) Delete the exponentiate operator.
This is not present in Pascal, but is in FORTRAN. The
functionality can be provided by a generic function. (4)
Delete either mod or rem since having both forms of
integer division is excessive. (5) Delete the if statement.
The case statement can be used instead and is often
clearer since the conditions under which the ‘else part’ is
executed is more explicit.

Does the size of the language make it difficult to use?
For the initial user, the following aspects can be ignored :
(a) Tasking: will not be used, except in ways hidden from
him. (b) Generics: will only use generics already written,
which is quite easy compared with producing a generic.
(c) Private types: again, will only see a simple part of this
as a user. (d) Real types: many applications will not need
this.

On the other hand, the initial user will not be able to
avoid exceptions. Exceptions have to be understood
because of the clear division in Ada between the static
semantics (implemented by the compiler) and the
dynamic semantics (implemented by the running pro-
gram). This a welcome improvement on current practice
as reflected by Pascal. It is only by such understanding
that the reliability of systems can be increased.

COULD PASCAL BE SIMPLER?

It might seem surprising that Pascal could be made
simpler. The basic properties of Pascal that gives it its
simplicity are that declarations do not require any
executable code and that variables of one type occupy a
fixed amount of storage. While retaining these properties,
one could simplify as follows: (1) The functions eof and
eoln need not have the default parameter (input) since
this would then make them into ordinary Pascal
functions. (2) The overloaded functions sqr and abs could
be made true functions by using different names for the
integer and real versions. (3) The language could be
defined in terms of the ISO character set, substantially
increasing portability and making the Pascal type char
more adequately defined. RTL/2 takes this approach
very successfully and Ada is similar. (4) The procedure
‘dispose’ should be removed from the language because
of its inherent insecurity. The definition of the language
already permits implementations to add procedures, and
since compilers (for instance) need dispose, it should be

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 251

20z udy 60 U0 189n6 Aq 1ZG08€/872/2/SZ/10Me/|ul00/W0d"dNo"oILePED.//:SARY W) PAPEo|UMOQ

B. A. WICHMANN

added as an option. The even less secure procedures of
‘mark’ and ‘release’ would be another alternative.

With these simplifications, perhaps one extension
ought to be considered. It is particularly annoying not to
be able to declare complex functions in Pascal—all
functions have to return ‘simple’ results. With this
‘extension’, the language would actually be simpler for
the user since an odd restriction in Pascal would be
removed.

A RADICAL SUGGESTION

One reason why Ada has its current form is because of
the need to make the program text as readable as possible
to aid program maintenance. This assumes that program
text is the sole method of communication between the
programmer and the compiling system. With modern
interactive computer systems, this assumption can be
waived. Hence a package becomes a data-structure
linked into a larger structure representing the complete
library of packages. At a lower level, the user could use
abbreviated keywords provided the expanded form was
presented on output. Similarly, Ada is free format, but
this is unnecessary for output (indeed, it is confusing). In
such an environment one could design a language which
has many of the attributes of Ada but is simpler as seen
by the computer user.

An advantage of Pascal is that there are now a number
of good textbooks on the language. The same will no
doubt be true of Ada in a year or two. What would a
textbook look like that was designed to teach a language
based upon interactive computing? The existing books
on Basic are not encouraging in terms of teaching good
discipline in programming.

It can be argued that the Ada Programming Support
Environment (APSE) project'® could meet these require-
ments. Certainly syntax-oriented editors, pretty-printers
and other tools can give the programmer a totally
different view of a language. One reason for the success
of Basic is the simplicity of its typical environment.
Similarly, the ease of using APL, even though it needs a
sophisticated character set, has contributed to its success.
It is not clear how significant the APSE will be in the
acceptance of Ada.

CONCLUSIONS

Although Ada is based upon Pascal, it is quite a different
type of language. Pascal is excellent as an educational
tool but is inappropriate for major commercial or real-
time projects. Ada is more complex than Pascal but has
a capability for large systems.

The choice of a language for a project is very important.
Pascal and Ada together span a potentially large part of
the market. In the future, tools to convert between Pascal
and Ada may be available, making an initial choice less
critical.'' Currently, the use of Ada is restricted to long-
term projects because of the absence of production
quality compilers. Fortunately, with both US Department
of Defense and EEC funding, Ada compilers are not
likely to be expensive even though they will cost more
than those for Pascal. A reasonable strategy at the
moment would be: (a) Use Standard Pascal where
possible (especially for small projects) since this allows
for an upgrade into Ada, if needed. (b) Use Ada as a
design language now, since packages provide a necessary
framework for project management.'?

REFERENCES

1. GPO, Ada Language Reference Manual. GPO %008-000-
00354.8 (1980) $5.50, Superintendent of Documents, US
Government Printing Office, Washington DC 20402, USA.

2. N. Wirth, The programming language Pascal. Acta Informatica

1, 35-63. Springer Verlag, New York (1971).

. US Department of Defense, ‘Stee/man’ Department of Defense

requirements for high order computer programming languages.

(1978).

J. G. P. Barnes, An Overview of Ada. Software—Practice and

Experience 10, 851-887 (1980).

K. Jensen and N. Wirth, Pascal User Manual and Report,

Springer-Verlag, New York (corrected edition 1978).

. BSI, Draft Standard Specification for the Computer Program-

ming Language Pascal, Document 79/60528 DC. (1979).

. J. Welsh, M. J. Sneeringer and C. A. R. Hoare, Ambiguities and

Insecurities in Pascal. Software—Practice and Experience 7,
685-696 (1977).

w

N o o a

252 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

8. B. A.Wichmann, Tutorial material on the real data-types in Ada.
US Army Contract Number DAJA37-80-M-0342, National
Physical Laboratory, Teddington Middlesex TW11 OLW, UK
(1981).

9. S. J. Hammarling and B. A. Wichmann, (1981). Numerical
Packages in Ada. IFIP TC2 Conference, (August 1981).

10 US Department of Defense, Requirementsfor Ada Programming
Support Environment. STONEMAN (February 1980).

11. P.F. Albrecht, P. E. Garrison, S. L. Graham, R. H. Hyerle, P. Ip
and B. Krieg-Bruekner. Source-to-Source Translation: Ada to
Pascal and Pascal to Ada. S/IGPLAN Notices 15 (No. 11), 183~
193 (1980).

12. B. A. Wichmann, Ada—the way ahead. Computer Weekly, 6-7
(6 November 1980).

Received August 1981
© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982

20z udy 60 U0 189n6 Aq 1ZG08€/872/2/SZ/10Me/|ul00/W0d"dNo"oILePED.//:SARY W) PAPEo|UMOQ

