Software Development for Microcomputer Data

Processing Systems

P. A. Dearnley

School of Computing Studies and Accountancy, University of East Anglia, Norwich NR4 7TJ, UK

The paper examines some of the problems of developing software for microcomputers used in commercial data
processing. The availability and use of software tools is discussed. An example is given showing the fabrication of a
system from existing software subsystems in preference to either a packaged program or a suite of tailor-made

programs.

INTRODUCTION

The aspect of software development, for microcomputer
data processing systems, considered here is that of the
usage of software tools to generate commercial programs.
Issues relating to obtaining the correct design and
managing the production process are not discussed.

One view of the microcomputer field is of rapid
development of hardware and a constant stream of new
peripheral devices accompanied by very limited software.
The software is provided using machine code or a simple
version of traditional interpretive BASIC. This view is
supported by scanning the popular computing press and
trade magazines. Many of the texts on microcomputer
software concentrate on unstructured BASIC and on
machine code. This situation is thought to compare
poorly with the software tools available on mainframes.
Given the right level of entry into the microcomputer
field the reality is somewhat different; the software
provision is also developing rapidly with new tools being
introduced and existing tools being transported from
mainframes or minis.

PROBLEMS

The development of microcomputer software has all the
problems identified for mainframe software (timeliness,
correctness, goodness of fit to user needs, etc., but two
problems are exacerbated by the low cost of hardware.
First, the comparative cost of the software component of
a system relative to the hardware and other costs, puts
additional pressure on the already present need to reduce
software costs. Second, the reduced total system costs, as
compared with mainframes and traditional small busi-
ness computers, have increased the breadth of applica-
tions which are now considered beneficial.

The growth of the share of total cost taken by software
is not a new phenomenon, but current analysis suggests
that the problems identified for mainframes by, for
example, Boehm in the 1970s will continue in the 1980s
and 1990s for micros.!'? Figure 1 is derived from the
forecasts of Wise et al. It shows both the optimistic and
pessimistic predictions for software costs, along with a
likely cost. The author contends that the approach of
programming each application in traditional BASIC or
machine code is likely to lead to the pessimistic cost

300 - 4

200 (-

Relative cost %

100 ®)

so}- ®

0] |] 1
1975 1980 1985 1990 1995

Year

Figure 1. Relative cost of data processing software (a) optimistic
forecast; (b) likely forecast if new programming techniques used;
(c) pessimistic forecast.

situation. Introducing better tools and methods might
lead to the likely cost, and some revolution in software
production is needed to bring about the optimistic cost
situation.

The increased breadth of applications militates against
the packaged program solution. Often the packages are
not available or not well supported.> Where packages in
the correct functional area are available they may be
rejected because they have the wrong external interfaces
to the user. Many of the packages offered for micros are
priced too low for any support to be provided. The areas
which are covered tend to be restricted to routine
production of accounting ledgers and to clerical functions
such as word processing. Thus much of the software will
have to be generated from scratch.

LEVEL OF SYSTEM

The bottom end of the hardware price range for
microcomputers is dominated by systems with a simple
operating system and a simple interpretive BASIC held
in read-only memory. The program size is limited by the
main store available to hold the source statements and
files of small size can be held on cassette tape. The usual
BASIC offered is unstructured and follows the traditional
line oriented style of programming. Since source texts are
usually held in main store, neat layout and comments are

CCC-0010-4620/82/0025-0253 $02.00

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 253

20z udy 60 UO 1s9n6 Aq 8EG08E/£5Z/2/GZ/310ME/UfL00/W0d"dNo"oILePEDE)/:SARY W) PAPEOUMOQ

P. A. DEARNLEY

discouraged. Whilst discs and printers can be added, the
program interface is often awkward. Further up-market
are the systems based on the Z80 and CP/M.*3 Such
systems have at least floppy disc storage and a reasonable
set of tools. The former type of system has the price
advantage when comparing raw hardware, but prices of
CP/M based systems are continuing to drop. Comparing
hardware costs alone creates a false impression. If the
true software development and maintenance costs are
considered, then the cost advantage of the small systems
may be illusory. The author considers that the latter type
of system represents the minimal level of microcomputer
for developing data processing software.

SOFTWARE ENVIRONMENT

If the ‘Z80 and CP/M’ type of microcomputer is to be
used along with its choice of languages and range of tools
what is the difference in software environment between
it and the traditional mainframe? First, the pure batch
processing type of working is virtually unknown on
microcomputers; the usual types of system are, following
Blackman’s classification, enquiry, data capture and file
update.® Second, the scale of operation relative to the
available computer power is such that methods which
would be unacceptable on a large multi-access mainframe
may be acceptable on the microcomputer. Finally, the
typical small business microcomputer runs as a single
user machine located in the user department, this in turn
removes many of the problems inherent in larger data
processing systems; there is no need for teleprocessing
software, if a database system is used then there is no
need to cater for concurrent usage.

CP/M is now the de facto standard for simple
application development and execution on single user
microcomputers.” However, there are other operating
systems providing a more sophisticated environment
such as OASIS® or, on larger machines, a multiuser
development environment compatible with the UNIX
operating system of mini-computers’ and through it
access to various software tools.!® All these operating
systems provide support for a range of tools with which
a professional approach to software development can be
taken.

SOFTWARE TOOLS

The most obvious tools are language compilers and
interpreters. These cover a wide range comparable with
a mainframe. Fortran, Cobol, PL/I, Pascal and Algol are
all available. There are many dialects of BASIC including
some compiled versions supporting structured program-
ming and many language extensions. The range of
facilities in a ‘modern’ BASIC, for example OASIS
Basic,!! are such that the language bears little resem-
blance to the original Dartmouth BASIC.

Forthe programmer working alone, or, for the librarian
in a team structure'? there are excellent text processors
which will both edit source programs and ‘word-process’
documentation. These tools assume that the system
development will be through the normal process of
writing and debugging high-level programs. Some of this

254 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

work can be saved by the use of subsystems such as
database managers callable from the application pro-
gram, for example MDBS.!? Other parts of a system can
be produced with program generators. These generators
are used to produce code for insertion in a conventional
program, to produce a ‘custom-built’ complete program
or to configure an existing complete program to the user
requirements.

Source code generator

The assumption is that the developer is a normal
programmer with the usual skill base. The source code
generator allows him/her to produce more accurate code
faster than the equivalent hand coding. The code
produced is then included in the source text of the
application program, which is tested in the normal way.
An example of such a generator is the Micro Focus
FORMS program.!* This allows the programmer to
layout the data to be displayed on and accepted from a
VDU terminal on the terminal itself in a dialogue with
FORMS. The generator then produces and files Cobol
code required to implement the VDU display. The code
generated is also used to accept data from the terminal
and check the type of each item entered. This code is
included in the application programs using the Cobol
COPY verb. This tool relieves the programmer of what
is otherwise a tedious and error prone part of the coding.
Examination of the source text of a suite of programs
using this generator produced the following statistics.
There were seven programs containing approximately
5800 statements. The programs used 23 screens to collect
data or menu options. The screen handling code was
generated and tested in 15 hours; the volume of this code
was 1,700 statements. Thus, part of the application was
produced at over 100 lines per hour. This accounts for
approximately 309, of the total coding. Since the suite
was examined after it had been written, the statistics are
not part of a properly controlled experiment; it is possible
that the hand-written equivalent screen handling code
would be more compact and thus the figures given above
are over-estimates of the rate of production and the
proportion of the job generated. However, the figures
give some indication of the value of such a generator.

Parametrized generators

This style of program generator assumes that the
programs to be generated fall into one of a number of
general classes (e.g. data entry, file update, reporting).
The generator produces a set of parameters which direct
the generalized programs to perform the specific process-
ing required by the user. The parameters are held with
the users files and are accessed by each generalized
application module at execution time. Additional ‘sup-
port’ files may be used to define the order of execution of
modules, the text of menus, etc. A good example of this
style of generator is the Configurable Business System. '3
This generator provides modules for file creation and
update, for reporting and for sorting. A number of
utilities for file definition, file tidy-up and menu definition
are used to create and maintain the system. The
parameters used to steer the application modules are held
as header records in the users files.

© Heyden & Son Ltd, 1982

20z udy 60 UO 1s9n6 Aq 8EG08E/£5Z/2/GZ/310ME/UfL00/W0d"dNo"oILePEDE)/:SARY W) PAPEOUMOQ

SOFTWARE DEVELOPMENT FOR MICROCOMPUTER DATA PROCESSING SYSTEMS

Complete program generators

A number of complete program generators are available
for the ‘normal’ data processing tasks. These usually
work in the same fashion as source code generators
except that they produce complete programs which are
then compiled in the normal way, or, they produce an
internal representation of the program which is then
interpreted at execution time. Typical tasks are data
entry and report generation. Examples of data entry
program generators are FORMs 2'¢ and Datastar;!”
whilst the Selector IV'® generator provides data entry,
file processing and reporting. The example given below
makes use of such a generator. The vendors of these
generators suggest that the end-user can produce the
programs required directly and, whilst it is true that they
do not require programming skills in the conventional
high-level languages, such users would require a good
knowledge of computer data processing. The author
views these tools as aids for the analyst-programmer.

EXAMPLE

The following example serves to show how various tools
can be combined to make almost all of an application.
The example is based on a real system built for a CP/M
based microcomputer; the number of attributes has been
reduced to simplify the description.

The user required an information system to keep track
of a large number of professional staff holding various
posts in various locations. The data to be recorded
concerning a person included a reference code, name,
current post held, geographic location, personal details
(data of birth, nationality, etc.) and a free format career
resumé. The resumé contained various interesting de-
scriptors which were highlighted in the original manual
system. The staff data had to be stored, updated, amended
and printed. The preferred user interface for this
operation was a form displayed on the VDU which could
be completed in a similar manner to the manual system,
then corrected or printed as required. From the stored
data, three reports were required in addition to the
printing of complete entries. The first report was to be a
sorted list of names along with current post and reference
number. The second was similar, but giving post followed
by name and sorted on post. Finally, a list was required
of all the ‘interesting’ descriptors from the career resumés
along with the names and reference numbers in which
they occurred. The three lists were to be printed for
subsequent photo-reduction and distribution. They were
also to be available for perusal on the VDU both in a
serial fashion, and, for the descriptors, subject to a
context search.

The package solutions suggested involved either
personnel subsystems which would run as a by-product
of a payroll system, or, a contract staff package which
would involve the unwanted aspects of customers and
charge-out rates. Neither system would allow the use of
a form close to that familiar to the user. The alternative
of programming the entire system from scratch was
roughly estimated at several months for a contract
programmer. The system as built is shown in Fig. 2.
Program 1 was implemented using the DATASTAR

© Heyden & Son Ltd, 1982

1
File creation
update and
print

New and
changed
staff

details

Extract 4
and format
descriptor
report

Complete
list of staff
details

Extract 2

Extract 3

sort and sort and g:snclﬁo :arry
format names format post fil pto
report report tle

5
Sort
descriptors

Descriptor
report

View and .

search Print
Selected Printed
details _’ep}_

8
References Ad-hoc Printed
to selected retrieval enquiry
details

Figure 2. Example system: data flow.

data entry and retrieval program generator. This package
allows a form to be designed as the basis of the user
dialogue. Data is entered, corrected, deleted and viewed
by reference to the form. New data and corrections are
validated. The type, range and format of fields can be
checked. Copies of individual entries and of all entries
can be printed in the same layout as the VDU form. The
same software is used for program 8 where individual
entries are called up by reference number following
perusal of the lists produced by programs 6 and 7.
Programs 2 and 3 use a sort package which allows both
sorting and data selection/exclusion. The selection feature
is used to choose just the desired fields for the output list
and to format them. The exclusion feature is used to skip
data entries marked as deleted. Thus the sort package
selects active records, selects desired fields, formats the
data and sorts onto an output file. The lists are printed by
program 7 which is the CP/M list utility program. The
lists can be viewed using a word processor program
(program 6). The program allows the lists to be viewed a
screen-full at a time, and allows the viewer to move
backwards or forwards through the file. The context
searches are provided by the scan feature of the word
processor. No actual word processing in the sense of
editing or justification is done! The word processor is
used as a convenient tool for viewing formatted data
files. Program 4 has to scan the free format career resumé
and output one record per descriptor found. The
descriptors are delimited by special characters but can be
in any position in the lines making up the resumé. To

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 255

20z udy 60 UO 1s9n6 Aq 8EG08E/£5Z/2/GZ/310ME/UfL00/W0d"dNo"oILePEDE)/:SARY W) PAPEOUMOQ

P. A. DEARNLEY

extract this data a special program was written in BASIC.
The program needed 150 statements using the file
handling and string processing features of CBASIC. The
output from this program is then sorted (program 5) using
the sort package.

The design, development and testing of the entire
system took 9.5 days. This included familiarization with
the data entry program generator which had not been
used previously. The system is not ideal since the
different software tools have different conventions for
their user dialogues. However, it has been easy to modify;
the original form layout has been changed once. This,
with essential changes to the sort parameters and the
BASIC program, took one half day of editing and testing.

With the exception of one small BASIC program the
entire system is made using a program generator, a sort
package, a word processor and an operating system
utility program. These programs are used as sub-assem-
blies and are combined to engineer the system. The
resulting system is usable, easy to change and cheap. The
components from which it is built are well tested adding
to the reliability of the whole system. A ‘better’ hand
coded system could have maintained secondary indices
in place of extracting and sorting. It could have produced
a single uniform user interface instead of the data entry
dialogue and the word processor command conventions.

It is unlikely that the cost, timescale and reliability of this
‘pure’ approach would have been justifiable compared
with the ‘engineering’ approach.

CONCLUSION

The basic conclusion of the paper is that, whilst some
systems will need substantial ‘original programming’,
many could be built using generators and existing
subsystems if the correct engineering approach is taken
to development projects. Building applications in this
fashion may result in systems which are not ideal
compared with hand-coding but the price of construction
and maintenance will be lower. Where extensive pro-
gramming is needed there is no excuse for assuming that
microcomputer projects should or must be undertaken in
the ‘traditional line oriented BASIC plus machine code’
style given the wide range of tools currently available.

Note. To make this paper reasonably specific and practical
various commercial software products are mentioned. It should
not be assumed that the lists of products are comprehensive nor
should it be assumed that the products are in some sense ‘best
buys’; they have been used to explain and illustrate.

REFERENCES

1. B. W. Boehm, Software Engineering, /EEE Trans. Comput., C-
25 (No. 12) (1976).

2. K. D. Wise, K. Chen and R. E. Yokely, Microcomputers: A
Technology Forecast and Assessment to the Year 2000. Wiley,
New York (1981).

3. P. Hammersley, The Impact of Microcomputer Systems on
Commercial Data Processing, Comput. J., 24 (No. 1), pp. 14—
16 (1981).

. Digital research, CP/M User’s Guide, Digital Research, Pacific
Grove, California (1979).

. D.Powys-Lybbe, CP/M operating System—The Software Bus,
Microprocessing and Microsystems, 5 (No. 3) (1981).

. M. Blackman, The Design of Real Time Applications, Wiley,
New York (1975).

7. M. Healy, CP/M—the De Facto Standard. Computer Age (April

1980).

8. Phase One Systems, OAS/S System Reference Manual, Phase
One Systems, Oakland, California (1980).

9. K. L. Thompson and D. M. Ritchie, The UNIX Time-sharing
System, Communications of the ACM, 19 (No. 7) (1974).

(o2 BN ¢ I

256 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

10. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-
Wesley, Reading, Massachusetts (1976).

11. Phase One Systems, BASIC Language Reference Manual.
Phase One Systems, Oakland, California (1980).

12. IBM, /mproved Programming Technologies—An Overview.
CG20-1850 (1975).

13. Micro Data Base Systems, MDBS User’s Manual, Lafayette,
Indiana (1979).

14. Micro Focus Ltd, C/S COBOL Operating Guide, Version 3,
Chap. 8, Micro Focus, London (1979).

15. Dynamic Microprocessor Associates (1979).

16. Micro Focus Ltd, FORMS 2 Utility Manual. Micro Focus,
London (1979).

17. Micro-Pro, DATASTAR Reference Manual (1980).

18. Micro-Ap, Selector IV Manual. Micro-Ap, Dublin, California
(1980).

Received August 1981
© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982

20z udy 60 UO 1s9n6 Aq 8EG08E/£5Z/2/GZ/310ME/UfL00/W0d"dNo"oILePEDE)/:SARY W) PAPEOUMOQ

