On the Inclusion and Placement of Documentation
Graphics in Computer Typesetting

Chris Corbett

Dept. of Electrical Engineering Science, Essex University, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK

Ian H. Witten

Man-Machine Systems Laboratory, Department of Computer Science, The University of Calgary, 2500 University Drive

NW, Calgary, Canada T2N 1N4

Computer typesetting systems can produce high quality printed pages suitable for the production of books, journals
and newspapers in final form. Little effort to date has been applied to the problem of including and placing arbitrary
graphic figures within processed text. In this paper we describe a system, constructed around existing typesetting
software, which allows figure definition and placement. Key features of the system are a wide range of figure sources;
figure preview facilities; figures-only output and compatibility with non-graphic printing devices, where figures are
plotted separately; support of a figure language for in-line figure definition; and figure placement algorithms which are

changeable at the user level.

INTRODUCTION

The use of computers for text layout is certainly one of
their fastest-growing application areas. Substantial econ-
omies in the production of books, journals and newspa-
pers can be achieved if some of the traditional steps in
publishing are short-circuited. Computers can help with
copy editing, composing, proof-reading, correcting, page
make-up, index preparation, distribution, and archiving.
All of these tasks are being addressed both by the front-
office technology of word processors and office informa-
tion systems, and by larger and more powerful document
preparation systems such as troff,' TEX,? and Scribe.3
But one important area has received relatively little
attention: the preparation of illustrations and their
placement in documents. This is no doubt because
computer peripherals which provide high-quality print-
ing of both text and figures have only recently become
widely available. Impact printers can produce acceptable
text but not graphics; plotters can produce graphics but
not text (certainly not in quantity). Isolated attempts
have been made to incorporate artwork into documents.
The Multics COMPOSE package* has a facility which
allows crude artwork to be constructed on a VDU and
printed on a letter-quality printer. Recently, a language
called PIC has been devised® which allows a picture
definition to be contained within the document’s text,
expanded by an interpreter which constitutes a prepro-
cessor to the text-formatting operation, and printed by a
phototypesetter. However, it does not permit the inclu-
sion of arbitrary half-tone images and graphics from
sources outside PIC—this is probably because the
phototypesetter is a conventional one with optical images
of characters. Document preparation systems such as
TEX are designed for use with soft-font output devices
but do not have any significant graphical capability.
Real-world documents usually contain figures from
many sources, amongst which are hand-drawn artwork,
graphical output from computer programs, grey-scale
photographic originals, pre-screened images and figures
which include formatted text. Once the text is available

and the figures have been obtained, the conventional
compositor goes through a figure-placement exercise to
determine the location of figures on the page which
corresponds best with their callouts in the text. Then,
text and figures are merged (using a paste-up technique),
and the document is printed.

This paper describes a system based upon troff! and
other UNIX utilities which can include documentation
graphics from many different sources and place them on
the page according to user-defined criteria. Pictures can
be specified in various ways in the text. They are sized
automatically and the measurements are given to the
figure-placement algorithm, which determines what page
they should occupy and whereabouts on it they should
go. As far as the text-formatter is concerned, such areas
simply appear blank and text is placed around them.
Then a final merging operation is performed by a raster
preprocessor just prior to printing. This may involve
expansion of a picture definition into raster form, or the
invocation of a transform on a grey-scale image to
produce black and white pixels. The complete document
is printed on a raster device. To avoid the massive storage
requirements that could otherwise occur, the preprocess-
ing is done on the fly as the document is printed.

PICTURE SOURCES

Figures defined within the text

The PIC language for drawing block diagrams has been
re-implemented in an expanded processor called fig.
(Current work is centred on improving the picture-
drawing facilities it provides, in particular by the addition
of structured sub-picture definitions and graphic trans-
forms.) This allows a figure specification to be included
in the text, preceded by a control command which
invokes PIC. The PIC interpreter is then applied to the
document as a filter before the text-formatting operation
(troff). The figure definition is extracted and processed
into a plot file which has a standard, system-wide plot

CCC-0010-4620/82/0025-0272 $03.00

272 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

© Heyden & Son Ltd, 1982

20z Iudy 0 uo 3senb Aq 98508€/2/2/2/5Z/I01HE/|UlL00/Wod"dNo-0IWapED.)/:Sd)Y WOl PapeojuMoq

ON THE INCLUSION AND PLACEMENT OF DOCUMENTATION GRAPHICS IN COMPUTER TYPESETTING

—_—_——

7 ~

7 AN
/ _______
/ \\ r "
. S| refer ! | teL/ean I
document tig \ (optional)) | (optional) |
\ / I |
\ /
\\\ _ //
raster
TROFF o plotter

Figure | Example of a PIC picture definition

Figure 1.

format. Fig selects a file name, sizes the figure, and
substitutes an appropriate control command containing
size and file name into the output stream. This output
stream is then processed by troff. The whole operation
appears to the user almost exactly as defined by
Kernighan (1981).

As an example of the use of PIC, Fig. 1 was created
with the input

.FI

ellipse wid 0.9i “document”

arrow

box “fig”

arrow

circle rad 0.5i dashed “refer” “(optional)”

arrow

box dashed wid 0.9i “TBL/EQN” “(optional)”
line down

line to 1st ellipse + (ellipsewid/2,-boxht/2-lineht)
line down

arrow right

box “TROFF”

arrow

ellipse “rstpp”

arrow

box “raster” “plotter”

.FE “Figure 1 Example of a PIC picture definition”

9 66

(taken from Ref. 5). .FI’ and ‘.FE’ are control codes to
invoke and terminate PIC, and the whole excerpt appears
in the document just after the words ‘Figure 1’ at the
beginning of this paragraph. It is expanded into a
graphics specification by fig, placed by the figure-
placement macros which the user can specify to troff, and
merged with the text by the raster postprocessor. The
string argument to ‘.FE’ provides the figure caption.

Output from graphics packages

The use of a standard plot file format greatly enhances
the utility of the system. Standard graphics packages can
produce picture definitions, possibly interactively, in this
format. For example, we have a set of graphics routines
callable from the C programming language,® which can
utilize real (cm) or user-defined units of measure for
coordinates.

The GROPER language for recursive picture defini-
tion has recently been ported to our system : its output is
in the standard plot format and so can be incorporated
into documents directly. One simply specifies the file
name in a call to fig, which extracts the size information
from the file and passes it and the file name into the
output stream to be processed by troff. Figure 2 shows the
picture created by the GROPER commands:

Figure 2 Example of GROPER output

Figure 2.

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 273

20z udy 01 uo 1s8nB Aq 98508€/2/2/2/SZ/10Me/|ufoo/Wod"dno-oiWwepeo.//:SARY WOy PapEo|umoQ

C. CORBETT AND I. H. WITTEN

add line sq add sq sq ori 1, 0 rot 90 lim 4
add sq sp add sp sp ori 1, 0 rot —22 mag 0.9 lim 30
add sp pik
add sp pik mag —1,1
dev plot 5
plot

placed and merged into the text by fig, using the
command

.FI plot groper-output
.FE ‘Figure 2 Example of GROPER output’

placed in the text.

A useful Unix system program called graph exists
which takes a list of coordinates and produces a standard
plot file. Its output can therefore be used to generate
figures in text. Figure 3 shows an example, created by the
command

has been provided within fig to allow escape to an
arbitrary Unix program, whose output is directed into a
raster file whose name is chosen by fig. Figure 4 was
generated by the command

.FI halftone image_file | peano-flags
.FE ‘Figure 4 Example of halftone output’,

where image_file contains the original grey-scale image,
‘peano’ is the name of the peano-conversion program,
and ‘flags’ are arguments to it which specify options. The
half-tone raster size in Fig. 4 has been chosen to be rather
larger than the resolution of the output device, to make
the dot structure easily visible.

Two operations that are important in real-life image
manipulation are clipping and magnification of photo-
graphic pictures. Neither gf these have been implemented
at present because we are not working in a commercial
environment. A syntax like

/N

An Example output from graph (|)

Figure 3 Example of graph output

Figure 3.

.FI plot graph-output
.FE ‘Figure 3 Example of graph output’

Grey-scale images

A file of grey-scale intensity values on a matrix of x, y
grid points must be converted to a black-and-white raster
image before it can be printed. Several techniques for
conversion have been proposed.® A new method has been
developed recently® which uses a recursive space-filling
curve as a contour along which the image is converted
into incremental representation by the DDA technique. !°
Moire effects are totally eliminated by the use of a
sufficiently convoluted path, and there exist theoretical
reasons for choosing Peano curves as the discretization
contour. This and other methods are presently being
evaluated. To assist with this, a rather flexible mechanism

274 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

Figure 4 Example of halftone output

Figure 4.

.FI halftone image_file | clip -flags |
scale -flags | peano -flags

is envisaged for these operations.

Pre-screened images

It sometimes happens that a publisher has to deal with
pre-screened half-tone images. This is common for
advertisements in newspapers and magazines, where an
illustration may be prepared by an advertising agency,
screened into a half-tone image, shown to the customer
for approval, and then presented to the publisher for
printing. In a computer-based system the pre-screened
image corresponds to a raw raster file at the resolution of
the output device. Hence we have included a facility in
fig for such an image to be specified. The file format

© Heyden & Son Ltd, 1982

20z udy 01 uo 1s8nB Aq 98508€/2/2/2/SZ/10Me/|ufoo/Wod"dno-oiWwepeo.//:SARY WOy PapEo|umoQ

ON THE INCLUSION AND PLACEMENT OF DOCUMENTATION GRAPHICS IN COMPUTER TYPESETTING

contains the horizontal and vertical measurements of the
image, followed by the bits that comprise it. It is included
as a figure by the command

.FI raster image_file.

Figures which include processed text

One area which creates considerable difficulty is the
interaction between figures and the text-formatting
operation. Normal typeset characters are defined within
our troff system as raster dot-patterns for each character,
in each font, in each size. It is computationally infeasible
to perform certain transformations (such as rotation)
upon characters stored in this form, because the trans-
formation must be done on each of the many dots that
comprise the character.

Inordertoallow arbitrary scaled and rotated characters
to be included in figures, a facility has been incorporated
into fig for drawing Hershey fonts.!! These are specified
as line segments and hence are easy to transform. The
PIC language as currently defined does not permit text
rotations to be specified. However, we intend to make
substantial enhancements to it which will include
transformations, and envisage offering the user a choice
of normal typesetter dot-pattern fonts or line-segment
ones, with the proviso that only the latter may be
transformed. Figure 5 shows a figure which uses exotic,
rotated characters: it was drawn using the above-
mentioned graphics routines.®

Sizing of text is another interesting issue. The current
PIC cannot judge the size of a block of text, and does not
allow text filling or margin adjustment within pictures.
Hence it cannot, for example, create a box just large

enough to enclose a piece of text, nor can it break a line
just enough to leave space for an annotation. To provide
these facilities, the text-formatting operation must be
callable from within the picture language. Then a block
of text could be formatted with certain characteristics
(like type size and line length), measured, and placed in
a figure with its measurements made available to the
figure processor for subsequent use. It may be that a
coroutine control structure for the figure and text
processor is most elegant. These possibilities are presently
being explored.

FIGURE PLACEMENT

Once a figure has been sized and converted into either a
plot file or a raster file, fig inserts a macro call into the
output stream which invokes the figure-placement algo-
rithm when processed by troff. (Actually, fig simply copies
the .FE line with the caption, if any.) Among the
aesthetic criteria which are commonly used for figure
placement are (i) the figure should be close to its callout
in the main text, (ii) figures must appear in the order in
which they occur in the input document, (iii) figures
should only be placed at the beginning or end of a page,
(iv) a page should not have figures both at the top and
bottom, with intervening text, (v) several figures can
appear consecutively on the page and (vi) the caption of
a figure placed at the end of a page should be aligned
with the lower boundary of the text area. With a basically
one-pass document processor, it is not feasible to perform
global optimization of figure positions such as is described
by Bammel.'? Hence a figure-placement method is used

FINAY GBRADESDS

Studert I.D.

262477
137870
4584187
95908
866712
31245
213420
174097
272497
771154
410137
427818

COMPUTER GRAPHICS

GG 0Sd)

€. Cordelt

(Unofficial)

Figure 5. Example with rotated characters produced by graphics package.

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 275

20z udy 01 uo 1s8nB Aq 98508€/2/2/2/SZ/10Me/|ufoo/Wod"dno-oiWwepeo.//:SARY WOy PapEo|umoQ

C. CORBETT AND I. H. WITTEN

which can only site the figure after that point in the text
where it is specified; it is usually best to place the figure
specification just after the first reference to it.

With this proviso, a suite of macro definitions for troff
which satisfies the above placement criteria has been
built'* and used for some years. It allows many figures to
be ‘pending’ (defined but not yet placed) at once, and
sites them as soon as there is an opportunity to do so.
Graphic figures are fully compatible with the placement
macros, since from the outset it was decided to implement
graphic figure sizing and placement with a user-defined
troff macro (see next section).

However, the most important point is that such an
algorithm can be written and communicated to troff at
the userlevel. Sadly, the difficulty involved is abominable,
due to poor human engineering of the user interface.
Steps are being taken to improve this by defining a high-
level block-structured language, based upon an ADA-
like syntax, which compiles into the low-level troff code.
This is intended to enhance the accessibility of the figure-
placement process and to give easy control over the whole
format of the document.

MERGING PICTURES WITH TYPESET
OUTPUT

The basis of figure merging is the ability to build a raster
image of the page to be printed. Page composition with
figures is in essence a three-dimensional technique. TEX?
builds pages based on the notion of two-dimensional
boxes; box positioning is performed using the properties
of shrink and stretch between adjacent boxes, whether
they contain characters or paragraphs. For figure inclu-
sion, we regard a page to be constructed of several
layers—a three-dimensional object. Each layer is in itself
a two-dimensional slice of the page, containing either
textor figures. A layer’s position on the page is determined
by the x, y coordinate defining its top left corner. Figure
6 illustrates the page make-up process. Starting with a
blank page, troff will produce the formatted text slice,
while fig is producing and positioning figures defined in
the text. Figure 6 shows the case for two figures being
centrally located within the text layer.

Troff produces phototypesetter codes, which are un-
suitable for the type of page composition discussed
above. A post-processor for troff (rvcat, developed at the
University of California at Berkeley) was available to us.
This produces a raster image of the troff output for
Versatec-like printers. Rocat forms the basis for our
figure post-processor, rstpp, which performs the page
make-up step from the individual raster slices.

The layering technique for page composition works as
follows. Textual input with an included figure will take
the form of the example below:

some text
.FI <figure definition)

.FE (figure caption)
some more text

The syntax for <figure definition has been described in
previous sections. The figure preprocessor fig performs
several operations when interpreting the *.FI’ control
request. First, the figure definition statements are used to

276 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

Blank Page i

o Representation of
) Text layer = Page Make-up
| | Page
[| o
! |
I Bee—eee— | /
| : First Figure : |
I e | Text
: : XY position
| | O
!]
! |
! -
| lu}—"‘ : Flgure. I
Il :Smnd: : XY position

Figure | _O

|
: P -J' : /
]
_ Figure 2
Positioning XY position
O point of 0
reference

Figure 6. Page structure and its representation.

create a complete picture file describing the figure at one
of two levels. The first is Intermediate level 1 code, which
is a vector optimized format based on the UNIX plot
standard.-PIC generates this output, as do the standard
graphics packages available under UNIX. The second,
Intermediate level 0 code, is a raster format suitable for
half-tone or photographic type figures.

The second function in fig is to replace the figure
definition in the source text by a single line having the
following format: :

.FI XSIZE YSIZE {filename)

XSIZE and YSIZE specify the size of the generated
figure, while (filename) is the name of the generated file.
If preceded by a $’, the file is in Intermediate level 0
code. (Although this seems ugly, remember that this
substituted line is not normally seen by the user.)

The third function is to generate a canned definition of
a troff macro *.FI’ on the first invocation of fig. This
macro interprets the information in the *.FI’ output line
discussed above. Currently, the XSIZE and YSIZE
information is used to centre the figure on the page,
leaving enough white space around it for text. The
filename is encoded appropriately so that troff will pass
it on to the page builder rstpp. Allowing figure placement
in this way gives the user complete control over the figure
placement process—the definition of *.FI’ can easily be
altered to position the figure in different ways relative to
surrounding text.

OTHER SYSTEM CAPABILITIES

A preview facility is almost essential for any hard-copy
graphics package. Fortunately the use of the standard
plot file format at Intermediate level 1 means that this is
already available. Any plot file created by GROPER,
PIC, graph, or the subroutine library can be viewed by an
existing utility called plot: a switch on this scales the
figure to the maximum size permitted by the output
device.

The figures in a document can be processed for viewing
without any text being printed. The text file is simply
passed through the fig processor, and the output—which

© Heyden & Son Ltd, 1982

20z udy 01 uo 1s8nB Aq 98508€/2/2/2/SZ/10Me/|ufoo/W0d"dno-oIWepED.//:SARY W) PAPEo|umoQ

ON THE INCLUSION AND PLACEMENT OF DOCUMENTATION GRAPHICS IN COMPUTER TYPESETTING

normally goes to troff—is discarded. This creates a
succession of files, one for each figure, in Intermediate
level 1 format. These can then be viewed one by one.
They could just as easily be plotted on a non-text device
such as a plotter, for pasting into a typescript.

Similarly, it is trivial to get the text of a document
without the figures on a device which does not have
drawing capability. Simply process the figure as normal,
specifying the output device! In other words, pass the
document through the fig preprocessor, then through
troff, and then to that device. All the illustrations will be
sized correctly and space will be left for them. The plot
files which are created by fig will be ignored by the output
device handler, for only the raster device handler knows
about the figure-generating process. A mark is left in the
top left corner of the white space as a guide to figure
positioning for later pasting-up operations.

A complementary requirement is to be able to obtain
a galley proof of the figures only. They could of course be
drawn one by one, as described above for viewing.
However, a switch has been incorporated into fig to
suppress all textual output, so that the illustrations can be
drawn on the raster device by the raster preprocessor as
a single operation.

CONCLUSIONS

This paper has described a framework which allows
arbitrary figures to be included and placed within
processed text. A specific environment was chosen to
implement the system, but on the basis of this implemen-
tation we regard the following general properties as
essential for figure processing:

(i) the user should have complete flexibility of image
sources with a standardized syntax for inclusion, and a
universal mechanism for placement; (ii) figures, however
defined, should be in a format which will allow interactive
previewing; (iii) intermediate picture description lan-
guages for both raster images and line drawings are
necessary; (iv) atextual, in-line, figure definition language
like PIC is essential for entering simple images on a
VDU; (v) the system must be transparent to output
devices which cannot display graphical information.

The wide variety of potential image sources has been
discussed above. A glance at almost any technical
publication will show that there is a real need for systems
which can cope with their diversity. Any scheme which
is restricted to only one or two such sources will have
serious limitations in practice. The advantage of a
uniform syntax for specifying images is obvious. The
method described above has the advantage of clearly
indicating the type of image in the inclusion command,
and transparently invoking the figure placement
algorithm.

A preview facility is essential in any hard-copy
computer graphics application. The use of existing
standards for file formats allows advantage to be taken of
ordinary system utilities. Furthermore, any interactive
graphics packages can then be used for figure preparation.
An obvious extension to the system is to use the
presentation-level protocol defined by Telidon!4 as an
additional picture source: cheap interactive systems for
production of Telidon frames are already becoming
available and promise to be a fruitful source of images in
the future.

The use of existing standards may, of course, compro-
mise on some desirable features. For example, we would
like to see relative vectors and picture subroutines at the
intermediate level, for this would improve the compact-
ness of figure files. However, such compromises seem
eminently suited to an age where resources for the
production of software are scarce.

Similar comments apply to the use of the PIC language.
We have capitalized on the fact that PIC is already
defined—its re-implementation has proved to be fairly
simple (around 3 man-weeks). However, we are far from
satisfied with the facilities it offers to the user, and are
presently working on the definition of a language which
embodies a structured graphical approach to pictures,
sub-pictures, and transformations.

Acknowledgments

This research was supported by the National Sciences and Engineering
Research Council of Canada.

REFERENCES

1. B. W. Kernighan, M. E. Lesk and J. F. Ossanna, Document
preparation, Bell System Technical Journal 57 (6), 2115-2135
(July/August 1978).

. D. E. Knuth, Tex and Metafont: new directions in typesetting,
Digital Press and American Mathematical Society (1979).

. B. K. Reid, Scribe: a document specification language and its
compiler, PhD thesis, Carnegie-Mellon University (1980).

. Honeywell, Multics Wordpro Reference Guide, Honeywell
Information Systems (1979).

. B. W.Kernighan, PIC—A crude graphics language for typeset-
ting, Bell Labs. Internal Report (January 1981).

. C. Corbett, A Standard Graphics Package for Use under Unix,
Internal Report, Department of Electrical Engineering Science,
University of Essex, February (1980).

7. B.L. M. Wyvill, PICTURES-68 MK 1, Software—Practice and

Experience 7, pp. 251-261 (1977).

8. J. F. Jarvis, C. N. Judice and W. H. Ninke, A survey of
techniques for the display of continuous tone pictures on
bilevel displays, Computer Graphics and Image Processing 5,
pp. 13-40 (1976).

9. I. H. Witten and R. Neal (in preparation), Bilevel Display of
Continuous-Tone Images Using Peano Curves.

o O A~ W N

© Heyden & Son Ltd, 1982

10. T. R. H. Sizer (Ed.), The digital differential analyser. Chapman
and Hall, London (1968).

11. N. M. Walcott and J. Hilsenrath, A Contribution to Computer
Typesetting Techniques (Tables of Coordinates for Hershey's
Repertoire of Occidental Type Fonts and Graphic Symbols).
National Bureau of Standards, U.S. Department of Commerce,
Washington, DC. (1976).

12. S. E. Bammel, Automatic full-page formatting of technical
primary journals, Proc. National Computer Conference, pp.
825-829 (1975).

13. I H. Witten, M. Bonham and E. Strong, On the Power of Traps
and Diversions in a Document Preparation Language, Research
Report81/65/17, Department of Computer Science, University
of Calgary (1981).

14. H. H. Bown, C. D. O’'Brien, W. Sawchuk and J. R. Storey, A4
General Description of Telidon—a Canadian Proposal for
Videotex Systems. Communications Research Centre, Depart-
ment of Communications, Ottawa, Ontario (1978).

Received October 1981
©Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 277

20z udy 01 uo 1s8nB Aq 98508€/2/2/2/SZ/10Me/|ufoo/Wod"dno-oiWwepeo.//:SARY WOy PapEo|umoQ

