
The Programming Language BPL

M. H. Williams
Department of Computer Science, Heriot-Watt University, 79 Grassmarket, Edinburgh EH1 2HJ, UK

BPL is a programming language which was developed from the two languages BASIC and Pascal. The chief aim in
designing BPL was to create a language as simple to use as BASIC with the additional data types and control
structures which make Pascal attractive to use. It is intended in the first instance as a language to teach programming
but it can be used for any application where BASIC might have been used, and in many such cases it is simpler to use
and the result more readable than if BASIC had been used. For instance, the record facilities make the language more
amenable to commercial applications, and the pointer facilities to manipulating complex linked data structures.

1. INTRODUCTION

With the abundance of programming languages already
available, it is with great trepidation that one dares to
announce yet another one. Nevertheless the language
described here, BPL, has a number of merits and for this
reason the reader is exhorted to read on and judge it for
himself.

The language originates from a search for a suitable
language to teach to two different types of undergraduate
student—a first language for undergraduate Computer
Science students and a language for other undergraduate
science (or non-science) students. Two languages which
suggested themselves for this purpose are:

(a) BASIC. This is simple to teach and simple to learn.
The BASIC system is geared to helping the user. After a
very limited period of time the student who has been
taught BASIC has a better understanding of (or, if you
prefer it, is less confused about) the process of computing
than a student who has learnt a conventional batch
language. Input/output is particularly simple and the
notion of numeric and string variables is ideal for the
beginner; file handling and matrix manipulation facilities
enable more sophisticated applications to be handled
very simply.

(b) Pascal. This is a well-structured language (i.e. one
which lends itself to the construction of well-structured
programs) and is thus a better language from the point of
view of teaching good programming habits and style. In
addition Pascal has a rich collection of data types which
lend themselves to programming a wide range of
applications. In particular, pointer, record and definable
scalar types and more flexible array subscripts enable
one to write more readable programs.

Both languages have very appealing features and either
language could be used to teach both groups of students,
although in general BASIC would probably be preferred
for the non-Computer Science student while Pascal might
be more attractive for teaching the Computer Science
student. However, it would be nice to have a language
which has the advantages of both BASIC and Pascal. It
was for this reason that BPL was developed.

BPL (which stands for B ASIC-Pascal-Liaison or Better
Programming Language or simply a conversational

programming language which was designed after APL)
is designed as a two-tier language which combines the
advantages of BASIC and Pascal. The lower level, a self-
sufficient subset of BPL, is very similar to BASIC and
provides a language suitable for teaching to service
courses. It has all the advantages of BASIC together with
those of the structured control structures of Pascal; in
addition the facilities of the full language can be called
upon if necessary. The full language has the advantage of
the simplicity of BASIC combined with the flexibility of
Pascal.

Since BASIC and Pascal are two rather different
languages, BPL was designed to be as compatible as
possible with BASIC but with the concepts of Pascal
superimposed onto it. As both BASIC and Pascal have a
very simple syntactic structure with unique keywords at
the start of most statements and declarations, BPL has
been constructed likewise. This simplifies matters both
for the compiler-writer and for the user. Furthermore,
BPL is designed to be compiled or interpreted as desired.

BPL is not intended to be just a teaching language.
Any programmer familiar with BASIC should find BPL
very similar to BASIC and in many cases easier to use
because of the additional facilities. In particular the
notions of records, pointers and definable scalar types
can make programming simpler and programs more
readable.

2. DEFINITION OF THE LANGUAGE

2.1 Statements and commands

Like BASIC, BPL is intended as a conversational
programming language. The user interacts with the
system and may give (a) commands, (b) indirect
statements, and (c) direct statements.

A command is a directive to the system, concerned
with the filing, retrieving, listing, tracing, running, etc.,
of programs.

An indirect statement is a program statement which is
preceded by a statement number (an integer). When an
indirect statement is encountered, it is stored away for
execution at a later stage.

1. (indirect statement):: = (statement no> [2]
(statement part) [73]

CCC-0010-4620/82/0025-0289 $9.00

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25, NO. 3,1982 2 8 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

2. <statement no> :: = <non-zero digit)
{<digit>}o

ro [4,3]
3. <digit>: :=0|<non-zero digit) [4]
4. <non-zerodigit):: = l|2|3|4|5|6|7|8|9

The extended form of BNF described by Lee and
others is used here.' Any portion of a production enclosed
in braces { }/ indicates repetition of the contents at least
i and not more than j times. Production numbers for
nonterminals occurring on the right hand sides of
productions are given in square brackets at the end of
each line.

A direct statement is a program statement which is not
preceded by a statement number. Such a program
statement is executed when it is encountered.

5. <direct statement):: = <stm> [74]

In BASIC indirect statements may be entered in any
order and the system puts them into ascending order of
statement number; likewise in BPL the order of entering
indirect statements is unimportant except for the restric-
tions discussed in the section on Procedures and
Functions (Section 2.9).

A statement number is any unsigned integer in the
range 1 to maxstmno, where maxstmno is an implemen-
tation dependent limit.

One important difference between BPL and BASIC as
regards format is that in BASIC spacing in a program
statement or command is generally unimportant whereas
in BPL keywords, numbers and identifiers must be
separated by at least one space or some nonalphanumeric
symbol. Whereas in BASIC a program statement may
not overflow over the end of a line, in BPL a continuation
indicator (&) at the end of a line indicates that the
statement continues on the next line. The number of
continuation lines permitted will in general be system
dependent but a minimum of 500 characters should be
permitted.

2.2 Variables, types and identifiers

Each data item of a program may be stored in a 'cell'
which may be either (a) a simple variable, (b) a field of a
record or (c) an element of an array.

A simple variable is a simple cell capable of containing
a single data item of a particular type; a record is a
composite cell consisting of a collection of one or more
simple cells not necessarily of the same type; an array is
a collection of cells (simple or composite), all of the same
type.

The type of a data item may be any of the following:

(a) Simple data types—REAL, INTEGER,
BOOLEAN;

(b) Strings—these are divided into fixed length strings
which are declared as STRING(n) where n is an
integer denoting the number of characters in the
string, and variable length strings which are declared
as STRING « = n) where n is an integer denoting
the maximum number of characters in the string;

6. <string type): : = STRING ({<=}J,<integer» [14]

(c) Definable scalar type—this is a data type which can
only assume values from some ordered set of
identifiers specified in the type declaration;

(d) Subrange type—this is a special type of integer or
scalar type which can only take on values in a limited
range;

(e) Pointer type—this represents an address of a data
item and is used mainly with dynamic storage
allocation.

In addition there is a record type which is a collection of
one or more named components or fields; the type of
each field may be any of the above five types or may be
a record type.

In what follows, one must distinguish between an
identifier used as the name of a variable, record or array,
and an identifier used as the name of a new data type.
There are two types of identifiers used in the language—
these are plain identifiers

7. <plain identifier):: = <letter> [10]
{<letter or digit)}? [8]

8. <letter or digit):: = <letter)|<digit> [10, 3]
and string identifiers
9. <string identifier):: = <letter> [10]

{(letter or digit)}*$ [8]
10. <letter>: :=A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|

Q|R|S|T|U|V|W|X|Y|Z
11. < identifier):: = <plain identifier) | [7]

<string identifier) [9]
Plain identifiers are used for all identifiers referring to
types and to non-string variables and arrays; string
identifiers refer to string variables and arrays. These
identifier forms are compatible with names of variables
and arrays in BASIC while at the same time permitting
longer and more meaningful names too. As the Ent in
The Lord of the Rings2 so wisely commented, 'Real names
tell you the story of the things they belong to in my
language'.

One important point to note is that simple variables
may either be declared or may be allocated automatically
on encountering the first reference to the identifier (as in
BASIC). In this language there are three modes of
operation: (a) No declaration by default—in this mode
all identifiers must be declared before they are used.

(b) Declaration by default with check—in this mode
any identifier not declared will be allocated automatically
as a variable of appropriate type on encountering the
first reference to it. At the end of the segment, the system
lists all automatically allocated identifiers and the lines
where they are encountered.

(c) Declaration by default without check—same as (b)
but without obtaining a listing of automatically allocated
variables for each segment.

The type of an automatically allocated variable is
determined by the type of the identifier—if it is a plain
identifier, the variable is assumed to be real; if it is a
string identifier, the variable is assumed to be a variable
length string whose maximum length is some implemen-
tation dependent constant, defaultstrlen (this should be at
least 64 characters).

This same default rule for determining the type of
automatically allocated simple variables also applies to
other situations. For example, arrays, fields and formal
parameters must all be declared but if no type is specified
the type is assumed to be either real or variable length
string according to whether the identifier is plain or
string.

2 9 0 THE COMPUTER JOURNAL, VOL. 25. NO. 3,1982 ©Heyden& Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

2.3 Constants

A numeric constant is a signed or unsigned integer or
real number.
12. (numeric constant): : = { + |-}o(number) [13]
13. <number>:: = (integer)|<real number) [14,15]
14. (integer): :={<digit»r [3]
15. (real number): : = {(digit)}?.{(digit)}? [3,3]

{E<exponent)}J|{<digit)}rE<exponent> [16, 3, 16]
16. (exponent): : = { + |-}i{(digit>}r [3]

A string constant is a string of characters enclosed in
double quotation marks. If a double quotation mark itself
forms part of the string, it is written twice.

17. <string constant) :: =
{"{<non-quote character) }£"}?

where <non-quote character) is any character other than
a quotation mark.

A Boolean constant is one of the values TRUE or
FALSE.

18. <Boolconstant):: =TRUE|FALSE

A scalar constant is a plain identifier.

19. <scalar constant):: = <plain identifier) [7]

The only pointer constant is NIL:

20. (pointer constant):: = NIL

2.4 Type definitions

A data type represents a class of values which a data item
can have. The class of values associated with the standard
data types REAL, INTEGER and BOOLEAN are fairly
obvious. On the other hand, definable scalar types, record
types, etc., have no obvious class of values associated
with them and these must be spelled out in type
definitions. Thus a type definition defines an identifier to
be associated with a class of values.

21. <type definition):: =TYPE<type identifier) = [22]
(defined type) [23]

22. <type identifier):: = <plain identifier) [7]
23. (defined type):: = (scalar type) [24]

|(subrange type) |(pointer type>| [25, 35]
(record type) | (array type) [26, 36]

A scalar type defines an ordered set of scalar constant
values.

24. (scalar type):: = ((scalar constant) [19]
{, (scalar constant)} f) [19]

For example

10 TYPE SEX = (MALE, FEMALE)
20 TYPE DAY = (MON, TUES, WED, THURS, FRI,

SAT, SUN)
A subrange type defines a subset of the set of integers or
a subset of a set of scalars

25. (subrange type):: = (integer), .(integer)| [14, 14]

(scalar constant).. (scalar constant) [19, 19]

For example

10 TYPE DIGIT = 0..9
20 TYPE WEEKDAY = MON.. FRI

A record type defines a composite type consisting of a
number of fields, each with a type and an identifier
associated with it.

A record definition may include one or more variant
parts. A variant part consists of a set of different
subrecords corresponding to different values of a partic-
ular field known as the tag field. The value of the tag field
determines the subrecord assumed at any instant. A tag
field must be of type INTEGER, a defined scalar type or
subrange.

26. (record type):: = RECORD(field def) [27]
{; (field def)}?END [27]

27. (field def):: = (field name>{:<type>}0| [33, 31]
(variant part) [28]

28. (variant part) :: =
ON (tag field name): (variant type) [29, 30]
{CASE(constant>{, (constant)}?: [34, 34]

(field def>{ ;(field def>}?}f [27, 27]
{DEFAULT: (field def) {;(field def)}?}J [27, 27]
ENDON

29. (tag field name): : = (field name) [33]
30. (variant type):: = INTEGER|(type identifier>[22]
31. (type):: = {POINTER TO||U(simple type) [32]
32. (simple type):: = REAL|INTEGER|BOOLEAN|

(string type) | (type identifier) [6, 22]
33. (field name): : = (identifier) [11]
34. (constant) : : = (numeric constant) | [12]

(Bool constant) | [18]
(scalar constant) | (pointer constant) | [19, 20]
(string constant) [17]

ON, CASE, DEFAULT, ENDON, etc., may each
appear at the start of a new continuation line. The space
allocated for a record with variant parts will be
determined by the maximum size of each variant part.

If a field is of type string, the field name must be a
string identifier, otherwise it must be a plain identifier. If
the (type) part is omitted from a field definition, the type
of the field is assumed according to the previously
mentioned rule: if the identifier is plain, the type of the
field is assumed to be REAL, if it is string, the type is
assumed to be variable length string with the default
maximum length. For example,

10 TYPE SEXTYPE = (MALE, FEMALE)
20 TYPE MARTYPE = (SINGLE, MARRIED,

DIVORCED, SEPARATED)
30 TYPE EMPLREC = RECORD EMPLNO:

INTEGER; &
NAMES :STRING(< =20);

ADDRESS$;WAGE; &
ON SEX:SEXTYPE &
CASEMALE:ARMYNO$:STRING(15) &
CASE FEMALE:MAIDENNAMES:

STRING(<=20) &
ENDON; &
ON MARSTAT: MARTYPE &
CASE SINGLE: NEXTOFKINS:

STRING(<=20) &
DEFAULT:NOOFCHILDREN:INTEGER &
ENDON &

END

A diagram of this record is shown in Fig. 1.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 2 9 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

EMPLNO

NAMES

ADDRESS*

SEX

ARMYNOS MAIDENNAMES

MAR8TAT

ilngt»

NEXTOFKINS NOOFCHILDREN

Figure 1. Diagram of record with variant parts.

A pointer type defines a pointer to a data item of a
particular type.

35. <pointer type): : = POINTER TO
<simple type) | f <simple type) [32, 32]

There is no semantic difference between these two forms.
An example of pointer definitions is

100 TYPE INTPTR = POINTER TO INTEGER
110 TYPE REC = RECORD LLINK: POINTER TO

& REC;INFO;RLINK:POINTER TO REC END

An array type defines an ordered collection of items of
the same type.

36. <arraytype)::=ARRAY[<bound> [37]
{, (bound)}?] OF(type) [37,31]

37. (bound):: = {<integer>..}£(integer>| [14, 14]
<type identifier) [22]

If a bound is given as a single integer, this represents the
upper bound, the lower bound being zero; if it is given as
a pair of integers (subrange), the first represents the lower
bound, the second the upper bound. If the bound is a
type identifier, it may only be a scalar or subrange type.
For example

20 TYPE ARR1 = ARRAY [DAY] OF INTEGER
30 TYPE ARR2 = ARRAY [1 . . 10, 1.. 20]

OF STRING (< =20)

All type identifiers and field names must be unique
identifiers.

For example
200 VAR I,J,K: INTEGER
210 VAR REC1: EMPLREC
220 VAR A$,B$:STRING(< = 30)
Static arrays are declared using a TYPE and VAR
statement as outlined; for example
10 TYPE ARRTYP = ARRAY [1. . 10] OF INTEGER
21 VAR SUMARR: ARRTYP
However, in BPL one may also use dynamic arrays, i.e.
arrays whose bounds can be determined at run-time. In
order to declare a dynamic array one uses a DIM
statement which has the form
39. <dim stm): : =DIM<array part) [40]

{; (array part)}? [40]
40. <array part): : = <id list) [41]

((dbound){,(dbound>}?){OF(type>}£ [42, 42, 31]
41. <id list):: = <array name)

{.(array name)}? [43,43]
42. <dbound>:: = {(numeric exp).. }o(numeric exp)

[56, 56]
43. <array name):: = (identifier) [11]
Each array name must be a string identifier if the
elements of the array are strings otherwise it must be a
plain identifier. Once again if an 'OF<type>' clause is
omitted, the types of the arrays are determined by
default—REAL arrays if the identifiers are plain,
variable length string arrays if the identifiers are string
identifiers. Whether the 'OF<type>' clause is present or
not, all array names in an identifier list must be of the
same type. For example

10 DIM MATRIX,IJ(A,B) OF
INTEGER; N AME$(1.. B)

declares three arrays, two two-dimensional integer arrays
MATRIX and IJ whose row subscript runs from 0 to A
and column subscript from 0 to B, and one one-
dimensional variable length string array NAMES whose
subscript ranges from 1 to B.

A DIM statement may occur in any segment of a
program. When it is executed, the appropriate arrays
will be set up. On exit from the segment to the calling
segment the arrays are lost so that on re-entry to the
segment one must execute a DIM statement once again
before the arrays will be set up. The values of the bounds
of the array may be different on each entry to the
segment; however, within a segment the bounds of an
array will remain fixed from the time that the DIM
statement is executed to the time that one exits from the
segment. The scope and uniqueness of variable and array
names is discussed in Section 2.9.

2.5 Variable and array declarations

Simple variables need not necessarily be declared if their
types are REAL or variable length string (with maximum
length equal to the default) as such variables will be
allocated automatically on encountering a reference to
the variable. However, if one does wish to declare such
variables, or if a variable has type other than these two
default types, variable declarations are used.

38. (variable declaration):: = VAR<identifier> [11]
{, (identifier)}?:(type) [11,31]

2.6 Reference to data items

A data item may be a simple variable in which case it
may be referred to directly by using its identifier. If the
data item is a pointer variable then using its identifier
will yield the pointer value contained in the variable,
while if the pointer variable identifier is followed by the
symbol "f\ the value of the data item pointed to by this
variable will be used, e.g.

110 VAR IPTR: POINTER TO INTEGER
reference to IPTR yields the pointer value,
reference to IPTR| yields the integer value pointed to.

2 9 2 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

If the data item is a record variable (say X), then
reference to X refers to the whole record; if one wishes to
access a field Y of record X, one writes 'X. Y'. Likewise
a data item may be an array element in which case it is
referred to by a subscripted variable and if the array is of
type pointer or record, this may in turn be followed by a
sequence of f s or .(field name>s. For example,

TYPE AREC = RECORD FIELD1 ;FIELD2:
POINTER TO AREC END

DIM ARECARR (10) OF POINTER TO AREC
ARECARR(I)f. FIELD2T. FIELD1

In the case of a string data item, a substring may be
accessed by specifying the first and last character
positions of the substring in square parentheses after the
string identifier, e.g.

STR$[2,I + 1]

Thus a variable is defined by the following BNF
definition:
44. <variable>:: = <array name>«expression> [43,48]
{, (expression) }™)<rest var> | [48, 45]

<identifier> <rest var> [11,45]
45. <rest var>:: = {<field or pointer part)}? [46]

{(substring part) }£ [47]
46. <field or pointer part):: =. (field name) 11 [33]
47. (substringpart):: = [(numericexp), [56]

(numeric exp>] [56]

2.7 Expressions

An expression consists of variables, constants and
function calls separated by operators and parentheses. A
BNF definition of an expression is as follows:

48. (expression):: = (simple exp)|(Bool exp) [55, 49]
49. (Bool exp)::=(Bool term) [50]

{OR(Bool term)};? [50]
50. (Bool term): := (Bool factor){AND [51]

(Bool factor) }£ [51]
51. (Bool factor): : = {NOT}i(Bool primary) [52]

52. (Bool primary):: = (variable) | [44]
(Bool constant) | (fn designator) [18, 62]
|«Bool exp»|(relation) [49, 53]

53. (relation):: = (simple exp) [55]
(relational op) (simple exp) [54, 55]

54. (relationalop):: = (= |(|> = |>| = |(>
55. (simple exp):: = (numeric exp) [56]

| (scalar exp) | [63]
(pointer exp)|(string exp) [65, 64]

56. (numeric exp):: = {(adding op) }i (term) [61, 57]
{(adding op>(term>}? [61, 57]

57. (term):: = (factor){(multiplying op) [58, 60]
(factor)}? [58]

58. (factor): : = (primary>{**(primary)}™ [59, 59]
59. (primary):: = (numeric var) | (number) | [71,13]

(fn designator) | ((numeric exp» [62, 56]
60. (multiplying op): : = *|/
61. (adding op) : : = +1—
62. (fn designator):: = (fn name) [72]

({(actual par>{,(actual par)}?^) [67, 67]
63. (scalar exp):: = (scalar var) [68]

|(scalar constant) |(fn designator) [19, 62]
(string exp):: = (string primary) [66]64.

65.

66.

67.
68.
69.
70.
71.
72.

{+ (string primary)}? [66]
(pointer exp):: = (pointer var>|

(pointer constant) |CREATE((type»|
ADDRESSOF((variable»|
(fn designator)

(string primary): : = (string var)
| (string constant) | (fn designator)

(actual par):
(scalar var):
(pointer var)
(string var):

= (expression)
= (variable)
: = (variable)
= (variable)

(numeric var):: = (variable)
(fn name):: = (identifier)

[69]
[20, 31]

[44]
[62]
[70]

[17, 62]
[48]
[44]
[44]
[44]
[44]
[11]

A summary of the operators is given in Table 1.
The functions CREATE and ADDRESSOF are two

pointer-valued functions whose effect is as follows:
(a) CREATE is equivalent to the 'new' function in

Pascal. It creates an instance of the data type specified
(using the concept of a 'heap' as in Pascal) and returns a
pointer to this item;

Table 1. Summary of operators in BPL expressions

Operator

NOT
AND
OR

= <>

-

/
••

+
-
+

Operation

Boolean NOT
Boolean AND
Boolean OR

comparison

•• compar ison

addition
subtraction
multiplication
division
exponentiation
unary plus
sign inversion
concatenation

No. of
operands

1
2
2

2

2

C
M

C

M

C
M

2
2
1
1
2

Type of
operands

Boolean
Boolean
Boolean

I scalar I both of
| string | same type
Ipointer J

I 3 3r | same type
[string J

numeric^
numeric >
numericj
numeric
numeric
numeric"!
numeric/
string

Type of result

Boolean
Boolean
Boolean

Boolean

Boolean

integer unless either or both
of operands is real

real
real
real if operand is real
otherwise integer
string

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 2 9 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

(b) ADDRESSOF takes as argument the name of a
simple variable, array element or record and returns the
address of this item.

In each case the type of object pointed to must match
the type expected (e.g. in an assignment statement, a
relation or a procedure call) and if it does not match, an
error must be flagged.

The standard functions available include all the
standard BASIC functions (SQR, LOG, EXP, INT,
LEN, MOD etc.) as well as SUCC(scalar exp)—yields
the value succeeding the value of the scalar expression;
PRED(scalar exp)—yields the value preceding the value
of the scalar expression.

2.8 Statements

The statements available in the language are as follows:

73. <statement part): : = <stm>|<proc or fn stm>|
[74, 131]

<type definition) | <variable declaration) [21, 38]
74. (stm): : = <assign stm>|<input-output stm>|

[75, 87]
<dim stm)|<control stm)|<rem stm) [39, 104, 128]

Assignment statement. The assignment statement ((assign
stm» enables a numeric, Boolean, string, scalar or
pointer expression to be assigned to the corresponding
destination. It also permits the copying of a record
variable to another variable of the same type or the
performance of certain array manipulations and the
assignment of the result to an array. It has the form

75. <assign stm): : = {LET}o(numeric dest) [76]
= (numeric exp) | [56]

76.

77.
78.
79.
80.
81.
82.

83.

84.

85.
86.

{LET}£<Bool dest) = <Bool exp>| ' [77,49]
LET}i<string dest) = (string exp>| [78, 64]
LET}o<scalar dest) = (scalar exp>| [79, 63]
LET}o(pointer dest) = (pointer exp>| [80, 65]

{LET}i(record dest) = (record var>| [81, 85]
{LET}o(array name) [43]

= {(array exp) | (numeric exp)} [82, 56] 92.
(numeric dest):: = (numeric var) | (fn name) 93.

[71, 72]
(Bool dest):: = (Bool var) | (fn name) [86, 72]
(string dest):: = (string var)|(fn name) [70, 72]
(scalar dest):: = (scalar var) | (fn name) [68, 72]
(pointer dest):: = (pointer var) | (fn name) [69, 72]
(record dest):: = (record var) [85]
(array exp): : = (array term) [83]

{ + (array term)}? [83]
(array term): : = (array factor) [84]

{•(array factor)}" [84]
(array factor):: = (array name) [43]

|TRANSPOSE((array name)) [43]
(record var): : = (variable) [44]
(Bool var): : = (variable) [44]

If the right hand side is a single array name, the contents
of the array are copied to the array on the left hand side.
If the right hand side is a numeric expression its value is
copied to every element of the array. If addition or
multiplication or TRANSPOSE is specified, array addi-
tion/multiplication/transpose is performed. If a real
expression is assigned to an integer or subrange variable,
the value is rounded to the nearest integer before
assignment. Any value assigned to a subrange variable is

also checked to ensure that it lies within the permissible
limits for the subrange type.

Input-output statements. Input-output statements are as
follows:

87. (input-output stm):: = (data statement) [88]
| (read statement) | (print statement) | [90,94]
(file statement) [101]
|(reset statement) [103]

As in BASIC, items of data may be stored in a DATA
statement which has the form

88. (data statement):: = DATA(data constant) [89]
{.(data constant)}^ [89]

89. (data constant):: = (numeric constant) | [12]
(string constant) | (scalar constant) | [17,19]
(Bool constant) [18]

There is only one input statement which has the form

90. (read statement):: = READ
{# (input channel) :}£ [91]
{USING BINARY: ̂ (destination list) [92]

91. (input channel):: = DATA|CONS|(numeric exp)
[56]

If DATA is specified, input is taken from DATA
statements (i.e. standard BASIC READ), if CONS,
input is taken from the console (equivalent to BASIC
INPUT) and if an expression with n as value, input is
taken from file n. If the channel specification is omitted,
DATA: is assumed.

Data is read from the specified source and unpacked
into the destinations specified in the destination list—
these may be simple variables, subscripted variables,
fields, arrays (in which case data items are read into each
element of the array) or records (in which case data items
are read into each field of the record) provided that all
destinations have the same type.

(destination list):: = (dest) {, (dest)}" [93,93]
(dest):: = (numeric var)|(Bool var>| [71, 86]

(string var) | (scalar var) | [70, 68]
(record var) | (array name) [85,43]

The USING option will be described under the PRINT
statement below. Note that one may not read a value into
a pointer variable nor into a record containing a field of
type pointer nor into an array of pointers.

The only output statement has the form

94. (print statement):: = PRINT
{# (output channel) :}£ [98]
{USING BINARY': }£(print list) [95]

95. (print list):: = {{(print item)}l
0 [96]

(print separator) }"{(print item>}£ [97,96]
96. (print item):: = (print exp) (print format)

[100,99]
|TAB((numeric exp» [56]
|NL((numeric exp>)|(record var) [56, 85]
| (array name) (print format) [43,99]

97. (print separator):: = ,|;
98. (output channel):: =CONS|LP|(numeric exp)

[56]
99. (print format):: = {: (numeric exp) [56]

{: (numeric exp) }£}£ [56]

2 9 4 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

100. <print exp>:: = <numeric exp>|<scalar exp>
[56, 63]

| <string exp> | <Bool exp> [64, 49]

If CONS is specified, output is sent to the user's console
(i.e. standard BASIC PRINT), if LP, output is sent to
the line printer, and if an expression with n as value,
output is sent to file n. If the channel specification is
omitted, #CONS: is assumed. When a PRINT state-
ment is executed the contents of the print list are sent to
the output device. As in BASIC the output medium is
divided into zones of lengthy characters (j is implemen-
tation dependent—typically 15). Whenever a print
separator is encountered in the print list, it is treated as
follows:

if it is a semicolon, it has no effect
if it is a comma, skip to the next zone boundary

The function TAB(X) causes the print position to move
forward to position Y where Y = X modulo the number
of character positions per line of the output medium. If
the print position is already beyond this position, the
TAB function'has no effect. The function NL(X) causes
the output to move X lines vertically. If the print list ends
on a separator, the line will not be printed and the next
PRINT statement will continue output on the same line;
otherwise the line will be printed and the output medium
moved to a new line. If any item in a print list overflows
over the end of a line, the line is printed and the
remainder of the print list is continued on the following
line.

For example

10 PRINT TAB(10);"RESULTS";NL(l);TAB(10);
" ",NL(2);TAB(10);

20 PRINT "NO'V'NAME"

will cause

WVWVWVVRESULTS
VVVVVVVVVV
VVVVVVVVVVNOWVNAME
to be output (where each occurrence of the symbol V is
used to denote a space in the final output). If an expression
or array name is used as a print item without a print
format, the system decides on the best format to use to
print the value(s)3. If an expression (or array name) is
followed by': n' where n is a numeric expression, then the
value of the expression (values in the array) is printed so
that it occupies n print positions (right justified). If it is
too long to fit into n positions the full number is printed
despite the number of positions required. If a numeric
expression e is followed by ':«:/«' where n and m are
numeric expressions, then the value of e is printed so that
it occupies n print positions and has m digits to the right
of the decimal point.

Note that just as pointer values cannot be read,
likewise they cannot be printed. Thus it is not permissible
to print the contents of a pointer variable, or a record
containing a field of type pointer, or an array of pointer
values.

The clause USING BINARY may be used with files.
If this clause is used in a PRINT statement, numeric
items are transmitted in binary instead of being converted
to decimal, scalar items are transmitted as binary
numbers representing their position in the list of scalar

constants, etc. If the clause is used in a READ statement
the system will expect binary values.

The file statement establishes a relationship between
a particular channel number and a file. It has the form

101. <file statement): : = FILE # (numeric exp>: [56]
(string exp) {, (mode) }£ [64,102]

102. <mode>:: = READ | WRITE | RE AD WRITE

When a file statement is executed the numeric expression
is evaluated and rounded to the nearest integer to give
the channel number. If a file is already assigned to that
channel, this file is closed. The string expression is
evaluated to give the new file name. This file is opened
and assigned to that channel. The mode specifies the
mode in which the file must be opened—it may be
omitted if the file is to be opened for reading.

The reset statement restores the data pointer to the
beginning of the first DATA block or to the beginning of
a file (corresponds to rewinding a magnetic tape file). It
has the form

103. <reset statement):: = RESET{<numeric exp)}o
[56]

Without the numeric expression this statement resets the
DATA block pointer, with it it resets the file pointer for
the appropriate file.

The Boolean function EOF(X) indicates whether or
not the file on channel X is currently positioned at the
end of the file.

Control statements. The control statements available in-
clude the following

104. <controlstm)::= (conditionalstatement)| [105]
<loop statement) | (multi-way branch) |

[110,119]
(exit statement) | (stop statement) [126, 125]

A conditional statement may be part of an IF-THEN
construct or part of an IF-THEN-ELSE construct.
There are two forms of IF-THEN construct, a single line
IF-THEN statement having the format

IF (Bool exp) THEN (simple statement) ENDIF

and a multi-line construct of form

IF (Bool exp) THEN {(simple statement)}^
{(stm)}?

ENDIF

where the IF part, the ENDIF part and each intervening
statement besides the simple statement appears on a
separate line with a separate statement number (the IF
part having the lowest statement number of the sequence
and the ENDIF part the highest). An IF-THEN-ELSE
construct also has two forms, a single line ELSE part:

IF (Bool exp) THEN {(simple statement)}£
{ < > } m{ < } o

ELSE (simple statement) ENDIF

and a multi-line ELSE part:

IF (Bool exp) THEN {(simple statement)}^
{<stm>}?

ELSE {(simple statement)}i
{(stm)}?

ENDIF

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 2 9 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

where the IF part, ELSE part, ENDIF part and each
intervening statement besides the two simple statements
appears on a separate line with a separate statement
number.

105. Conditional statement):: = <if stm>| [106]
<elsestm>|<endifstm> [107,108]

106. <ifstm>::=IF<Boolexp>THEN [49]
{<simple statement) {ENDIF}£}£ [109]

107. <else stm):: = ELSE{(simple statement)
{ENDIF}£}£ [110]

108. <endifstm)::=ENDIF
109. <simple statement):: = <assign stm>| [75]

<read statement) |<print statement) | [90,94]
<file statement) | <reset statement) | [101,103]
<return statement) | <call statement) | [137,135]
<stop statement) | <exit statement) | <dim stm) |

[125,126,39]
<if stm)|<on statement)|(while statement)|

[106, 120,111]
<repeat statement) | <for statement) [113, 115]

If the Boolean expression «Bool exp» is true, the
sequence of statements following the symbol THEN is
executed; if it is false then either the statement sequence
following the symbol ELSE is executed (if there is an
ELSE part), or control is passed to the first statement
after the ENDIF symbol.

There are three formats for loops: a while loop, a
repeat loop and a for-next loop. The while loop has the
form

WHILE <Bool exp) DO <loop id)
{<stm>}?

ENDWHILE <loop id)

where the WHILE part, the ENDWHILE part and each
intervening statement is placed on a separate line with
its own statement number. The effect of this statement is
to repeatedly execute the sequence of statements until
the Boolean expression is found to be false. If its value is
false initially, the statement sequence is not executed at
all. The loop identifier may be any plain identifier or the
null string and serves mainly to identify the two parts of
the loop. If a plain identifier is used, an inner loop may
not use as its loop identifier the same identifier as is used
by an enclosing loop.

The repeat loop has the form

REPEAT <loop id)
{<stm>}0"

UNTIL <Bool exp) FOR <loop id)

where the REPEAT part, the UNTIL part and each
intervening statement occurs on a separate line with its
own statement number. In this form of loop the statement
sequence forming the body of the loop is executed at least
once. On reaching the UNTIL part, the Boolean
expression is evaluated and if it is false, the body of the
loop is executed once more. This pattern is repeated until
on testing the Boolean expression it is found to be true.
As for the while loop, the loop identifier may be null, in
which case the keyword FOR may be omitted.

The for-next loop causes a set of statements to be
executed a number of times while a sequence of values is 110.
assigned to a variable (known as the control variable). It
has two forms. A numeric for-next loop has the format

FOR (numeric var) = (numeric exp)
(to-downto> (numeric exp) {STEP(increment)U

{(stm)}?
NEXT(numeric var)

where the FOR part, the NEXT part and the intervening
statements all occur on separate lines with their own
statement numbers. A loop of form

FOR v =
S
NEXTu

TO exp2 STEP exp3

will be interpreted as

LET tempfin = exp2
LET tempstep = exp3
WHILE (v - tempfiri)*tempstep (0 DO LOOP1

S
LET v = v + tempstep

ENDWHILE LOOP1

Since the representation of decimal fractions in binary
machines is necessarily approximate, the loop will
operate within the limits of such arithmetic approxima-
tions in the case of a REAL controlled variable. If the
STEP clause is omitted, an increment of 1 is assumed if
TO is used, and - 1 if DOWNTO is used.

A scalar for-next loop has the form

FOR(scalar var) = (scalar exp) (to-downto> (scalar
exp)

{(stm)}?
NEXT(scalar var)

The loop

FOR v = sexp, TO sexp2
S
NEXT*;

will be interpreted as

LET v = sexp,
LET temp = sexp2
WHILE v< = temp DO LOOP1

S
LET v = SUCC(t;)

ENDWHILE LOOP1

Similarly

FOR v = sexp, DOWNTO sexp2
S
NEXTw

will be interpreted as

LET i; = sexp,
LET temp = sexp2
WHILE v > = temp DO LOOP1

S
LET v = PRED(i;)

ENDWHILE LOOP1

Loops of all three types may be nested provided that the
loop id (if there is one) or controlled variable used in an
inner loop is different from any used in enclosing loops.

(loop statement):: = (while statement) | [111]
(endwhile statement) | (repeat statement) |

[112,113]

2 9 6 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

<until statement) |<for statement) |
(next statement) [114, 115, 116]

111. <while statement):: =WHILE(Boolexp> [49]
DO{(loop id>}£ [117]

112. <endwhile statement):: = END WHILE
{<loopid>}£ [117]

113. (repeat statement):: = REPEAT{(loop id)}i
[117]

114. (until statement): :=UNTIL(Boolexp) [49]
{FOR<loop id>}0 [117]

115. <for statement):: =
FOR<numeric var) = (numeric exp)
<to-downto> [56,118]
(numeric exp){STEP(numeric exp)}o| [56, 56]
FOR(scalar var) = (scalar exp) [63]
(to-downto> (scalar exp) [108,63]

116. (next statement):: = NEXT(numeric var) | [71]
NEXT(scalar var) [68]

117. (loop id): : = (plain identifier) [7]
118. (to-downto>:: = TO|DOWNTO

The multi-way branch has the form

ON(simple var)

{ CASE (expression)
{.. (expression)}^ .(expression)
{.. (expression) }J}?: (simple statement)

{(stm)}?
/ DEFAULT: (simple statement)! '
X {<stm>}? ; 0

ENDON(simple var)

where the ON Part, each CASE part, the DEFAULT
part (if one is present), the ENDON part and each
intervening statement besides the simple statements
shown occur on separate lines, each with its own
statement number. The simple var may be of type REAL,
INTEGER, string, subrange or scalar. If it is a numeric
variable (REAL, INTEGER or subrange), the expres-
sions must all be numeric, if it is a string variable, the
expressions must all be strings and if it is a scalar
variable, the expressions must be scalar constants.

The effect of the multi-way branch is to evaluate each
case expression ((expression)) and each case range
((expression).. (expression)) in turn until it finds a case
expression whose value matches the value of the (simple
var), or a case range such that the value of the (simple
var) lies within the range denoted by the two expressions.
If such a case is found, control is passed to the sequence
of statements immediately following the case expressions;
if the value of the variable does not match any of the
cases, control is passed to the default section if one is
present or otherwise to the statement after the ENDON.
If control is passed to one of the case alternatives,
execution continues until the next CASE, DEFAULT or
ENDON is encountered, at which point control is
transferred to the statement after the ENDON.

As with the loops the simple var in the ENDON
statement must match that in the ON statement.

119. (multi-way branch):: = (on statement) | [120]
(case statement) | (default statement) | [121, 122]
(endon statement) [123]

120. (on statement):: =ON(simple var) [124]

121. (case statement):: =CASE(expression> [48]
{.. (expression)}^,(expression) [48, 48]
{.. (expression) }l}o : (simple statement)

[48, 109]
122. (default statement):: = DEFAULT:

(simple statement) [109]
123. (endon statement):: = ENDON(simple var)

[124]
124. (simple var):: = (identifier) [11]

The STOP statement causes execution of a program to
cease.

125. (stop statement):: =STOP

There are two forms of exit statement, viz.

126. (exit statement):: =EXITL{(loop id>}£| [117]
EXITP{(procorfnname>}£ [127]

127. (proc or fn name):: = (proc name)|(fn name)
[132,72]

The first form (EXITL) causes an exit from the statically
enclosing loop specified to the statement immediately
following that loop. If the loop id is omitted, the
innermost enclosing loop with a null loop id is exited.
The second form (EXITP) is used to return to the most
recent invocation of the procedure or function specified,
unstacking the details of any procedures or functions
encountered in the interim. This statement assumes that
the procedure or function concerned has been entered
but not yet returned from at the time—if not an error will
be flagged on execution of the statement. If no procedure
or function name is specified the system will return to the
main program.

REM statement. As in BASIC the REM statement is
defined as

128. (remstm)::=REM{(character)}? [129]
129. (character):: = (non-quote character) \"

It is used to insert comments into a program.

2.9 Procedures and functions

In BPL one may define procedures and functions.
Statements related to procedures and functions are:

130. (proc or fn stm):: = (call statement) | [135]
(return statement) | (procedure statement) |

[137,131]
(function statement) |(endproc statement) |

[138, 134]
(endfn statement) [139]

A procedure definition has the form

(procedure statement)
{(variable declaration)}™
{(stm)}?
(endproc statement)

where

131. (procedure statement: : = PROCEDURE
(proc name)
{((formal par>{: (type) }£
{.(formal par>{:<type>}$}?)}£

132. (proc name):: = (plain identifier)

[132]
[133,31]
[133,31]

[7]

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 2 9 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

133. <formal par) : : = <identifier> [11]
134. <endproc statement): : = ENDPROC

and the procedure heading, the intervening variable
declarations and statements, and the endproc statement
all occur on separate lines with their own statement
numbers.

A procedure is called by a statement of form

135. <call statement):: = <proc name) [132]
{«actual par){,<actual par)}?)}' [136, 136]

136. <actual par) : : = <expression> [48]

A formal parameter may be a plain or string identifier,
depending on its type. If the type part is omitted, the
parameter is assumed to be variable length string if it has
a string identifier, or real if it has a plain identifier. When
the procedure is called, the actual parameters must
correspond in number, type and order to the formal
parameters in the procedure definition. If an actual
parameter is a single variable or an array name, the
address of this variable is passed across to the formal
parameter; otherwise the actual parameter is taken as an
expression, is evaluated and a pointer to this value
associated with the formal parameter. After assigning
actual parameters to formal parameters, the statements
in the body of the procedure are executed until a return
statement of form

137. <return statement):: = RETURN

or the end of the procedure (ENDPROC) is reached. In
either case control is returned to the statement after the
call in the calling segment (A segment being taken to be
a procedure, a function or the main body of the program).

A function definition is very similar and has the form
< function statement)
{<variable declaration)}"
{ } ?{
(endfn statement)

where
138. (function statement):: = FUNCTION

<fn name)({<formal par>{: <type)}o
[72,133,31]

{,(formal par>{ :<type)}i}?}i){OF <type>}£
[133,31,31]

139. <endfn statement):: = ENDFN
Within the body of the function definition, the function
identifier may be used (without parentheses following it)
as a destination, but any other access to the function
identifier implies a recursive call of the function and
must be so written. Within the function body there must
be at least one statement which assigns a value to the
function identifier, and at least one such statement must
be executed at every entry of the function. The final value
assigned to the function identifier is the value returned
by the function. A function name may be a plain or string
identifier depending on its type. As with formal para-
meters, if the 'OF<type>' clause is omitted, the function
is taken to be real or variable length string depending on
the function name. A function call has the form

<fn name)({<actual par){,<actual par)}?}o)

(see production 62) and may be used in an expression in
the usual way. As with a procedure, control is returned to
the calling segment on encountering a RETURN
statement or the ENDFN statement.

Variables and arrays may be classified into two types:
local or global. Any variable or array which is declared
in a variable declaration or DIM statement in a procedure
or function is local to that procedure or function and is
accessible only within that procedure or function seg-
ment. The name of such a variable or array must be
different from that of any other variable or array within
that segment. Any other variables, i.e. those declared in
variable declarations in the main body of the program
and those allocated automatically anywhere in a program
are taken to be global variables and are accessible
throughout the main body and in any procedure or
function in which the same identifier is not used as a
local variable. Once again the names of such variables or
arrays must be different from those of any other global
variables or arrays or type identifiers.

Procedures and functions may be called recursively.
Each procedure and function has its own set of statement
numbers which are independent of statement numbers
occurring in any other procedure or function or in the
main body of the program. In order to handle input and
editing of procedures, two modes of operation are used:
(a) normal mode—in which all indirect statements are
stored as part of the main program; (b) procedure
mode—in which all indirect statements are stored as part
of the current procedure or function.

Initially the system is in normal mode. If a PROCE-
DURE or FUNCTION statement is encountered then,
provided that the system is -not already in procedure
mode (for if it is, an error will be flagged), the mode is
switched to procedure mode. In procedure mode indirect
statements of the procedure body are entered. These may
be entered in any order provided that the PROCEDURE
or FUNCTION statement has the lowest line number
and the ENDPROC or ENDFN statement has the
highest. One remains in procedure mode until the
ENDPROC or ENDFN statement is encountered
whereafter the mode reverts to normal mode.

If one wishes to return from normal mode to a
procedure which has already been entered in order to
alter it, this is done by means of the command:

140. <editfncommand):: =EDITFN<procorfnname>
[127]

This causes the system to be placed in procedure mode
and the appropriate procedure is once again accessible.
One may extract oneself from procedure mode once again
by giving the appropriate ENDPROC or ENDFN
statement, this time either as a direct statement or as an
indirect one.

Note that DATA statements may not occur in a
procedure or function body—they may only occur in the
main body.

2.10 Commands

The standard commands include

141. (command) : : = <editfn command) | [140]
<new command) | <old command) | [142, 144]
<save command) | (replace command) |

[146, 147]
<run command) | [148]
<bye command) | (resequence command) |

[149, 150]

2 9 8 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

<list command) | [155]
(trace command) |<break command) | [156,158]
< vtrace command) j [166]
<untrace command) | <unbreak command) |

[157, 159]
<unvtrace command) | [167]
(compile command) | (continue command)]

[170,163]
(mode command) | [171]
(last command) | <unlast command) [164,165]

142. (new command):: = NEW(prog name) [143]
143. (prog name):: = (plain identifier) [7]

NEW causes the current program to be erased from main
memory in preparation for input of a new program.

144. (old command):: =OLD(prog name) [143]
{,(filename>}£ [145]

145. (file name):: = (plain identifier) [7]

OLD erases the current program from main memory and
fetches the program specified by (prog name) from the
file (file name) (or if no file name is given then the file
currently open is used).

146. (save command):: = SAVE {(file name>}£ [145]

SAVE stores the current program in a subfile of a file.
The name of the subfile into which the program is stored
is that given in the most recent NEW or OLD command.
The file used is either the one specified in the SAVE
command, or if none is specified, the file currently open.

147. (replace command):: = REPLACE
{(filename)}^ [145]

REPLACE causes the current program to replace the
contents of an existing subfile. The name of the subfile is
that given in the latest NEW or OLD command; the file
used is the one specified (or the one currently open).

148. (run command):: = RUN

RUN causes the current program to be interpreted.

149. (bye command):: =BYE

BYE causes an exit from the BPL system.

150. (resequence command):: =
RESEQUENCE{(procfnorall>}£ [151]
{(old first stm no){,(new first stm no>[152,153]
{,<stmstep>}J}J}i [154]

151. (proc fn or all):: = (proc or fn name) | ALL [127]
152. (old first stm no): : = (statement no) [2]
153. (new first stm no): : = (statement no) [2]
154. (stm step):: = (integer) [14]

RESEQUENCE changes the value of some or all of the
statement numbers of a program segment. If a procedure
or function name is specified the statement numbers of
that segment are resequenced; if ALL is specified all
segments are resequenced; if neither a procedure or
function name nor ALL is specified the statement
numbers of the main program are resequenced. Resequ-
encing starts at the old first statement number or if no
such statement number exists in the specified segment,
the next highest statement number is taken as the starting
point. If omitted, the old first statement number is taken
as one.

The new first statement number specifies the new value
of the statement number of the first line to be resequenced

(if omitted this defaults to 10). The statement step
specifies the increment in value between successive new
statement numbers (if omitted this defaults to 10).
Resequencing continues to the end of the segment.

155. (listcommand)::=LIST(arg> [160]
156. (trace command):: = TRACE(arg) [160]
157. (untrace command): :=UNTRACE(arg> [160]
158. (break command): :=BREAK(arg> [160]
159. (unbreakcommand>::=UNBREAK(arg> [160]
160. (arg>:: = {(procfnorall>}£ [151]

{(first line no){ - (last line no)}l
0}

l
0 [161, 162]

161. (first line no) : : = (statement no) [2]
162. (last line no): : = (statement no) [2]

For each of the above commands, if a procedure or
function name is specified, the command applies only to
that segment; if ALL is specified, it applies to all
segments; if neither, it applies only to the main program
body. If a single statement number is specified, the
command applies only to the program statement with
this statement number in the appropriate segment(s); if
a pair of statement numbers is specified, all statements
with statement numbers in the inclusive range of this
pair in the appropriate segment(s) are concerned; if no
statement number is specified, the command applies to
all statements of the appropriate segment(s).

LIST causes the specified statements to be listed,
TRACE sets the trace bits on the appropriate statements
to enable tracing,4 UNTRACE unsets the trace bits.
BREAK sets the break bits on the appropriate statements
causing execution to stop whenever it reaches such a
statement,4 UNBREAK unsets the break bits. If the
program has stopped at a break point, execution may be
continued by typing the command CONTINUE, defined
as

163. (continue command):: = CONTINUE

Another debugging command which is used in conjunc-
tion with TRACE is

164. (lastcommand):: =LAST(integer> [14]

Under normal operation the TRACE facility will give a
continuous trace of the execution of the program.
However, when the command LAST n is given, the trace
lines are not printed out but stored on a circular list with
capacity for n entries. On encountering an error or the
end of the program, the most recent n entries of this
TRACE are printed out. Similarly

165. (unlast command):: = UNLAST

is used to switch off this facility.

166. (vtrace command):: = VTRACE(varlist) [168]
167. (unvtrace command):: = UN VTRACE

{<varlist>}£ [168]
168. (varlist):: = (trace var){,(trace var)}?[169,169]
169. (trace var): : = (simple var>| (array name)

[124,43]

VTRACE sets the trace bits on the specified variables
and arrays. UNVTRACE unsets the trace bits; if no
variable list is specified, it unsets the trace bits on all
variables and arrays. If on execution a value is assigned
to a variable or an element of an array (in an assignment
statement, READ, FOR or NEXT) for which the trace

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 , 2 9 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

bit is set, the statement number, the name of the variable
and its new value are printed out.

170. <compile command):: = COMPILE
<prog name>{,<file name>}0 [143, 145]

COMPILE causes the current program to be compiled
and stored in the subfile specified under <prog name) in
the specified file (or if no file is specified, the current file).

The form of the MODE command is given by:

171. <mode command):: = MODE declaration mode)
[172]

172. declaration mode):: = DEF | LIST | NOLIST

This command sets the mode (as described in Section
2.2) according to whether all variables must be declared,
or variable declarations may be omitted and the variables
automatically allocated and listed at the end of each
segment, or variables are allocated automatically without
such a listing.

3. EXAMPLES

Three examples of simple BPL programs are given in
Figs 2-4. Figure 2 contains a simple program for playing
a simulated game of craps. This is based on the example
of Dwyer.5 The function RND is used to generate
random numbers—RND(— 1) initializes the random
number generator and generates a starting value (which
should be different each time) and RND(O) returns the
next random number (in the range 0 to 1, excluding 1).
Figure 3 illustrates a simple file application—updating a
master file with amendments contained in an amendment
file, while Fig. 4 shows how a monkey puzzle sort may be
implemented.

2
3
4
10
20
30
40

10
20
30

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

REM •••
REM •«
REM ••
RED

SIMULATED CRAPS GAME AS DESCRIBED IN •
CREATIVE COMPUTING,VOL.3,NO.6,PP.83-84(1977)•

TYPE WINSTATUS=(WIN,LOSE,UNCERTAIN)
TYPE ROLLTYPE-2..12
VAR RESULT:WINSTATUS
VAR ROLL1,ROLL2:ROLLTYPE

FUNCTION ROLLC) OF ROLLTYPE
LET ROLL=INT(6»RND<0)+1)+IHT(6»RND(0)+1)
ENDFN

LET X=RND(-1)
PRINT'SIMULATED CRAPS GAME - YOU START WITH $10"
LET YOURMONEY=10
REPEAT

PRINT"HOW MUCH DO YOU WANT TO BET?"
READ0CONS:BET
LET ROLL1«ROLL<)
PRINT"ROLL IS";ROLL1
ON ROLL1

CASE 4,S)6)8,9,10:PRINT "YOUR POINT IS";ROLL1
LET RESULT=UNCERTAIN
WHILE RESULT=UNCERTAIN DO

LET ROLL2=ROLLC)
PRINT"NEXT ROLL IS";ROLL2
IF ROLL1=ROLL2 THEN LET RESULT=WIN
ELSE IF ROLL2=7 THEN LET RESULT=LOSE ENDIF
ENDIF

ENDWHILE
CASE 2,3,12:LET RESULT=LOSE
CASE 7,11: LET RESULT=WIN

ENDON ROLL1
IF RESULT-WIN THEN LET YOURM0NEY=YOURMONEY*BET

PRINT"YOU WIN! YOU NOW HAVE J";YOURMONEY
ELSE LET YOURMONEY=YOURMONEY-BET

PRINT "TOUGH..YOU LOSE. YOU NOW HAVE J" ;YOURMONEY
ENDIF
PRINT"WANT TO PLAY AGAIN?"
READ*CONS:ANSWERS

UNTIL ANSWER! <> "YES"
PRINT'YOU ENDED UP WITH J";YOURMONEY
END

.1 REM »••»•••••«•••••»»••••«•»•••••«••»«••*»»»»»»»••
2 REM •• PROGRAM TO READ IN FILE OF AMENDMENTS TO ••
3 REM •• WAGES OR OVERTIME HOURS AND UPDATE A ••
4 REM •• MASTER FILE CONTAINING EMPLOYEE RECORDS ••
5 REM •••••••••••••«•••«•»••»»•••••»•»••••••••••••••
10 TYPE AMENDT=(WAGE,OVERTIKE)
20 TYPE EMPREC=RECORD EMPNO:INTEGER;NAMEJ:STRING(20);

OTIME;BASICPAY END
30 TYPE AMENDREC=RECORD NO: INTEGER;

ON AMTYPE:AMENDT
CASE WAGE:NEWPAY
CASE OVERTIME:NEWOT
ENDON
END

40 VAR EMP:EMPREC
50 VAR AMEND :AMENDREC
60 VAR NOERRYET:BOOLEAN
70 VAR AMENDFILE,MASTER,NEWMASTER:INTEGER
120 NOERRYET«TRUE
130 FILE#1:"AMENDFILE"
140 FILE#2:"MASTERFILE"
150 FILE#3:"NEWMASTER",WRITE
160 AMENDFILE-1
170 MASTER"2
180 NEWUASTER-3
190 READ#MASTER:USING BINARY:EMP
200 WHILE NOT EOF(AMENDFILE) AND NOERRYET DO LOOP1
210 READ#AMENDFILE:AUEND
220 WHILE EMP.EMPNOoAMEND.NO AND NOT EOF(MASTER)DO
230 PRINT#NEWMASTER:USING BINARY:EMP
240 READ#MASTER:USING BINARY:EMP
250 ENDWHILE
260 IF EOF(MASTER) THEN
270 PRINT"INVALID EMPLOYEE NO";AMEND.NO
280 NOERRYET=FALSE
290 ELSE ON AMEND.AMTYPE
300 CASE WAGE: EMP.BASICPAY=AMEND.NEWPAY
310 CASE OVERTIME: EMP.OTIME=AMEND.NEWOT
320 ENDON
330 ENDIF
340 ENDWHILE LOOP1
350 REM IF STILL MASTER LEFT,COPY TO END OF FILE
360 WHILE NOT EOF(MASTER)DO
370 PRINT#NEWMASTER:USING BINARY:EMP
380 READ#MASTER:USING BINARY:EMP
390 ENDWHILE
400 REM WRITE LAST RECORD
410 PRINT#NEWMASTER:USING BINARY:EMP
420 END

Figure 3. Program for updating a master file with amendments
contained in an amendment file.

10
20
30
40
30
60
70

80
90

10
20
30
40
50
60

10
20
30
40
50
60
70
80
90
100
110

100
110
120
130
140
150
160
170

REM
REM
REM
REM
REM

THIS PROGRAM READS IN N NUMBERS AND
SORTS THEM INTO ASCENDING ORDER USING A
MONKEY PUZZLE SORT

TYPE TREEREC=RECORD LLINK:POINTER TO TREEREC;
INFO; RLINK:POINTER TO TREEREC END

TYPE TREEPTR-POINTER TO TREEREC
VAR P,ROOT:TREEPTR

PROCEDURE TRAVERSE(Q: TREEPTR)
REM THIS TRAVERSES A BINARY TREE IN POSTORDER
IF (Jt.LLINK<> NIL THEN TRAVERSE(Qt.LLINK) ENDIF
PRINT Qt.INFO
IF Qt.RLINK <> NIL THEN TRAVERSE(Qt.RLINK) ENDIF
ENDPROC

PROCEDURE INSERT(Q:TREEPTR,X)
REM THIS INSERTS AN ITEM X INTO A BINARY TREE
IF Q - NIL THEN P:-CREATE(TREEREC)
P».LLINK - NIL
Pt.RLINK - NIL
Pt.INFO - X
Q - P
ELSE IF X<Qt.INFO THEN INSERT(Qt.LLINK,X)
ELSE INSERT(<Jt.RLINK,X) ENDIF
ENDIF
ENDPROC

ROOT - NIL
READ N
FOR I • 1 TON
READ NUMBER
INSERT (ROOT, NUMBER)
NEXT I
TRAVERSE(ROOT)
END

Figure 2. BPL program for simulating the game of craps.

Figure 4. BPL program for performing a monkey puzzle sort.

An interpreter for BPL is currently being implemented
in Pascal for an ICL 1900 computer. Work is also being
done on a compiler for the language (also in Pascal).

Since the initial submission of this paper several other
languages have appeared which have similar character-
istics, e.g. COMAL. These languages have varying
degrees of complexity, and slightly differing objectives.
For example, the chief objective in the design of BPL is
to provide a language which can be taught at two levels—
at the lower level, a subset of BPL is very similar to a
structured form of BASIC, at the higher level, the

3 0 0 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

complete language is an interactive language which is
probably more powerful than Pascal.

In view of this common interest it might be useful to
establish a working group to study developments in this
area.

Acknowledgements

The author wishes to thank the referee for his helpful suggestions, and
Marianne Collett, Peter Clayton, Gavin Hall and Grant Pote for their
respective parts in implementing the language. The work was done at
Rhodes University, Grahamstown, South Africa.

REFERENCES

1. J. A. N. Lee, The formal definition of the BASIC language. The
ComputerJournal15,37-41 (1972).

2. J. R. R. Tolkien, The Lord of the Rings. Part II: The Two Towers.
Methuen, Toronto (1971).

3. G. M. Bull, W. Freeman and S. J. Garland, Specification for
Standard BASIC. NCC Publications, Manchester (1973).

4. G. M. Bull, Dynamic debugging in BASIC. The Computer Journal
15 (No. 1), 21-24 (1972).

5. T. A. Dwyer, The 8-hour wonder. Creative Computing 3 (No. 6),
78-85(1977).

Received November 1978

© Heyden & Son Ltd, 1982

APPENDIX 1

List of reserved words for BPL statements

AND
ARRAY
BINARY
BOOLEAN
CASE
CONS
DATA
DEFAULT
DIM
DO
DOWNTO

ELSE
END
ENDFN
ENDIF
ENDON
ENDPROC
ENDWHILE
EOF
EXITL
EXITP
FALSE

FILE
FOR
FUNCTION
IF
INTEGER
LET
LP
NEXT
NIL
NL
NOT

OF
ON
OR
POINTER
PRED
PRINT
PROCEDURE
REAL
READ
READWRITE
RECORD

REPEAT
REM
RESET
RETURN
STEP
STOP
STRING
SUCC
TAB
THEN
TO

TRANSPOSE
TRUE
TYPE
UNTIL
USING
VAR
WHILE
WRITE

List of reserved words for commands

ALL
BREAK
BYE
COMPILE

CONTINUE
DEF
EDITFN
LAST

LIST
MODE
NEW
NOLIST

OLD SAVE UNTRACE
REPLACE TRACE UNVTRACE
RESEQUENCE UNBREAK VTRACE
RUN UNLAST

APPENDIX 2

Syntax diagrams for BPL

The comments regarding assignment of and checks on
type which occur above some of the rectangular boxes
are not exhaustive but do give some additional informa-
tion which may assist the reader.

nin loop

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 0 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

type • numeric type - numeric

|—*(USING BIHARY?) If f Invariable |—y

\— 1\ identif er | 1—*\jj f *\

dependent stm

type - loop id

plain id h

type * Boolean

expression

type - loop id

plain id

J >j variable h"

first expression: t*-type(t"numeric, scalar or string
subsequent expressions: type-t

r—w—fCr/H simple stm

type - numeric, scalar or string variable

identifier

3 0 2 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982
© Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

typi-proc nase

type •• proc or fi

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25. NO. 3,1982 3 0 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

variant part

*@H identif

simple

r~*| identifier hOtj

<DEFAUIT>QJ 1

|̂ -«j variant part }—

format

type - fn name

identifier

type • numeric

expression

T* expression

hPH
type • numeric

type+• type of function

type *• Boolean

type *• Boolean

type - scalar const

plain id

type * scalar

type •*- pointer

*^^ arT non-quote char J"]—Kll/"
"TTN type *• s tr ing

" ^ nu;
type *• numeric

3 0 4 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

THE PROGRAMMING LANGUAGE BPL

integer

L Q — < | integer ' l<£>

integer

statement number

-af non-sero digit)~

integer

^ . -J

rel op

integer

array exp
type - arr«y

identifier f-

scalar exp

pointer exp

string exp

n—r
type » array I JL JL
| identifier |^>Q>J © Q

type - acalar

type • scalar

type • scalar

fn call

type • pointer

type • pointer

| variable

type - pointer

1 f n call

type • string

type • string

type • atrinft

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25. NO. 3,1982 3 0 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

M. H. WILLIAMS

type - numeric
or scalar

identifier —*\£i/vC' expression ~f*\iy

9

type *• type of array

identifier
type *• type of identifier

rest
variable

rest variable

type - string

ho-
type - pointer

type *-type pointed to

identifier

type *• type of field

AN INVENTORY OF SOFTWARE PACKAGES FOR INFORMATION WORK

In early Fall 1981 an announcement was made that
COSTI (National Center of Scientific and Technological
Information) has contracted with UNESCO, for the
preparation of an inventory of software packages written
for information work. Developers and vendors of such
packages were invited to register with COSTI, in order
to be put on the mailing list to receive a detailed
questionnaire.

The response to our announcement has been over-
whelming. More than 150 packages written for main-
frames, minicomputers and microprocessors are already
on file and more letters are coming in daily. The
questionnaire, authorized by an international panel set
up by UNESCO, was sent to all respondents early in
1982.

Some questions naturally arise during this initial data
collection phase. The inventory intends to describe all
software packages which serve or may serve in textual
and alphanumeric information work, library and docu-
mentation systems, SDI and online searches, information
and fact storage, retrieval and distribution, text process-
ing and publication, etc. In order to keep the inventory
within reasonable limits, only systems which will be

installed and/or be operational by December 1982 will be
incorporated. Systems which are produced by non-
commercial institutions are actively sought out. There is
a special interest in packages which are potentially
available and transferable to developing countries.

The inventory is scheduled for publication by the end
of 1982. Considerable work is going into the preparation
of a format to maximize its usefulness. There will be a
number of tables which will enable the user to identify
the packages which are closest to his specific require-
ments. There will be a concise summary for each package
detailing its principal features, availability, costs, etc.

Any software producer or vendor who has not yet
registered with COSTI is kindly invited to do so, always
considering that this inventory will be a very useful tool
in advancing the state-of-the-art of information work.

For more details, please contact the National Center
of Scientific and Technological Information (COSTI),
P.O. Box 20125, Tel-Aviv 61201, Israel, phone number
03-297781/292766, telex number 3-2332 CSTIIL.

In your initial reply, please refer to UNESCO Inventory
of Software Packages and indicate name(s) of packages(s)
to be submitted, with full mailing details.

3 0 6 THE COMPUTER JOURNAL. VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/289/369715 by guest on 10 April 2024

