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This paper presents a method of right-to-left code generation for arithmetic expressions given in the postfix notation.
The number of generated instruction lines is equal to the one obtained from the binary tree structure. However, the
right-to-left code generator is faster and requires less memory than the code generator from the binary tree. These
results were obtained by introducing a vector, called vector-generatrice, assigned to every postfix string. A translation
grammar which generates the postfix string and its associated vector-generatrice is defined. An experiment has been
performed over a set of arithmetic expressions to compare the right-to-left code generator and the code generator from
the binary tree.

INTRODUCTION

In this paper, we shall concentrate on the design of an
efficient code generator which produces an assembly
language code for arithmetic expressions. The input to
the code generator is an arithmetic expression. The
output is an equivalent assembly language program. We
would like the resulting assembly language program to
be good under some cost function such as the number of
assembly language instructions, or the number of memory
fetches. The cost function of the code generator depends
only on the internal representation of expressions in
compilers. The well-known internal structures are par-
enthesized notation, quadruples, triples, postfix and
prefix notation, and the binary tree. The parenthesized
form of expressions was used in the first FORTRAN
compilers.' This is not a suitable internal structure for an
efficient code generation. In particular, the transforma-
tion to such a structure is not compatible with the design
of modern compilers, as far as a single processor is
concerned. Stone gives the one-pass algorithm which
transforms the expressions into a parenthesized form for
parallel processors.2 In quadruple notation, the opera-
tions appear in the order in which they are to be executed.
The main problem is to keep track of the contents of the
accumulator, in which all arithmetic is done at run-time,
in order to eliminate unnecessary load and store instruc-
tions.3 The main disadvantage of quadruples is that a
description of each temporary value is maintained
throughout the compile-time. This problem does not exist
in the triple notation first introduced by Sheridan.4 We
do not need a description of each temporary when using
triples; it need only be maintained while code which
references it is being generated. If the ranges of
temporaries are pairwise disjoint or nested, we can use a
compile-time stack to hold descriptions of temporaries;
otherwise, a more complex scheme will be necessary to
allocate and delete space for them. If the triples are not
going to be processed once the code has been generated,
we can replace the triple by a description of its result.
Consequently, we would not need a stack, and we would
not have to delete descriptions. Obviously, the handling
of temporaries in triple notation is more complex than in
the quadruple notation. Thus, the code generator from

the quadruple notation is more efficient. On the other
hand, the memory space for triples is smaller since they
require three fields per entry. The triples are more
suitable for the code optimization since they can easily
be rearranged for this purpose. Furthermore, the code
generated from the triple notation generally uses fewer
temporaries.

A number of languages are based on a concept known
as a Polish notation; this has advantages for machine but
it is difficult for human digestion. It is so called because
it was first introduced by the Polish philosopher Jan
Lukasiewicz in connection with the formulae of symbolic
logic. A variation of it is called the reverse Polish
notation. These notations are also known as the prefix
and postfix notation, respectively.1 The transformation
to prefix notation, and the code generation from it,
requires the analysis of expressions from right to left.
This differs from the previously mentioned methods
where the analysis is performed from left to right. In
postfix notation, the analysis is also performed from left
to right. Formally, the difference between postfix and
prefix notation lies in the operator structure; reverse
Polish notation is based on postfix operators—<operand>
<operand> <operator>—while direct Polish notation is
based in a similar way on prefix operators—<operator>
<operand> <operand>. Since the writing and interpreta-
tion of expressions are usually performed from left to
right, the prefix notation is inappropriate for the code
generation (with the exception of APL, for example).
Compared to the triple notation, the postfix notation
requires less space and generates fewer temporaries; the
code generation from it is very simple.3'5 However, the
postfix notation is not a structure particularly suitable for
code optimization either at the single expression level or
at the level of a group of expressions.

Code generation from a binary tree is probably the
most discussed method in this field. Anderson has
described an algorithm for the code generation for a one-
register machine.6 Nakata proposed a similar algorithm.7

The number of registers required to generate code for an
expression tree has been investigated by Nakata, Red-
ziejowski, and Sethi and Ullman.7"9 Beatty10 and
Frailey11 discuss extensions involving the unary minus
operator. The code generated from the binary tree is the
shortest-length program to compute a given expression.
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This was shown by Aho and Ullman.12 Besides the
shortest-length program, the binary tree uses fewer
temporaries and offers a more suitable structure for the
straight-line code optimization than the postfix notation.
On the other hand, the postfix notation requires less
space and is more efficient from the transformation and
code generation point of view.

There are other works dealing with the problem of
register allocation in a sequence of expression evaluations
(e.g. Refs 13-15), translating arithmetic expressions into
code for parallel computers (e.g. Refs 2, 16—19), or basic
algorithms for the code generation.20"23

This paper presents a new algorithm for the code
generation without optimization. The work was moti-
vated by the results of the investigation of the distribution
of executable statements,24 and by the examination of
works concerning the code optimization. It was found
that the assignment and IF statements together have over
60% of static distribution.24 Furthermore, the existing
internal structures of expressions are not particularly
suitable for the code optimization and register allocation
at the single expression level or at the level of a group of
expressions. With respect to other algorithms in this
field, the proposed algorithm gives faster code generation
than the binary tree but for the same length of the code.
Nevertheless, the internal structure of expressions is
suitable for the code optimization and register allocation.
It offers an opportunity to investigate the efficient code
optimization techniques.

The internal structure of an expression is composed of
two substructures: (1) well-known postfix notation, and
(2) vector-generatrice (VG), describing the postfix nota-
tion in a certain way. Its generation is discussed through
a translation grammar for arithmetic expressions. Al-
though the transformation to such an internal structure
is performed from left to right, the code is generated
from right to left. The algorithm is presented in Algol-
like form and discussed. It is proved that the algorithm
produces the code of the same length as the binary tree.
All considerations are based on a single accumulator
machine.

Theoretical results are illustrated by a worked and
output example. The output example is extracted from
an experiment done for a set of arithmetic expressions to
examine the characteristics of the algorithm and compare
them to that obtained with the binary tree. It was found
that the proposed algorithm is about 20% faster. When
the transformation to internal structure is taken into
account, this time gain reduces to 13%. The required
memory space and number of instructions necessary to
realize the transformation and code generation are
approximately the same.

VECTOR-GENERATRICE

In the generation of VG-based data structure we shall
use the concept of the translation grammar.25 A
translation grammar is a context-free grammar in which
the set of terminal symbols is partitioned into a set of
input symbols and a set of action symbols. The action
symbols are used to represent more general ad hoc
routines. The strings in the language specified by a
translation grammar are called activity sequences.

Let a translation grammar GT be given generally by

GT = (IS, AS, NS, P, SN) (1)
where IS = input symbols, AS = action symbols, NS =
nonterminal symbols, P = productions and SN = start-
ing nonterminal.

The following metanotation is used for GT:

<, > = matched pair of angle brackets enclosing a
nonterminal,

-» = production operator,
{,} = matched pairof curly brackets enclosing an action

symbol
An example of a translation grammar is:
IS = a,b,c

AS = x, y, z
NS = 04>,
SN = (A)
(1) P = <A
(2) </!> -»{z}
(3)
(4)

For the input sequence abc, the activity sequence is:

a{z}{x}b{y}c.

It is obtained by the following parsing:

(1) </!>-> a<y4>{*}<5>
(2) (A}-*a z {x}<5>
(3) W - f l z {*}<fl>c
(4) (A}-*a z {x}b{y}c
If each action symbol represents a routine which outputs
the symbol within the curly brackets (and possibly
performs anything else), then a given translation gram-
mar is intended to describe the translation of input
strings into output strings. For the given example, the
output string is zxy. It is readily derived from the
obtained activity sequence. This concept of the transla-
tion grammar will be used in the derivation of VG-based
data structure.

As the first step toward triis goal, we devise a simplified
translation grammar for arithmetic expressions:

AS = /! N,, + , ' - ! ' # , * , / , $ („ denotes the empty
symbol)
NS = <S> = (start expression)

<£> = (expression)
<r> = (term)
</>> = (primary)
<F> = (variable)
<7V> = (unsigned number)

SN = <5>
()
(2)
(3)
(4) <> <>
(5) < r > - < r > *</»>{*}
(6) <7->-><r>/</>>{/}
(7) <r> - <P> (2)
(8)
(9)

(10) {}
(11) </>> -» <iV> {N}
(12) »
(13)
(14)
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It should be noted that the unary operators + and #
(unary minus) are given the highest precedence. Each
operator can be followed by a string of unary operators.
The input sequences are restricted to symbols / (repre-
senting a variable), iV (representing an unsigned number),
(,) and + , —, *, / only for the sake of the clear and
concise presentation of the algorithm. The function
designator and the operator f could be readily included
in the grammar. Their presence or absence does not
influence the final conclusion on the algorithm
characteristics.

If we assign to each action symbol an action routine
for performing special functions, then the application of
the translation grammar given by Eqn (2) to an input
sequence will produce a standard postfix string with
associated VG. There is a very simple practical expla-
nation of VG. Let E{ be an arithmetic expression in the
infix notation, transformed to postfix string Ep:

z . . . bjam+lam+2.. .am+ibJ+1bj+2...
. . . a m + i + n a m + i + n + 1 . . .

(3)

. . . catVGNcs+1 (8)

where ax, a2, a3, . . . am, . . . am+i+M+l are the operands
(or their addresses), and bt,b2, b3,... bj,... bj+k+N the
operators (or their indices in delimiter table). The dollar
sign $ denotes the end of Ep, i.e.

am+i+M+i — $ (4)

Using Eqn (3), VG can be generated in the following
way. Firstly, we define the substrings of Ep. A substring
is a sequence of all successive operands or operators. If
the number of operand substrings is Ni, the number of
operator substrings N2 must be

N2 = N, (5)

The substrings of Ep in Eqn (3) are:
axa2 . . . am (operands)
btb2 . . . bj (operators)
am+iam + 2 . . . am+i (operands)
bji + 1 bj+2.. . bj+k (operators)

am+i+tflm+i+n+\ • • • am+i+M (operators)
bj+k+<fij+k+q+i • • • bj+k+N (operators)
am+i+M+i (operand)

The total number of substrings JV3 (including the
endmarker as an operand substring) is

N3 = (6)

By assigning to each substring of operands a successor
substring of operators, one obtains a pair of connected
substrings CS,, where / is its ordinal number.

For example, a,a2 . . . amblb2 . . . bj forms a pair of
connected substrings CSt . axa2... am represents a
substring of operands followed by a successor substring
of operators bxb2... bj. The number of pairs Â cs is

= N, (7)
For each pair of connected substrings we create a 3-tuple
(JV,0, N?, Pi), where Â ,° = number of operands in CS,,
iV,B = number of operators in CS,, P, = pointer to
beginning of CS, in Ep. For CSj, the 3-tuple is (m,j, 1)
because iV,0 = m, Nf =jand Pt = I. VG is formed now
by concatenating all 3-tuples of connected substrings
by their ordinal numbers into a vector of dimension

where cat is the concatenation operator. The endmarker
is considered as an operand substring connected to a
dummy operator substring. Its corresponding 3-tuple is
given by (1,0, PNcs+i).

ACTION ROUTINES

In generating VG-based data structure, the action
routines play the principal role. In order to describe
them, we associate with each action symbol a mnemonic
name representing a routine intended to perform a
particular function:

Action symbol
{}
{/}w
{+}

1
I

# }
*}
/}
<$}

Name of routine
NULL
VARIABLE
UNSIGNED- NUMBER
PLUS
MINUS
UNARY_MINUS
MULTIPLY
DIVIDE
END-MARKER

We shall proceed now with the presentation of these
routines as Algol procedures.

NULL
procedure NULL(VG, currem_VG_index, currentJndex_of_output_string);
integer array VG;
integer current_VG_index, current_index_of_output_string;

begin integer i, n;
comment: because the empty symbol is to be outputted, no output

operation is performed;
current_VG_index \— 1;
current_index_of_outputjtring '= 1;
comment: reset VG array;
for i := 1 step 1 until n do
KC[i]=0;
VG[3) = l;
end NULL;

The routine NULL resets the space allocated to VG
(defined as a vector), and initializes the indices of the VG
and output string array {Ep).

VARIABLE
procedure VARIABLE (VG, current_VGJndex, class_of_j>revhusly_outputted_

_symbol, output_string, current_index_of_output_
jstring);

integer array VG; string array output_string; integer current_VG_
index, class_of_
j>reviously_
outputted'_symbol,
currentJndex_of_
output _string;

begin
ttcurrenl_VG_index^ 1 / \ class_of_previously_outputted_

symbol it 0
then

begin
VG [current_VG_index + 5] = VG [current_VG_index] +

+ VG [current_VG_index + 1] +
+ VG [current_VG_index + 2];

current_ VGJndex := current_ VGJndex + 3;
end;
comment: output the action symbol / into the output string array;
outputjtring [current Jndex_of_output_string} ='/';
currentJndex_oj^output^string '= current'_index_of_output_

_slring + 1;
comment: count the number of outputted symbols of the

class 0;
VG [current_VG_index] = VG [current_VGJndex\ + 1;
class_of_previously_outputted_symbol '= 0;

end VARIABLE;
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The routine VARIABLE performs three functions: (1)
compares the class of the previously outputted symbol to
the current one (/ or N) for current-VG-index ^ 1; the
class of outputted symbol is classuof (/) = 0, class-of
(N) = 0, class-of (other action symbols) = 1; (2) outputs
the action symbol / into the output string array (denned
as a vector); (3) counts the number of outputted symbols
of the class 0.

UNSIGNED-NUMBER
The body of this procedure is identical to VARIABLE

except for the statement

output-string [current -index-jofuoutputstring] = ' / ' ;

which has to be replaced by

output-String [current Jmdex-o)loutputstring] = W ;

PLUS
procedure PLUS(VG, current_VGJndex, output.string, currentJndex_

_of.outputjtring,class_ofpreviously_outputled_
.symbol);

integer array VG; string array output.string; integer current.VG.
Jndex, current_
Jndex.of.output,
.string, class_
_ofpreviously _
_outputted_
.symbol;

begin
comment: output the action symbol + into the output string array;
output_string [current_index_of_output_string\ = ' + ' ;
currentJndex.of .output.string '= current Jndex.of .output.string + 1;
comment: count the number or outputted symbols of the

class 1;
VG [current_VGJndex + 1] = VG [current_VG Jndex + 1] + 1;
class.ofpreviously.oulputtedjymbol '= 1;

end PLUS,

The routine PLUS performs two functions: (1) outputs
the action symbol + into the output string array, and (2)
counts the number of outputted symbol of the class 1.

MINUS
The body of this procedure is identical to PLUS except

for the statement

output-String [current-indexuof-joutputstring] '=' + ' ;

which has to be replaced by

output-string [current-indexuof-outputstring] >=' — ';.

UNARY MINUS
The body of this procedure is identical to PLUS except

for the statement

output-string [current-indexuofuoutputstring] = ' + ' ;

which has to be replaced by

output-string [currentJmdex-jof-joutputstring) = ' # ' ; .

MULTIPLY
The body of this procedure is identical to PLUS except

for the statement

output-string [currentJindex^of-outputstring] = ' + ' ;

which has to be replaced by

output-string [current Jndex-of-outputstring\ ='*';.

DIVIDE
The body of this procedure is identical to PLUS except

for the statement

output-string [current-indexuof-outputstring] = ' + ' ;

which has to be replaced by

output-string [current-index-of-outputstring\ = '/';.

END MARKER
procedure END_MARKER(VG, current_VG_index, output_string,

current Jndex.of.output .string);
integer array VG; string array output.string; integer current_

Jndex_of_
_output_string,
current_VG_
Jndex;

begin
comment: output the action symbol $ into the output

string array;
output .string [currentJndex.of .output.string] '= '$ ' ;
comment: terminate VG by a special three words marker;
current_VG_index'= current _VGJndex + 3;
VG [current_VGJndex] = 1;
VG [current_VG Jndex + 1] = 0;
VG [current_VGJndex + 2)= VG [current.VG Jndex - 1] +

+ VG [current J/G Jndex - 2] +
+ VG [current_VG Jndex - 3];

end END_MARKER;

It is obvious that the procedures VARIABLE, UN-
SIGNED-NUMBER, and the procedures PLUS, MI-
NUS, UNARY-MINUS, MULTIPLY, DIVIDE can be
replaced (in the domain of realization) by two procedures:
(1) OPERAND, and (2) OPERATOR. This is obtained
easily by including the output symbol in the list of formal
parameters.

OPERAND
procedure OPERAND (VG, current.VGJndex, class_of__previously.

.outputtedsymbol, output.string, current.
_index_ofjoutput_string, output .symbol);

integer array VG; string array outputjtring; integer current.VG.
Jndex, class.
_ofpreviously.
_outputted_
.symbol, current.
Jndex.of.
.output_string;

string (1) outputjymbol;
begin

if current_VG'.index # 1 A class.ofjreviously.outputled.
.symbol ?4 0

then
begin

VG [current_VG'.index + 5] = VG [current.VG.index] +
+ VG [current.VGJndex + 1] +
+ VG [current.VGJndex + 2);

current.VG Jndex == current. VG Jndex + 3;
end;

comment: output the action symbol (outputjsymbol) into
the output string array;

output.string [current.indexj>j".outputstring] '= output.
symbol;

current Jndex.of .outputjtring'.— current Jndex.of.
.output.string + 1;

comment: count the number of outputted symbols of the
class 0;

VG [current.VGJndex].= VG [current.VGJndex] + 1;
class.of_previously_outputted.symbol '= 0;

eaAOPERAND;

The procedure OPERAND replaces the procedures
VARIABLE and UNSIGNED-NUMBER.

OPERATOR
procedure OPERATOR (VG, current.VG Jndex, outputjtring, current.

Jndex.of .outputjstring, output .symbol,
class.ofjreviously.outputtedjymbol);

integer array VG; string array output jtring; integer current.VG.
Jndex, current.
_index_of_output.
jtring, class.
j>fpreviously,
.outputtedjymbol;
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string (1) output_symbol;
begin

comment: output the action symbol (output_symbol) into
the output string array;
output_string [currentJndex_of_output_string] '=

output_symbol;
current_index_of_output_string = currentJndex_of_

_output_string + 1;
comment: count the number of outputted symbols of the class 1;
VG \current_VG_index + 1] := VG [current_VGJndex + 1] + 1;
class_oj"previouslyjyutputtedjsymbol '= 1;

end OPERATOR,

The procedure OPERATOR replaces the procedures
PLUS, MINUS, UNARY-MINUS, MULTIPLY and
DIVIDE.

As an illustration, consider the following arithmetic
expression

/ + N - ( - ( - (N + /))/(/• / - N/I))U* 1+1$ (9)

whose VG-based data structure is to be found. The
parsing sequence is:

(1) {}<£>${$}
(2) {} <
(3)
(2)
(5)

(6) {

(7) {

(12) {

(4) {

(6) {

(7) {

(12) {

(3) {

(4) {

(5) {

(6) {
</>>

(9)
{*}

(12)
{•}

(4)

}${$}
{-} +
}${$}
{}

}
}${$}
}
}${$}
*<P>

{ } { } { } { }
+ <r> {+} - « P > / « £ » { / } / < P > {/} * <P>

{*}{-} + <!>{ + }${$}
+ <r> { + } - «/>>/«£> - <r> {-})
{/}/</>>{/} *CP> {•}{-}+ <?->{+}${$}

+ <r> {+} - « p > / « r > - <r> {-}){/})/
<P>{I}*<P> {•}{-} + <!> { + }${$}

{ } « / « { }

} +
}${$}

} +
}${$}

(12)
* <

(2)

) { } < > < > { } < > { }
<P> {*} - <r>KP> {/} { - }){/})/</>> {/}

{ } <
> + <r>{ + }-(-
- <T>KP> {/}{-

Applying now to each nonterminal <£•> the production
sequence (4), (7), (10), (11), (13) or (14) (depending on the
operand type), to each nonterminal <7"> the production
sequence (7), (10), (11), (13) or (14) (depending on the
operand type), and to each nonterminal <P> the
production sequence (10), (11), (13) or (14) (depending
on the operand type), one obtains the following activity
sequence:

{}/{/} + N{N}{ } {} {}{ } { }
){#}/(/{/}*/{/}{•} - N{N}/I{I} {/}{-}){/})//{/}{/}
*/{/}{*}{-} + /{/}{ + }${$}.

If we extract from the activity sequence all input
symbols by the order of their appearance, we obtain Eqn
(9). The application of the action routines for each action
symbol by the order of its appearance in the activity
sequence, gives, finally, VG-based data structure (see
Table 1).

Each underlined substring in the output-string (Ep), in
Table 1, corresponds to one connected substring; i.e. +
# # . Two substrings form CS, if they are continuous in
Ep, and the first substring consists of operands; i.e.,
CS2 =NI+ # #, 3-tuple is (2, 3,4). Each underlined 3-
tuple in VG corresponds to a CS/ in Ep by the order of its
appearance.

RIGHT-TO-LEFT CODE GENERATION

The term right-to-left code generation designates the code
generation from the right end of Ep. One of the key
points in introducing the vector-generatrice is just to
enable the right-to-left code generation. The algorithm is
based on the following principles: (i) the elementary unit
for the code generation is a pair of connected substrings
CS,; (ii) the code generation from an elementary unit is
the same as for any standard postfix string; (iii) the code
is generated until TV,0 = 1 v Â B = 0; (iv) when the
current CSt becomes temporary inactive, i.e. JV,° = 1 V
Nf = 0, the next CSr is taken, where /' = / + 1 v /' =
/' — 1 respectively; (v) the separate stack for operands is
not needed; instead, the space for Ep itself is used for NQS
stacks, each preset already with an operand substring in
the phase of transformation to Ep, and (vi) the transition
from one CS/ to another CS/- is performed by means of Pv
given in a 3-tuple for CS/..

Before we proceed to detailed presentation of algo-
rithm, we shall explain the procedure for the code
generation from an elementary unit CS/.

Firstly, we shall define a hypothetical machine,
necessary for this purpose, as a single accumulator (ACC)
machine with the following basic operations:

LDA A; move the contents of the location A into
ACC,

STA A; move the contents of ACC into the location
A,

NEG; the contents of ACC is two's complemented,
ADD A; the contents of the location A are added to

the contents of ACC and the result placed in
ACC,

SUB A; the contents of the location A are subtracted
from the contents of ACC and the result
placed in ACC,

MUL A; the contents of ACC are multiplied by the
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Table 1. Generation of VG-based data structure for expression I + N - ( - ( - (N + I))/(I*I - N/I))/I*I +1$

ENTRY

I)
(D
(N)

(N)
ID

(#1
W
ID
ID
C)
(N)
ID
{/)

(/)
ID
l/i
ID
D
(-)
ID

(S)

ACTIVITY

NULL
VARIABLE
UNSIGNEDJMUMBER
PLUS
UNSIGNED_NUMBER
VARIABLE
PLUS
UNARY_MINUS
UNARY_MINUS
VARIABLE
VARIABLE
MULTIPLY
UNSIGNED_NUMBER
VARIABLE
DIVIDE
MINUS
DIVIDE
VARIABLE
DIVIDE
VARIABLE
MULTIPLY
MINUS
VARIABLE
PLUS
END MARKER

OUTPUT_STRING

1
IN
IN +
IN + N
IN + NI
IN + NI +
IN + NI+#
IN + NI+##
IN + NI+##I
IN + NI+##II
IN + NI+##II*
IN + NI+##M*N
IN + NI+##irNI
IN + NI+##II'NI/
IN + NI+##irNI / -
IN + NI + ## i rN I / - /
IN + NI+##II"NI/-/I
IN + NI + ##II 'NI/- / I /
IN + NI + ##i rNI / - / l / l
IN + NI+)!(){(II*NI/-/I/I-

IN + NI+##H"NI / - / l / r -
IN + NI+jj(#ll'NI/-/l/l"-l
IN + NI+##irNI/-/l/l"-l +
IN + NI + ̂ II*NI/-/I/C-I +

Current^
Jndex of
output.

_string
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

$

VG Class_of_
_previously_
outputted_

_symbol

00100 0 —
10100 0 0
20100 0 0
21100 0 1
2111040 0 0
2112040 0 0
2112140 0 1
2112240 0 1
2112340 0 1
211234109 0 0
211234209 0 0
211234219 0 1
2112342191012 0 0
2112342192012 0 0
2112342192112 0 1
2112342192212 0 1
2112342192312 0 1
21123421923121017 0 0
21123421923121117 0 1
211234219231211171019 0 0
211234219231211171119 0 1
211234219231211171219 0 1
2112342192312111712191022 0 0
2112342192312111712191122 1
21123421923121117121911221024

contents of the location A and the result
placed in ACC, and

DIV A; the contents of ACC are divided by the
contents of the location A and the result
placed in ACC.

Let CS, be given by

CS, = O W J • • • flfnM^'s • • • 4, (10)

The space occupied by the operand substring
dld2di... dm has to be considered as a stack preset with
dtd2d3... dm. Starting from the top element of the stack,
T.OPD(am), and the first operator in the connected
operator substring (b[), we generate the following
assembly code:

LDA T.OPD
NEG

if #i is the unary operator (#) , or

LDA BT.OPD
OPT T.OPD

if #, is binary operator ( + , - , * , / ) , where BT.OPD
designates generally the below-the-top element of the
stack, and OPT is a symbolic representation of operators
(ADD, SUB, MUL, DIV, NEG).

If any of succeeding operators is unary, an NEG is
generated. Otherwise, the operator is checked for the
commutativity. If it is a comutative one, an instruction
line

OPT T.OPD
is generated. The noncommutative operator requires the
generation of the code

STA T
with

T.OPD < - r

and then

LDA BT.OPD
OPT T.OPD

where T is a temporary variable. The code generation is
continued in this way until AT,0 = 1 v iVfB = 0. Then, the
next CSi+1 v/-1 is taken.

procedure code generator (EP, VG, IL, NCS);
comment: The procedure code generator generates the assembly code Tor

arithmetic expressions starting from the right end of the postfix
string with an associated vector-generatrice.
EP = postfix string,
VG = vector-generatrice,
IL = generated instruction lines,
NCS = number of elementary units,
NIO = number of operands in the current elementary unit,
NIB = number of operators in the current elementary unit,
CSI = current elementary unit,
CS/PLUSONE = elementary unit right to the current one,
CS/MINUSONE = elementary unit left to the current one,
/ = pointer to the beginning of a 3-tuple in VG,
Ic = pointer to the leftmost 3-tuple currently handled,
OPT= symbolic representation of operators (ADD, SUB, MUL, DIV,

NEG),
OPT1 — standard representation of operator ( + , — , « , / , # ) in the

operator substring,
T. OPD = top element of the stack for CSI,
BT.OPD = below-the-top element of the stack for CSI,
T = symbolic representation of temporary variable;

begin
lc = (NCS- l)»3 + 1;
NI0:=\G[lc\;
MB = VG[fc+ 1];
if A7B = 0 then begin

generate.codejine LDA_T.OPD; goto exit;
end

else LI :/=fc; if OPT! = '#' then begin
generate_code_lines_LDA_
T.OPD_and_NEG; goto L5;

end
dseitNIO= I then

L2: begin
comment: terminate code generation from

an elementary unit CSI and access
the next one CS/MINUSONE;
Ic := Ic - 3; NIO > VG[/c]; NIB = VG[/c + 1 ) ;
goto LI;

end
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eke
L3: begin

comment: BT.OPD is located on the suck belonging to CS,
pointed lo by Ic,

generate_code_line_LDA_BT. OPD;
comment: OPT is taken from CS, pointed to by /, and T. OPD

from CS, pointed to by Ic;
L4: generate_code_line_OPT_T.OPD;

comment: Ic is a pointer to MO;
MO = MO-I;

comment: / + 1 points to NIB;
L5:MB = MB- 1;
end

comment: / + 1 points to NIB,
if MB = 0 then goto L6
else if OPT1 = ' # ' then begin

generate_code_line_NEG; goto L5;
end

else
comment: Ic is a pointer to MO;
if MO = 1 then begin
comment: Ic is a pointer to MO;

generate_code_line_STA_T; MO := 0;
comment: T.OPD is located on the stack belonging to CS,

pointed to by /; T.OPD := T;
gotoL2;

end
dseilOPTl = ' + ' V '•' then gotoL4
else begin

generate_code_line_STA_T;
comment: T.OPD is located on the stack belonging to CS,

pointed to by /; T. OPD = T; goto L3;
end

L6: begin
comment: terminate code generation from an elementary

unit CSl and access the next one CS/PLUSONE;
/ = / + 3; MO = \G[l\; NIB=\CU + 1];

comment: / + 1 points to NIB and / to NIO;
if A7B ^ 0 then begin

comment: OPT or NEG and T. OPD are taken from CS, pointed
by/;

generate_code_line_OPT_T. OPD_or_NEG; NIO =
end

comment: T.OPD is taken from CS, pointed to by /;
else if T.OPD = T then begin

VG[l ]=0;
VG[/]=0;

0;

else goto L6;
end

exit: end code generator;

end;

in the resume of each step. When they are extracted from
there, one obtains the following code:

LDAN
DIV/
STAT
LDA/
MUL/
SUBT
STAT
LDA AT
ADD/
NEG
NEG
DIVF
DIV/
MUL/
STAT
LDA/
ADD AT
SUBT
ADD/

(1) VG7 = 1 1 22
CS7 = 1+
lc= 19
JV/07 = 1
NIB1 = 1
/=19
/c= 16

(2) VG6 = 12 19
CS6 = / * -
NIO6 = 1
NIB6 = 2
/ = 16
/c= 13

It should be noted that the algorithm is presented in a
descriptive form. Many irrelevant details are dropped in
order to provide a clear and concise presentation of the
basic idea underlying the algorithm. For example, there
is only one temporary variable (71) although there can be
more. Furthermore, the variables NIO and NIB are
introduced for convenience and readability, although
they were not necessary. Each change of NIO implies, in
fact, the change of VG [K], and each change of NIB
implies the change of VG [K + 1) in an elementary unit
pointed to by Ic or /. The use of pointers Ic or / is not given
in explicit form. Instead, their strategic use is described
by comments which make an essential part of the
algorithm description. The algorithm provides an auto-
matic clearing of VG space with the exception of VG
[K + 2] component in each of its 3-tuples. This is of
significance in the algorithm implementation.

As an example, we shall apply the algorithm to VG-
based data structure whose generation is already de-
scribed. Each step in the code generation corresponds to
the current elementary unit. It includes the starting
values of CS, the part of VG for that elementary unit
(indicated by VG, and CS,, / = 1, 2, 3, .. . 8), and the
results of operations performed until the current elemen-
tary unit is changed. Due to interdependence of elemen-
tary units, every item is denoted by a subscript to provide
the identification of the elementary unit to whom an item
belongs. The generated instruction lines are underlined

(3) VG5 = 1 1 17
CS5 = //
NIOS = 1
NIBS = 1
/ = 13
/c = 10

(5) VG3 = 2 1 9
CS3 = //*
A703 = 2
NIB3 = 1
1 = 1
LDA I
MUL I
A703 = 1
NIB2 = 0
/ = 1 0

(4) VG4 = 2 3 1 2
CS4 = NI/-I
NtO4 = 2
NIB4 = 3
/ = 10
L D A N
DIV I
A704 = 1
NIB4 = 2
STAT
NIOA = 0
T'->stack4
fc = 7

(6) VG4 = 02 12
CS4 = T-l
NIO4 = 0
NIB4 = 2
SURT
NIO4 = 0
NIB4 = 1
STAT
NIO3 = 0
'T -* stack4
/c = 4
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;7) V G 2 = 2 3 4

CS2 = NI + # #
NIO2 = 2
NIB2 = 3
/ = 4
LDAN
ADD I
NIO2 = 1
NIB2 = 2
NEG
NIB2 = 1
NEG
NIB2 = 0
/ = 7

(9) VG4 = 0112
CS4 = Tl
NIOA = 0
NIBU = 1
DIVT
NIOA = 0
NIB4 = 0
/ = 1 3

(11) VG6 = 12 19
CS6 = / * -
NIO6 = 1
NIB6 = 2
MULI
NIO6 = 0
M56 = 1
STAT
NIO2 = 0
T -* stack6

/c= 1

(13) VG2 = 0 04
CS2 = empty
NIO2 = 0
NIB2 = 0
1=1

(15) VG4 = 00 12
CS4 = empty
NIOA = 0
NIB\ = 0
/ = 13

(17) VG6 = 0 1 19
CS6 = T-
NIO6 = 0
NIB6 = 1
SUBT
A756 = 0
/ = 19

(19) VG8 = 1 0 24
CS8 = $
NIOS = 1
NIB8 = 0
NIOX = 0
NIO8 = 0
exit

(8) VG3 = 009
CS3 = empty
NIO3 = 0
NlB3 = 0
/ = 10

(10) VG5 = 1 1 17
CS5 = Tl
NIO5 = 1
NIB5 = 1
DIVI
NIO5 = 0
NIBS = 0
/ = 16

(12) VG, = 2 1 1
CS, = IN +
NlOi = 2
NIB, = 1
/ = 1
LDAI
ADDN
NIOi = 1
NIBi = 0
/ = 4

(14) VG3 = 009
CS3 = empty
NIO3 = 0
NIB3 = 0
/ = 10

(16) VG5 = 00 17
CSS = empty
NIO5 = 0
NIB5 = 0
/ = 16

(18) VG7 = 1 1 22
CS7 = I +
NlOn = 1
NIB-, = 1
ADD I
NIO-, = 0
NIB-, = 0
/ = 2 2

Theorem. The binary tree and the postfix string with
associated vector-generatrice give the code of the same
length.

Proof. Let CS, be given by Eqn (10). It is evident that CS,
can be represented generally as a partial subtree. The
partial subtrees are those subtrees which have not all
their nodes resolved. This uncompleteness is the conse-
quence of the fact that the relation

= N*+l (11)

is not always satisfied. Bearing in mind the procedure for
the binary tree derivation, the graph representation of
CS| must form a partial subtree in the binary tree
structure. Thus, the code generated from CS, is of the
same length as that obtained from the corresponding
partial subtree belonging to the binary tree. If the
following relation for CS,

N? < (12)

is valid, then, according to the given algorithm, CS, _,
will be taken, causing an instruction line

STAT

to be generated. When the code is generated from the
binary tree, each node is examined in order to verify
whether it contains a commutative operator. If it contains
it, the left or right subtree of the node can be chosen.
Otherwise, the right subtree must be chosen. Upon
generation of the code from the chosen subtree, the
alternative subtree is taken, with an instruction line

STA 7"

being generated. We can conclude that the choice of the
left or right subtree for commutative operators does not
influence the length of code obtained for that node. Thus,
the fact that the given algorithm always chooses CS,_,,
i.e. the nearest (minimum number of nodes to be passed)
right partial subtree if Eqn (12) is satisfied, will not
influence the number of STA and LDA instructions to be
generated. Now, we can state the following: (1) number
of instruction lines generated for each CS, is equal to that
obtained from the corresponding partial subtree, and (ii)
the number of STA and LDA instruction lines generated
due to transition from CS, to CS,_,, CS,_, to CS,_2,
. . . etc., or due to transition from one to another
corresponding partial subtree,.. . etc., are equal as long
as Eqn (12) is satisfied.

To finish the proof, we shall prove that for

N?>N? (13)

one obtains the same length of code as with the binary
tree moving to the right in VG space until N° = 1 A
Ng+, = 0 A Ng+ 2 = 0 A. .. . JV£+i, = 0 A N5+l / 0. It is
clear that when a CS, satisfying Eqn (13) is encountered,
one or several partial subtrees satisfying Eqn (12) are
already handled. These partial subtrees will complete the
partial subtree satisfying Eqn (13) to obtain the resulting
subtree satisfying Eqn (11). CS, which satisfies Eqn (13)
corresponds to a left subtree in the binary tree. Thus,
moving to the right in VG space will not cause any paired
instructions STA and LDA to be generated due to
transitions. Because we have to generate the code for a
node having as its left side a partial subtree and as its
right side the leefs, paired instructions STA and LDA
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will not be generated, with the exception of the surplus of
operands in CS( which can be covered by non-commu-
tative operators left over during the handling of previous
CS, satisfying Eqn (12). Thus, the code generated from a
CS; satisfying Eqn (13) will be of the same length as the
code generated from the corresponding partial left
subtree and the leefs. This closes the proof.

In fact, the code generator based on the vector-
generatrice simulates the code generation from the binary
tree with only one exception that at each node the right
subtree is firstly handled independently from the com-
mutativity of operators. The consequence of that can be
only the different generated code.

EXPERIMENTAL RESULTS

An experiment has been performed over a set of
arithmetic expressions transformed to postfix strings,
binary trees and postfix strings with associated vector-
generatrices in order to examine the time performances
of algorithms and the difference in length of the generated
code. The set of arithmetic expressions is divided in
subsets each comprising arithmetic expressions of the
same length. The initial length was 6 and the final one 72.
The length is varied in increments of 6. The end marker
is accounted for in the length. Each subset contained 15
expressions. Furthermore, two additional subsets are
taken into consideration: (1) a subset consisting of a
single operand (i.e., A$) and (2) a subset consisting of
two operands (i.e., A + B$, A*B$, etc). In order to
achieve a uniform distribution in length space, these
subsets are filled to also contain 15 expressions (length 2
and 4). The time performances are obtained by evaluating
the mean values for each subset. Two classes of
comparisons are performed: (1) postfix string-binary
tree, and (2) binary tree-postfix string with associated
vector-generatrice.

Firstly, the performances of postfix string and binary
tree are compared. The comparisons are based on
parameters DL, D\, DT and Dr defined in the following
way:

A =
Lbt

ps

T

7b.) -

£77^

(14)

(15)

(16)

(17)

where m = number of subsets,
Lps = length of code generated from postfix string,
Lbl = length of code generated from binary tree,
DL = relative difference in length of generated

code,
T^s = mean time spent to syntax analysis and

transformation to postfix string,
7£, = mean time spent to syntax analysis and

transformation to binary tree,
Dr = relative difference in time spent to syntax

analysis and transformation,

7b, = mean time spent to code generation from
binary tree,

7£i = mean time spent to code generation from
postfix string,

DT = relative difference in time spent to code
generation,

DT = total relative difference in time spent to code
generation, syntax analysis and trans-
formation.

It was found that DL was between about 0-0.4. This
fact becomes significant in highly repetitive loops with a
large number of calculations. The code obtained from
the binary tree is shorter because the whole arithmetic
expression is in a form which provides the alternatives in
particular points during the code generation.5 There are
no such alternatives in the postfix string, which is
scanned strictly sequentially, thus eliminating any pos-
sibility of economizing in the code generation.

The results obtained for DT, DT and £>T (0.15,0.33 and
0.24 respectively) show that these parameters are prac-
tically independent for expression length, in a statistical
sense, when evaluated separately for each subset (m =
1). The memory requirement for transformation to the
binary tree was 50% higher and approximately the same
for the phase of the code generation.

The second class of comparisons made between the
binary tree and postfix string with the associated vector-
generatrice represents the key point in the experiment.
The results are presented in Table 2.

Table 2. The results of the comparison of binary tree to postfix
string with vector-generatrice

OL OV D<t Or D'u 0<K, 01 01 A

0 0.03 0.21 0.13 -0.12 0.12 ~0 =0.06 0.024

DL, Dr, Dj and DT are defined analogously to Eqns
(14), (15), (16) and (17):

(18)

m=—

(19)

(20)

DT = ^>^b ,+ ^ 2,iUv, + Jv,J ( 2 1 )

It was found also that the parameters £>T, D\ and DT
were independent on expressions length (m = 1).

£>M, ^>M. 7)M, As a n d Acare defined as follows:

(22)

(23)

(24)

(25)
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'bt

(ft + ft) -1
ft + ft

(26)

(27)

where M^t = memory space necessary for syntax analysis
and transformation to binary tree,

M*g = memory space necessary for syntax analysis
and transformation to postfix string with
associated vector-generatrice,

Af̂  = memory space necessary for code genera-
tion from binary tree,

Myg = memory space necessary for code genera-
tion from vector-generatrice,

/b, = number of instruction lines of syntax
analyser (binary tree),

I$g = number of instruction lines of syntax
analyser (vector-generatrice),

/b, = number of instruction lines of code gener-
ator (binary tree),

Iyg = number of instruction lines of code gener-
ator (vector-generatrice).

The experimental results obtained show a significant
decrease of code generation time (21%) when the vector-
generatrice is applied. The overall improvement in time
domain is reduced to 13% when the syntax analysis is
taken into account. Other improvements, expressed
through parameters DM and DY are practically negligible.
The code obtained from a vector-generatrice uses one or
two more temporaries than the code obtained from a
binary tree, even for very long expressions (in the case
when the left substrees are chosen for commutative
operators).

Because VG space is cleared (with the exception of
VG [K + 2]) after each execution of the code generator,
the action routine NULL reduces only to the initialization
of variables current-VGJndex, current-index-of-output-
string and VG [3].

In order to obtain an efficient code generator, several
changes are done over the postfix string: (1) commutativ-
ity of operators is indicated by a special character (blank-
operator is commutative, $-operator is not commutative);
(2) unary operator is indicated by the numeric #
(function call could be also considered as a unary
operator); (3) each operator is replaced by a symbolic-
machine code during the syntax analysis. The same
changes are performed over the binary tree structure.

The postfix string in the example gets the following
form after performing these changes:

# NEG # NEG//bMUIJV/$
DIV$SUB$DIV/$DIV/bMUL$SUB/bADD$

where b = blank.

ADD, SUB, MUL, DIV, NEG—symbolic-machine
representation of operators + , —, *, / and unary minus.

It should be noted that the syntax analysis was done
informally through the top-down or bottom-up processing
of the translation grammar. The informal syntax analysis
is more easily programmed for the given translation
grammar.

The machine output of the example includes the input
infix string, the modified output postfix string, the vector
generatrice, the syntax analysis time (77), the code
generation time (T2), the total time 7X77 + 72) and the
generated code. The input string of the example is
modified to include different, single character variables
(not only /and AO,

A+B-(-(-(B+ C))/(D * E - G/F))/M* N + G$,

but the structure of the input string is left unchanged.
The output is as follows:

INFIX STRING IS:
A + B - ( - ( - (B + C))KD*E-GIF))IM>N + G$
POSTFIX STRING IS:
AB ADDflC ADD # NEG # NEGD£ MULCfSDIVJSUBSDIVA/SDIW MULSSUBG ADDS
VECTOR GENERATRICE IS:
2 1 0 2 3 6 2 1 20 2 3 26 1 1 4 0
1 2 45 1 1 54 1 0 59

SYNTAX ANALYSIS TIME IS: 77 = 3.033 MSEC
GENERATED CODE IS:
LDAG
DIVf
STAZ
LDAO
MUL£
SUBZ
STAZ
LDAfl
ADDC
NEG
NEG
DIVZ
DIVM
MUL AT
STAZ
LDA,4
ADDS
SUBZ
A D D C
CODE GENERATION TIME IS: 77 = 1.490 MSEC
TOTAL TIME IS: T= 4.523 MSEC.

The character Z denotes the symbolic address of a
temporary variable.

The same code is generated from the binary tree with
the following times:

77 = 3.012 MSEC
T2 =1.961 MSEC
T =4.973 MSEC

Besides this general experiment, a subexperiment is
performed over two subsets of expressions of length 2
and 4 (single and two operand subsets) with uniform
distribution. The same benefit is observed in the domain
of the code generation, but the overall time gain (when
the syntax analysis is taken into account) is reduced to
8%.

CONCLUSION

The right-to-left generator has demonstrated better
characteristics than the ones obtained with a binary tree.
The length of the code generated from a vector-genera-
trice is equal to one obtained from binary tree. The
compilation time for arithmetic expressions (syntax
analysis + code generation) is appreciably shorter. This
benefit is more significant for the stand-alone code
generator. The total memory space (syntax analyser +
code generator) was approximately the same. The
memory space required by the syntax analyser, based on
the vector-generatrice, was greater but it was balanced
by the decrease of the memory requirement for the
corresponding code generator. With respect to program-
ming, the code generator based on the vector-generatrice
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was programmed with a smaller number of instruction
lines, but not significantly.

It would be interesting to extend the investigations on

the application of the vector-generatrice to all operator
precedence grammars and especially to the code
optimization.
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