
Block Sorting of a Large File in External Storage
by a 2-Component Key

K. P. Tan and L. S. Hsu
Department of Computer Science, National University of Singapore, Kent Ridge, Singapore 0511

This paper introduces a sorting method (a block sort embedded with another sorting algorithm) to sort a large volume
of records in external storage by means of a 2-component numeric key consisting of key 1 and key 2. Based on the value
of key 1, the data file is split into many subfiles. Each subfile contains records of common key 1, but with different key
2s. After sorting, all records are linked together by pointers to form a sort file. An index array keeps the list heads to
these separate subfiles. The list structure in the file organization facilities updating of the file. This sorting method can
be applied to a key of any number of digits. A subroutine of the methodology is illustrated in the Appendix.

INTRODUCTION

In general, when the main storage is inadequate to handle
the sorting of a large volume of data, the data file is
divided into several subfiles. Each subfile is sorted
internally and stored on a magnetic tape. The tape files
are then merged into a sort file by means of polyphase
merge1 or merging two linearly ordered files.2 However,
both merging methods involve a large number of read-
write passes between magnetic tapes and the main
memory storage, and are quite time-consuming. In the
case of block sorting,3 a file is split into ranked subfiles
by dividing the key value of a sort key into certain ranges.
Each subfile with keys falling into the same range is
sorted separately. A complete sort file is obtained by
joining all the sorted subfiles together. However, the
capacity of the working storage in the main storage is the
constraint to this approach.

Here, consider a small computer of limited main
storage where a double precision feature is not available.
A sorting method is introduced to sort a file of a large
volume of lengthy records, in which the positive numeric
key value of the sort key may be so long that it occupies
two 16-bit words, say, a 6-digit key. This two-word key
can be regarded as a two-component key, comprising
two integers, denoted as key 1 and key 2. When key 1
consists of one, two, three or four digits from the left, key
2 will contain five, four, three or two digits counting from
the right, respectively. Hereafter, this two-component
key is also called compound key. Those key 2s which
associate with the same key 1 value form a subfile. As the
main storage is too small to keep the entire file, all records
are read and stored as a disk file by entry sequence. To
avoid frequent swapping of all data fields of one record
with another in the sorting process, each record is
attached with a pointer to denote the record number.
Only the keys and the pointers are stripped off from the
records of each subfile and are sorted separately in the
main storage each time.

With the aid of the pointers all records can be linked
in a list structure in a particular sequence of the sort key.
Their physical locations remain unchanged in the disk
storage. Therefore, whenever there is a deletion or an
insertion of a record to the file, only the two pointers
which are involved in the linkage of the two relevant

records have to be amended. Saving storage space is
another advantage of this sorting method. It requires just
the disk space for the file, the working storage in the
main memory for the biggest subfile and an array with a
size equal to the order of key 1.

METHOD DESCRIPTION

In this method, records are stored in a disk file in the
order in which they are read. The sort key is a compound
key consisting of two parts, key 1 and key 2. An array,
called key 1 address array, is maintained in the main
memory. Its size should be compatible to the largest value
of key 1. When a record is read and written to the disk,
the rth array element stores the record number if the key
value of key 1 is equal to /'. Meanwhile the pointer in this

(a) B C

1

R7

A-Al

RIO

A-Ai

R4

A-Al•

J
R2
B-Bl •

R9

T-T3 0

(b) Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

Rll

R12

C-Cl

B-Bl

•

A-Al

B-Bl

•

A-Al

\

T-n
A-Ai

•N

0

y
\

I

Figure 1. List organization of records with compound keys; (a)
key 1 address array and the linkage of logical records; (b) linked
records in storage.

CCC-0010-4620/82/0025-0327 $02.00
© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL 25, NO. 3,1982 327

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/327/369739 by guest on 02 April 2024

K. P. TAN AND L. S. HSU

record stores the previous record number, which was
kept in the fth array element, and whose compound key
has the same key 1. As all records are stored in the disk,
subfiles are also created. Each subfile contains records
with the same key 1. They are linked together by their
pointers. At this moment, each array element keeps the
last record number of its corresponding subfile (i.e. the
list head of the linked list). For instance, record R4 has
a compound key A-A1 where key 1 has the value A and
key 2 the value A\. When record R4 is read, the ,4th
element of the key 1 address array keeps the record
number R4. This content is replaced by R7 when record
R7, which is the next record containing the same key 1
value, is read in. On the other hand, the pointer of record
R7 stores the previous record number, i.e. R4. As this
process goes on, records R4, R7 and RIO contain the
common key 1, say, A, and form a subfile as shown in
Fig. l(b). Thus the ,4th array element keeps the list head,
i.e. RIO, and the pointer field of record R4 the list tail.

In the sorting process, only keys 2 and the pointers of
the records of the /4th subfile are stripped off and sorted
in the main storage. After sorting, the records of the
subfile are relinked in the key 2 sequence (e.g. in
ascending order). The new list head, say, record R7,
which has the smallest key 2 value, would be stored in the
corresponding ,4th element of the key 1 address array
(see Fig. l(a) where, for simplicity, a logical record
contains only the compound key and the pointer). The
next subfile containing another common key 1, say B,
where B>A, is sorted and then linked to the previous
subfile A, and so on. The last record of the resulting sort
file has a pointer with value 0 to indicate the end of the
linked list. In this list structure, all records in the disk file
remain in the same physical locations (see Fig. l(b)). In
this approach, only three passes of the entire file (i.e.
write, read and rewrite) have to be processed. As the size
of a subfile is practically small (see the section Hed
Testing Results and Discussion), the bubble sort1 can be
adopted to sort each subfile. Consequently, a new sorting
algorithm is developed. It is a novel combination4 of the
block sort and the bubble sort. In order to illustrate the
algorithm of this sorting method, a subroutine with the
imposed bubble sort is attached in the Appendix. For the
purpose of demonstration, each record contains only
three fields, i.e. key 1, key 2 and the pointer.

AN EXAMPLE: SORTING OF A 6-DIGIT KEY

As a simple example, consider a file of 20 records which
would be sorted in a 16-bit word computer. The sort key
contains six digits and is regarded as a compound key. If
this compound key can be divided into two parts, key 1
and key 2, key 1 refers to the leftmost digit and key 2 to
the other 5 digits on the right. Assume that the key 2
value does not exceed the limit of an one-word integer.
Table 1 shows the key 1 address array of size equal to 9
and a disk file of 20 records, ignoring all other data fields
except the compound key and the pointer in each record.

After sorting, the first element of the address array has
a value (— 4) indicating that record 4 has the smallest
compound key value (i.e. 104016). The minus sign means
there is only one record in the list whose key 1 has a value
1. This compound key is also illustrated in record 4 in the
storage (i.e. 104016 —5). The pointer with value (— 5)

Table 1. An example of the proposed block sorting; (a) key 1
address array; (b) 20 linked records in the disk file

(a) Index Pointer

1
2
3
4
5
6
7
8
9

- 4
- 5
16
19
2
1

- 1 8
3

14

(b) Record

number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Storage

Compound key

6 01641
5 04812
801061
1 04016
2 06353
510164
6 11997
9 05080
9 12617
5 05404
4 08981
513440
8 08001
9 00772
4 06349
3 06568
8 06841
7 06508
4 02053
311088

Pointer

7
10
17

- 5
- 1 6

12
- 1 8

9
0
6

- 2
- 1

- 1 4
8

11
20
13

- 3
15

- 1 9

denotes that the next smallest compound key should be
in record 5 (i.e. 206353). On the other hand, the value
(+ 2) in the array element 5 means that the record 2 has
key 1 equal to 5 and the plus sign shows that there is more
than one record containing the common key 1 (e.g. by
tracing down records 2,10,6 and 12 in the disk storage).
In record 9, the pointer with value (0) shows the end of
the list. Starting with record 4 in the disk file (see Table
l(b)), all the 20 records are sorted by the 6-digit key in
ascending order.

TESTING RESULTS AND DISCUSSION

Testing of this proposed sorting method was done on the
IBM System 3 Model 10 computer. The compound key
of a record is generated by a random number generator.
It may consist of seven digits. Key 1 is chosen to represent
the value of the first three digits on the left and key 2
represents the other four digits on the right. The size of
the key 1 address array is chosen as 999. Eight sets of
data files comprising 100, 500, 1000, 2000, 4000, 6000,
8000 and 10 000 records are sorted separately. The sorting
time varies from 0.26 min to 38.75 min, respectively
when the bubble sort is used to sort the subfiles (see Table
2). The Singleton sort5, the fastest sort so far known, is

Table 2. Comparison in sorting time on the proposed block sort

Number of
records

100
500

1000
2 000
4 000
6 000
8 000

10 00Q

Proposed block sort

With bubble sort With Singleton
(min)

0.26
1.18
3.03
6.20

13.62
21.38
29.47
38.75

sort (min)

0.27
1.27
3.15
6.67

13.90
21.23
28.72
36.88

328 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/327/369739 by guest on 02 April 2024

BLOCK SORTING OF A LARGE FILE IN EXTERNAL STORAGE BY A 2-COMPONENT KEY

then adopted to sort the subfiles on the same sets of data
files. Since a subfile in this proposed block sort is always
small, the Singleton sort does not improve the result
much. For the case of 10 000 records it takes 36.88 min.
only 5% faster than the block sort embedded with the
bubble sort. In the case of a small volume of records, say,
within 4000 records, the block sort, imposed with the
bubble sort, takes even less time as the bubble sort's
algorithm is much simpler. For a fixed number of records,
say, 1000 records, the sorting time (with a bubble sort
applied to subfiles) decreases obviously with increasing
key 1 size (see Table 3). This is due to the decreasing

Table 3. Sorting time of 1000 records vs key 1 size (with bubble
sort applied to the subfiles)

Key 1 size

9
99

999
9999

Sorting time (min)

4.64
3.33
3.03
2.52

number of records in a subfile. In other words, it is
advantageous to choose a larger size for key 1 when key
1 is separated from a long compound key.

Because the sort file is merely a linked list, insertion of
a new record is very simple. Based on the key 1 value of
the new record, the list head to the required subfile from
the key 1 address array is obtained and the linkage of the
appropriate records changed. For deletion, the record
deleted has to be disjoint from the linkage.

APPLICATIONS

Large volume of 16-bit word data

If the main memory is too small to sort a large volume of
one-word (or 16-bit word) data internally, the proposed
block sort can be adopted to sort the large file externally
merely by separating the one-word key into two compo-
nents, say, key 1 and key 2. As the largest value of a one-
word key is 32 767, the size of key 1 can be of 1-4 digits,
counting from the left of the key value. This means that

the original file may consist of as many as 3276 subfiles in
order to reduce the sorting time.

Long key

For a 16-bit word computer, a long key of 5-9 digits
(occupying a storage of 2 words) can be broken into two
components to form a compound key (e.g. key 1-key 2).
The proposed block sort is able to sort this compound
key.

Generalized compound key

In principle, the proposed method can be extended to
sort a generalized compound key (or called multi-
component key) which may comprise key 1, key 2, key 3,
etc. Based on the technique of the block sorting on a 2-
component key, a key 1-cluster 1 pair (where cluster 1
contains the rest of components) can be established.
After extracting key 2 from cluster 1, a key 2-cluster 2
pair is formed with respect to a key 2 address array. The
same process is iterated until the last component is
decomposed. In this repeated block sorting, records in
nested clusters are then sorted and linked. Consequently,
a sort file in a list structure is obtained.

CONCLUSION

The proposed block sort provides a method for sorting a
large volume of records upon a two-component compound
key externally, without applying a merging process and
without destroying the physical location of the original
disk file. Since the number of records in each subfile is
practically small, a fast sort imposed on the subfile is
insignificant in the global sort. The simple bubble sort is
good enough to be adopted to sort each subfile in the
proposed method. As the sort file is constructed in the list
structure, insertion of a new record into the file or
deletion of an inactive record from the file can be done
easily. An explicit algorithm of the method, embedded
with a bubble sort, is given in the Appendix. However,
the bubble sort can be substituted by any other sorting
method.

REFERENCES

1. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Massachusetts
(1973).

2. F. K. Hwang and S. Lin, A simple algorithm for merging two
disjoint linearly-ordered sets, SIAM Journal of Computing 1 (No.
1). (1972).

3. H. Lorin, Sorting and Sort Systems. Addison-Wesley, Reading,
Massachusetts (1975).

4. C. R. Cook, and Do Jin Kim, Best sorting algorithm for nearly
sorted lists. Communications of the ACM 23 (No. 11), 620
(November 1980).

5. R. C. Singleton, An efficient algorithm for sorting with minimal
storage, Communications of the ACM 12 (March 1969).

Received February 1981

© Heyden & Son Ltd, 1982

©HeydenA Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25. NO. 3,1982 3 2 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/327/369739 by guest on 02 April 2024

K. P. TAN AND L. S. HSU

APPENDIX A

Subroutine of block sorting by a 2-component key

0001
0002
0003
Oooa
0005
OOOfc
0007
oaot
0009
ooio
001 1
0013
00)3
0010
OOIS

SUBROUTINE COMPSfKT«BL.IS IIE 1
COMPS TS * SUBROUTINE OF * BLOCK SORT EMBEDDED KITH BUBBLE SORT OF

COMPS SORTS * 'LARGE VOLUME OF RECORDS IN THE EXTERNAL STORAGE
AGAINST A COMPOUND KFY RF TMO COMPONENTS. NAMELY KEY] AND
KEY?. IM ASCENDING ORDER. IT KEEPS THE ENTIRE FILE IN A LIST

FORUSIMPLieiTr. A RFCORO CONTAINS ONLY K£VI« KEY? AND THE POINTER.

D C M E T A T I O NC DOCUMENTATION
C COMPS---A SUBROUTINE OF COMPOUND-KEY SORT
C KTABL---AN INDEX ARRAY WlTM MAXIMUM SIZE ECU*L TO 9999 AND KIT
C ...INDEX CORRESPONDING TO TMF KEY1 VALUE
C I S I f E — S H E OF THE KEVI VALUE
C K2 .—IN ARRAY FOP KEY2
C IDX *..AN INDEX ARRAY ASSOCIATED MlTH ARRAY K2
C N .--A RECORD NUMBER COUNTER
C .—FINALLY.BEING THE TOTAL NUMBER OF RECORDS TO BE 80RTE0
C KEY1 ...FIRST COMPONENT OF THE COMPOUND KEY
C KEY? ---SECOND COMPONENT OF THE COMPOUND KEY
C 10 -.-A POINTER INTTTAIIZED AS 0
C IP .-.A POINTER POINTING TO THE NEXT RECORD
C IHEAD-—HEAD POINTER OF A SuBLIST
C ITAIL—-TAIL POINTER OF A SUBLIST
C I,J ---INDICES
C IREC -.-ITM RECORD
C JPEC ».JTH RECORD
C IBNO — U P P E R BOUND OF THE BUBBLE SORT
C ITEMP—TEMPORARY STORAGE
C LOC .-.TEMPORARY STORAGE
C NEGHD---NEGATIVE HE*O POINTER. INDICATING THAT T
C RECORD IN THE LIST HAVING SUCH A KEY! VA

HERE IS ONLY ONE
LUE

IMPLICIT INTEGER*a.'I.N)
DIMENSION KTABLr9999).k2M0O).I0XMOO)
10*0
NcO

IS12E
)O

NcO
DO 10 T»1.IS12

KTABL(I)«O
10 CONTINUE

TO SPLIT A DATA FTLE INTO RANKED SUBFILES. BASED ON THE VALUE OF

100 CONTINUE
NlNti
READ (9.1IO.ENDs200) KEYI.KCY2

110 F0RM*T(2IS)
IF (KTABLfKEYD) 130.120*140Y D

hRITf (1*N) KEY1.KEY2.10
GO TO 160

130 IPs.KTABLfKEYl)
GO TO ISO

l«0 IPaKTABL(KEY1)
ISO WRITE M ' N) KEY1.KEY2.IP

lit GO TO 1O0
200 CONTINUE

: • TO CONSTRUCT LINKED SUBFILES
IHE1D.0

00*a20°I.1.ISIIE
IF (KTABLdM 310.110,950

230

?ao

250
260

IF r i T A I L I 2 2 0 . U O , 2 X 0
I T A I L i - K T A B L d l
co Tn .?oo
CONTINUE
REiD (1 ' I T A I L I KEY1.KEV3.IP
HRtTE (1 ' I T A I L I K£vt.KEY2,KTABL(X)
ITAIL»-KTABL(I>
CONTINUE
CO TO 010

TO CONSTRUCT A KEV2 APRAY FROM A SUBFI
IREC«KTABLfI>
N»0
CONTINUE
NsN+1
READ r i ' I R E C) KFY1,K?(N1. IP
I D X f N i l R E C

00T9
OOAO
00H1
oofta

Oa
008'
Oflfti
OAK
008
008

009
009
000
009
onq
010

010
01 0
01 0

01 JO
0131
012.2
012J

?70

?80

310

320

350
360

IF (IP) JB0.?80.370
IRFOIP
CO TO 2«0
COMTIMUE

KEV2
C O I U E
SORT KEV2 OF 1 SUBFILE BY THE BOBBLE SORT

T CAN BE SUBSTITUTED BY ANY OTHER SORTING METHOD)
1 BND'N—1
CONTINUE
LOC*O
IF riBND) 510.1A
DO \tlQ Isi.IBND

IDV(n*IDxfL*1 1
IOxri*l)«ITEMP
TTEMPsK2(I)
K2(I)>K?(1*11
K2fI*ll«lTEMP
LOCal
CONTINUE

CONTINUE
IF (LOtl 350.360.350
IRNOsLOC-l
GO TO 300
CONTINUE

A SUBFILE IN ASCENOING ORDER
10
REC

?J

1
Jsl.NHl

C I D X t J)JECsIDXtJ)

CONT?NJI f | i J * F C 1 « * « • « " » .
L I K T E SORTED SUBFILES INTO

I l I D X d 1
AR) 400.d00.390

400

410

LINK THE SC
KT1BL(I I . IC

NEG-oIMbJtji- —
READ (1 ' I T A I L) K E Y 1 . K E Y ? . I P
MRTTE f l ' I T A I L I K E V I , K E Y 2 . N F G *

A COMPLETE SORT FILE

COMTIMUE

READ M'XTAIL) KEY1.KFV2.IP
WRITE (I'lTAIL) KCV1.KCV2.10

3 3 0 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/327/369739 by guest on 02 April 2024

