
Error Recovery with Attribute Grammars

A. Boccalatte, M. Di Manzo and D. Sciarra
Istituto di Elettrotecnica, Viale Francesco Causa 13, Viale Cambiaso 6, 16145 Genova, Italy

In this paper a parsing algorithm for attribute grammars is defined. This algorithm allows the detection and recovery
from both syntactic and semantic errors, without introducing any delay in the parsing of correct sentences. Only
synthesized attributes are considered. The aim of recovery procedure is only to overcome the error; no minimal
distance correction is attempted.

INTRODUCTION

The problem of the semantic definition of a programming
language has been approached by Knuth by means of
'attribute grammar'.' They consist of a syntactic part,
which is typically a context-free grammar, and of a
semantic part, made up of a set of attributes associated
to each symbol and of a set of semantic functions used to
evaluate the attributes' values while constructing the
syntactic tree.

Attribute grammars have been widely investigated,2~7

and rules have been given to evaluate attributes from left
to right3 and to build compilers which use semantic
knowledge to overcome syntactic ambiguities.4'6'7 A
related concept is that of 'affix grammar', for which
parsing methods have been defined.8"10

The main problem while parsing a sentence by means
of an attribute grammar is to perform a suitable error
detection and recovery. In Ref. l l a parsing algorithm is
presented, which allows the detection of a semantic error
as soon as it is required to guarantee that the previously
parsed substring of input symbols is a viable prefix.

A recovery procedure based on this method can
operate only on the new input symbols, exactly as it
happens with all the classical syntactic recovery proce-
dures defined for LL(fc) or LR(fc) grammars.

Such a recovery algorithm is presented in the third
section of this paper, after a short discussion of the
theoretical preliminaries, which is included here in order
to make the paper self-contained.

The last section is devoted to the detailed analysis of
two examples of recovery from syntactic and semantic
error.

THEORETICAL PRELIMINARIES

An attribute grammar consists of a context-free grammar
GO(VT. VN, P, Z), where VT is the set of terminal
symbols, VN is the set of non-terminal symbols, P is the
set of production rules and Ze VN is the distinguished
symbol, and a set Ax of attributes associated with each
symbol xeVyuVN. Attributes can be divided into
inherited attributes I* and synthesized attributes Sx. A
domain Va is associated to each attribute a; Va is the set
of all the allowed values of a. A production/? s P is written
in the form:

for \<>i<np

If aeAXj, the production p is said to have the attribute
occurrence a, and this is written a<I>p)-A£i'

p> is the set of
attribute occurrences associated with aeAXi; I^p) and
S£:p) are defined similarly.

A domain V%'p) = Va is associated with every attribute
occurrence a{''p); therefore the set A$j;p) identifies a
domain A^;p) in a n-dimensional space where n is the
number of elements of Ax'

p).
In the same way I^p) identifies a domain Ix':

p)

Sx-
p) identifies a domain S£p).
The set of attribute occurrences:

and

identifies a domain Mp in a /M-dimensional space, where
mp is the number of elements of M°. We may observe
that M° represents the set of attribute occurrences whose
values must be known in order to evaluate the synthesized
occurrences of attributes associated with x0.

The set of attribute occurrences

identifies a domain Mp in a m-dimensional space, where
mt is the number of elements of Mp • MP represents the set
of attribute occurrences whose values must be known to
evaluate the inherited attribute occurrences associated
with xt.

We can also define a set of functions g{Pyj)

M\> - 9\pj) - Sxf
p) l < j < i - \ , 0 < i < n p

A semantic function fj* is associated with the set Si°'p)

and a semantic function fp' is associated with each set
lxf

h, these semantic functions determine the value of
every attribute occurrence as a function of the values of
other attribute occurrences in the same production.

The evaluation of these semantic functions depends on
a set of semantic conditions Cp, which restrict the domain
Ml

p to a valid domain Z)p C M'p.
To obtain practical algorithms it is necessary to

consider only synthesized attributes,11 that is lx = 0 for
Vx:xeVTuVN.

Under this assumption, given an item

a,
we define: (1) Valid residual domain or Residual domain

, the domain
n ° .. — n° ^ Xrt'.p) X/O.p)

CCC-O0KM620/82/0O25-O331 $03.50

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 3 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

A. BOCCALATTE, M. DI MANZO AND D. SCIARRA

where iV*'p) is a subset of M% characterized by the values
of attribute occurrences A^ for 1 < k <j; £>£i0) c D° is
the initial residual domain. (2) Allowable domain N*"'p)

the mapping of the function g%,tj) on the domain
D & J - D ; hence:

A more detailed discussion of the theoretical presuppo-
sitions can be found in Ref. 11.

ERRORS AND RECOVERY

The algorithm discussed in Ref. 11 allows the detection
of a semantic error, extending to the handling of
attributes the property of the viability of the prefix, which
is typical of LL(fc) and LR(fc) parsers. However it doesn't
suggest any recovery operation when an error is detected,
and so a further insight in errors classification and
management is needed. The classification of errors is
trivial: we can have syntactic errors, due to a mismatching
between the input symbol and the top of the stack, and
semantic errors, caused by a set of input attributes
(attributes of the new symbol in input) which is not
included in the set of expected attributes. However, the
recovery from a syntactic error, for which there is a
number of well-known techniques,'2 has relevant seman-
tic side-effects, that impose a global approach to the
handling of both kinds of errors. The recovery from
semantic errors is perhaps the simpler one.

Suppose that the parser is analysing the string oocfi, x
being the current input symbol; suppose also that a
production p:y0 -^ytfi • • • y,-,... yn exists, and let yt be
the current top stack.

A semantic error requires the fulfilment of the following
two conditions: (1) x = y,; or x belongs to the directory set
of yt for a production/?'; this condition will be written, in
the following, as x e £ £ . 2 (2) The actual values of the
attributes of JC do not match with the expected values. If
JC = yt the mismatching can be formally described as

v[AJ <t #

To define the recovery action, we must remember that
y{i,p) _ y yj . _ g A(i ,p)

This means that if a is an attribute of yl3 and hence of x
too, the set of values of a allowed in the domain D° of the
productionp, and in all the residual domains D^^, 0 <,
j < i, is a subset of Va. Therefore it is always possible to
change the set of actual values v[Aj into a new set v*[AJ,
called recovery set, so that v*[AJ C A^i>p). In most
cases we will have a number of recovery sets
v?[AJ • . • , vn*[AJ, being v?[AJ C Nf-"\ \<k<n,
and

vf[AJ u vf[AJ u • • • u v*[AJ = N*M

It is difficult to give a selection rule.
A semantic recovery action could cause the parser to

detect new semantic errors, because it is actually a
recovery operation and not a minimal distance correction.
Hence the criterion could be to select the recovery set
that minimizes the probability of causing new errors..

Unfortunately, it is impossible to foresee the conse-
quences of one choice or another, and then the only

practical suggestion is to select the recovery set which
requires the minimum number of attributes values
modifications.

As far as semantic errors are concerned, the case
xeHy is v e ry similar to the previous one; the mismatch-
ing is detected after one or more expansions of the
syntactic tree, and can be recovered in the same way.
However, some care must be taken because sometimes a
semantic error exception can be raised by a purely
syntactic error. Suppose, in fact, that two productions
exist, p' and/?", which describe the non-terminal symbol

Suppose also that, within the current context, for
semantic reasons, the symbol yt must be expanded by
means of production/?'; this could mean that the expected
values of the attributes of yt cannot be synthesized using
the production p". If the new input symbol x satisfies the
condition xe£jf, instead of the condition xe£ p ' , the
production p" will be used to expand yt; but this syntactic
operation will cause the allowable domain for x to be
null, hence raising a semantic exception. However this
error is not a true semantic error, because the correct
recovery operation consists of deleting the symbol x or
inserting a new symbol before it or changing it with a
different symbol, and these are typical syntactic recovery
actions. The recovery from a syntactic error is more
complex, because of its semantic side-effects.

Let us apply a typical syntactic recovery procedure, as
discussed in Refs 12 and 13, and consequently suppose
that we are able to carry on the analysis with the new
input symbol x' and the new top stack yk. The allowable
domain for x' must be evaluated, in order to check the
attributes of the input symbol; this evaluation can be
done only by supposing that we have actually found all
the symbols which were over yk in the stack and have
been popped out.

Unfortunately, the knowledge about the values of the
attributes of these symbols is not complete, because they
have not been truly found, and therefore their actual
values are unknown. Hence only their expected values
can be used to evaluate the allowable domain of x'.

The procedure is as follows. Let Dres be the last
evaluated residual domain before the discovery of the
syntactic error, and let p be the current production.

Scan the symbols in the stack from yt to yk; if the last
symbol of production p is found, evaluate iV* =f?(Dtes),
update p (p is now the new current production), pop the
semantic stack and use N* to calculate the new value of
Z>res. Repeat this evaluation for every symbol which
terminates a production rule, until yk is reached. The
current Z)res can now be used to calculate the allowable
domain for x'.

A Pascal-like description of the parser and the recovery
algorithm is now given.

Parsing algorithm

begin
/•Comment: x = new symbol;

v[AJ = vector of attribute values of x;
y = top of the stack of symbols;
Z)res = top of the stack of domains;
p = current production;
Namm — current valid domain; */

3 3 2 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 ©Heyden& Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

ERROR RECOVERY WITH ATTRIBUTE GRAMMARS

while JC / £ do
itx = y

then
begin
while (x =£ Z) (x is the rightmost symbol of p) do

begin
calculate *#•»; Z)res - Z>res n N^;
x «- left part of p;

jy|Aes
Pop the stack of domains and again define p

and /;
end;

then
begin
calculate Ap>; Dm «- Dtes n
increment i by 1;

O

syntactic action;
end

else syntactic action;
end

else semantic error;
else if xeYy

then if the right part of p is ^ £
then

then syntactic error
else

begin
; Zg,,0) ^

Jp K^amm) >

push D(p,o)mto t n e S t a c^ of domains;

syntactic action;
end

else
if 'null'e A ^ for all attributes of y

then
begin
insert y before x into the input string;

end
else syntactic error

else syntactic error;
end
Initially the symbols stack contains Z and Namm = A^o>1).
The occurrence of a syntactic error causes a call to the
recovery procedure described below.

Syntactic recovery algorithm

begin

while (x # /) and (xe J$) do
begu

i f / is not the last symbol in the stack of symbols
then y1«- symbol following / in the stack
else

begin
y' *-y; x *- symbol following x in the input

string
end

end
while y ^ y do

begin
if y is the rightmost symbol of p

then
begin

z <- left part of production p;

pop the stack of domains and again define
p and /;

calculate A/*B; Z)res <- D^nN?'®;

end
else /<-/•+ 1;

pop the stack of symbols;
end

Namm<-g%,i)(Dres);
end.
A semantic error detection results in the following simple
recovery procedure.

Semantic recovery algorithm

begin
look for the item of N^ for which the distance from
v[AJ is minimal; let a be such an item;
v[Ax]«-a;

end.

EXAMPLE OF RECOVERY

We now discuss an example of recovery from syntactic
and semantic errors. This example is quite long because
it is not easy to find a case both simple and significant.

Let us consider the grammar of Fig. 1, which describes
simple declarative or imperative sentences. The directory
set is associated to each production.

The attributes of terminal and non-terminal symbols
are shown in Fig. 2, while in Fig. 3 the domains
associated to each production are described. If we now
try to analyse the sentence 'Now the little boy ate an
apple', when entering the symbol 'ate' a semantic error is
detected, because the value of its tense attribute does not
match with the value of the attribute of 'now'. This error
is detected after the eleventh step of the parsing
procedure, in fact the input symbol 'Verbl' (see Fig. 5)
has the attribute values '2, A, T' and this triple is not
contained in N^^,.

Figure 4 shows the current production number, the
index of the current symbol within the current production,
the domain, the current content of the stacks of domains
and symbols, the input symbol and the fraction of the
sentence that must still be parsed when the error is
detected. The admissible triple nearest to the current
values of the attributes of Verbl is ' 1 , A, T' and so the
parsing procedure is resumed after having assigned this
triple to Verbl.

The case of syntactic error is more complex. Let us
consider the sentence 'now the little an apple' where the
words 'boy' and 'eats' are omitted. The syntactic error is
discovered after the tenth step of the parsing procedure
shown in Fig. 5, where the recovery algorithm is entered

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 3 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

A. BOCCALATTE, M. DI MANZO AND D. SCIARRA

1. <F)> ' ' = D
2. <F> : : = II
3. <IMP> : : =
4. <DEC> : :
5. <DEC1> :
6. <NG> : : =
7. < N G > : : =
8. <OBJ> : : =
9. < O B J > : : =

10. <VERB>:
11. <VERB>:
12. <ART>:: =
13. < A R T > : : =
14. <ADJ> : : =
15. <ADJ> : : =
16. <PREF>:
17. <PREF> :
18. <AUX1>:
19. <AUX1>:

E C #
vIP#
= <AUXl>Verbinf<OBJ>
= <PREF><DEC1>
= <NG> <VERB> <OBJ>
<ART> <ADJ> Noun
Pron

= <NG>
= £
: = Verbl
.' = Aux Verbinf
= Artl
= £
= Adjl
= £
= Prefl
= e

: = Don't
: = e

Prefl, Artl, Adjl, Noun
Don't, Verbinf
Don't, Verbinf
Prefl, Artl, Adjl, Noun
Artl, Adjl, Noun
Artl, Adjl, Noun
Pron
Artl, Adjl, Noun

Verbl
Aux
Artl
Adjl, Noun
Adjl
Noun
Prefl
Artl, Adjl, Noun
Don't
Verbinf

Figure 1

Production 1

F

IMP

DEC

DEC1

NG

OBJ

VERB

ART

ADJ

P R E F

AUX1

Verbinf

Noun

1°

1°

1°

1°

1°

1°

1°

2°

3°

1°

1°

1°

1°

1°

2°

1°

2°

Dl (present declarative)
D2 (past declarative)
IM (positive imperative)
IMN (negative imperative)

IM (positive imperative)
IMN (negative imperative)
1 (present tense)
2 (past tense)

1 (present tense)
2 (past tense)

A (living)
O (non-living)

E (OBJ exists)
N (OBJ does not exist)

1 (present tense)
2 (past tense)
A (verb implying living subject)
O (verb implying general subject)
T (transitive)
I (intransitive)

S (singular article)
P (plural article)
N (ART does not exist)

A (referred to living entity)
0 (referred to general entity)
N (ADJ does not exist)

1 (present tense)
2 (past tense)
N (PREF does not exist)

E(AUX1 exists)
N(AUX1 does not exist)

A (verb implying living subject)
O (verb implying general subject)
T (transitive)
I (intransitive)

S (singular)
P (plural)
A (living entity)
O (non living entity)

V(F)

Dl
D2

V(DEC)

1
2

V(#)

E
E

Production 2

V(F)

IM
IMN

V(IMP)

IM
IMN

V(#)

E
E

Production 3

V(IMP)

IM
IM
IM
IM
IMN
IMN
IMN
IMN

V(AUX1)

N
N
N
N
E
E
E
E

V(Verbinf)

AT
OT
AI
01
AT
OT
AI
01

V(OBJ)

E, N
E, N

N
N

E, N
E, N

N
N

Production 4

V(DEC)

1
2
1
2

V(PREF)

1
2
N
N

V(DEC1)

1
2
1
2

Production S

V(DEC1)

2
2
2
2
2
2

V(NG)

A
A
A
O
A
O
A
A
A
O
A
0

V(VERB)

1AT
1AI
10T

HOT
1OI
101
2AT
2AI
20T
2OT
201
201

V(OBJ)

E, N
N

E, N
E, N

N
N

E, N
N

E, N
E, N

N
N

Figure 2. Attributes of terminal and non-terminal symbols. Figure 3. Domains associated to each production.

334 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

Production 6

ERROR RECOVERY WITH ATTRIBUTE GRAMMARS

Production 11

V(NG)

A
A
O
A
A
O
A
A
A
A
0
O

V(ART)

S

s
s
p
p
p
N
N
N
N
N
N

V(ADJ)

A
0, N
0, N

A
O, N
O, N

A
A

0, N
0, N
0, N
O, N

V(Noun)

SA
SA
SO
PA
PA
PO
SA
PA
SA
PA
SO
PO

Production 7

V(NG)

A

V(Pron)

A

Production 8

V(OBJ)

E

V(NG)

A,0

Production 9
V(OBJ) = N

Production 10

V(VERB)

1AT
1AI
10T
1OI
2AT
2AI
20T
201

V(Verbl)

1AT
1AI
1OT
1OI
2AT
2AI
2OT
2OI

V(VERB)

1AT
1AI
10T
101
2AT
2AI
20T
2OI

V(Aux)

1
1
1
1
2
2
2
2

V(Verbinf)

AT
AI
OT
01
AT
AI
OT
OI

Production 12

V(ART)

S
P

V(Artl)

S
P

Production 13
V(ART) = N

Production 14

V(ADJ)

A
O

V(Adjl)

A
0

Production 15
V(ADJ) = N

Production 16

V(PREF)

1
2

V(Prefl)

1
2

Production 17
V(PREF) = N

Production 18

V(AUX1)

E

V(Don't)

E

Production 19
V(AUX1) = N

Figure 3 (continued)

with x = Artl(S), y = Noun, p = 6, i = 3 and the follow-
ing steps are performed (initially x = Artl, y = Noun).

1. y' <-Noun;
2. y' # x and * $ £ / and y' is not the last symbol of the

stack, then / <- VERB
3. / ^ x and x£X£ and y' is not the last symbol of the

stack, then y' <- OBJ
4. xe£®-, y' / y and y' is the rightmost symbol of pro-

duction p, then do the following: z *- NG; _y[Az] «-
[oh P°P the stack of domains; p *-S;i*-\\N^'S)*~
D°', Dies *~ if] (y is denned as in Fig. 4); / <- 2; pop the
stack of symbols (now y = VERB)

5. / / y and / is not the rightmost symbol of the
production p, then do: /«- 3; pop the stack of symbols
(now y = OBJ)

6. / = y, then N^^ *- [̂] and exit from the recovery
algorithm.

The parsing procedure can now be resumed starting from
the 14th step.

CONCLUSIONS

The parsing algorithm discussed in this paper allows the
handling of both syntactic and semantic errors in an
integrated manner.

With this technique no backtracking is needed when
an error is detected, so the typical properties of the LL(Ar)
syntactic parsers are extended to the semantic analysis.

The most important drawback of the proposed method
is its inability to handle inherited attributes. A determin-
istic parsing with inherited attributes is still an open
problem, because the values of the attributes of a symbol
depend on the values of the attributes of the symbols
which have been already parsed; therefore it is not trivial
to define a method to look ahead for possible errors while
evaluating this kind of attributes. The work in this field
is still in progress.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25. NO. 3,1982 3 3 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

A. BOCCALATTE, M. DI MANZO AND D. SCIARRA

1, N
2, N

" A
A

A,O
_A, O

1

I AT
1AI
1OT
1OI

0
*

E, N
N

E, N
N

[6] =

[H l -

Ie] =

A SAT
O, N SA
O, N SOj

]
]

N SA
N SO

S O SA
S O SO

[•»]=•

i w —

A 1AT
A 1AI
A 1OT

_ A 101
"1AT"

1AI
1OT

. 101 .

E, N
N

E, N
N .

[<x] = [A 1AT E, N]

p

6

5

10

i

3

2

1

SA, SO

1AT,
1AI,
1OT,
1OI

1AT,
1AI,
1OT,
1OI

Dm stack

* (1,0, (TO
(4,1,(1,1))
(5, 0, (y))
(6, 2,(«))

* 0,0, (TO
(4,1,(1 1))
(5, l.W)

#0,0, (TO
(4,1,(1 1))
(5,l ,(i7»
(10,0,04)

Symbol stack

1 § OBJ VERB
Noun

± 1 § OBJ VERB

* 1 * OBJ Verbl

X

Verb 1(2 AT)

Input string

ArtKS)Noun(SO)
#(E)

Error: V(AJ =

1AT
1AI
1OT

L 1OI

Figure 4. Situation after the 11th step of the parsing procedure (semantic error detected).

P

14

6

i

1

3

™ amm

A,O

SA, SO

D,a stack

* (i,o,(TO
(4,1,(1 0)

(6,1,(0))
(14,0, (A or O))

* d , o , (TO
(4,1,(1 D)

(6,2(s))

Symbol stack

yt 1 § OBJ VERB
Noun 14 Adjl

l§ OBJ VERB
Noun

X

Artl(S)

Input string

Noun(SO) § (E)

v - T S A 1 n -\S ° S A 1
*«"•"•-|_soj re5~Ls o s o j

Figure 5. Situation after the tenth step of the parsing procedure (syntactic error detected).

REFERENCES

1. D. E. Knuth, Semantics of context-free languages. Math.
SystemsTb.2. 127-145 (1968).

2. G. V. Bochmann, Semantic Equivalence of Syntactically Related
Attribute Grammars. Publ. 148, Department d'lnformatique,
Montreal (1969).

3. G. V. Bochmann, Semantic evaluation from left to right.
Communications of the ACM 19, 55-62 (1976).

4. G. V. Bochmann and P. Ward, Compiler writing system for
attribute grammars. The Computer Journal 21 (No. 2), 144-
148(1978).

5. K. Culik, Attributable Grammars and Languages. Publ. 3,
Department d'lnformatique, Montreal (1969).

6. D. R. Milton, L. W. Kirchhoff and B. R. Rowland, An ALL(1)
compiler generator. Proceedings of SIGPLAN symposium on
Comp. Constr., ACM SIGPLAN Notices 14 (No. 8), 152-157
(1979).

7. M. Saarinen, On constructing efficient evaluators for attribute
grammars, in Automata. Languages and Programming, Fifth
Colloquium, ed. by G. Ausiello and C. Bohm, pp. 382-397.
Springer-Verlag, Heidelberg (1978).

8. C. H. A. Koster, Affix grammars, in ALGOL 68 Implementation,
p. 95. North-Holland, Amsterdam (1971).

9. C. H. A. Koster, Two level Grammars, Seminar on Automata and
Mathematical Linguistic, Matematsch inst., Budapest (May
1970).

10. D. Crowe, Generating parsers for affix grammars. Communica-
tions of the ACM 15, 728-732 (1972).

11. A. Boccalatte and M. Di Manzo, An approach to the detection
of semantic errors. The Computer Journal'23 (No. 4), 317-323
(1980).

12. A. V. Aho and J. D. Ullman, Principles of Compiler Design.
Addison-Wesley, Reading, Massachusetts (1977).

13. S. Crespi-Reghizzi, P. Delia Vigna and C. Ghezzi, Trattamento
degli errori semantici. Atti del Congresso AICA. Genova. 297-
307 (1975).

14. G. Lyon, Syntax-directed least error analysis for context-free
languages—a practical approach. Communications ofthe,ACM
17,3-14(1970).

336 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

ERROR RECOVERY WITH ATTRIBUTE GRAMMARS

15. D. J. Rosenkrantz and R. E. Stearns, Properties of deterministic
top-down grammars. Information and Control 17, 226-256
(1970).

16. A. Van Wijngaarden, Orthogonal design and description of a
formal language, Mathematisch Centrum Report MR 76,
Amsterdam (1965).

17. W. T. Wilner, Declarative semantic definition. Rep. STAN-CS-
233-71, Computer Science Dept, Stanford (1971).

18. W. T. Wilner, Formal semantic definition using synthesized and
inherited attributes, in Formal Semantics of Programming
Languages. Prentice-Hall, Englewood Cliffs, New Jersey
(1972).

Received February 1981

© Heyden & Son Ltd, 1982

Book Reviews
Continued from p. 396

R. S. HAYES AND C. R. BAKER
Simplified Accounting for the Computer
Industry
Wiley, Chichester, 1981. 191 pp. £15.95.

The title of this book suggests a textbook
capable of educating computer personnel only
in the art of accounting principles. It certainly
achieves this objective and indeed it also
provides a valuable insight for the accountant
on how the computer professional will design
and implement a computer system. There is a
great deal of information describing how the
system designer goes about his job or how he
should do so. How often we find the analyst to
be a raw recruit learning his trade at the
expense of others. The method of presenting
the information is a refreshingly new approach
to loading the human computer with facts.
The book starts like any Ian Fleming novel.
'You could feel the sun, but it was not hot. The
sky was the blue of lapis lazuli. Kimberly
Rogers sat in the garden looking at its
reflection in a pool of water...'. And if that is
not enough to get any male accountant or
systems analyst interested, it turns out that
Kimberley is attractive, sophisticated and
black and she has a passion . . . for knowledge.
The story centres around the implementation
of a computerized accounting system for Hero
Manufacturing by Kimberly and her Egyptian
boyfriend who is an accountant. Chapter by
chapter she tells us how she approaches each
assignment and then provides accounting
details and principles of implementing such a
system. It is interesting to note that the implied
hardware is a mini or micro on-line system
and not the expensive monster of the past. In
order to provide the necessary accounting
principles to back-up the computerized sys-
tems, Kimberly's boyfriend gives a series of
lectures which are well-presented and easy to
follow, and like any good lecturer allows time
for questions at the end and a summary. The
book explains the accounting terms to the
computer man and computer terms to the
accountant in a manner that will make the
reader want to go on the next chapter like the
storyteller in her search for knowledge. I
believe this book will be invaluable to systems
analysts and accountants who wish to know
more about their brothers' skills.

T. M. BARNARD
London

A. S. TANENBAUM
Computer Networks
Prentice-Hall, Englewood Cliffs, New Jersey,
1981.517 pp. £18.20.

There is an ambiguity in the title of this
book—is it a book about networks for com-
puters, i.e. a book about data transmission
networks? Or is it a book about networks of
computers, that is a book about a collection of
linked machines forming a distributed system?
One suspects that the ambiguity may be
deliberate. In any event, the book treats both
aspects, although the principal emphasis is on
data transmission networks, realized of course
as a network of computers. The later chapters
touch on the systems aspects of distributed
systems, but cannot be regarded as a full
treatment of the subject.

The main body of the material is a thorough
treatment of the current situation on data
transmission, based on the notions of the 150
'seven layer' system. This naturally, and
properly, forces a highly structured approach
to the subject, and the author uses this structure
to map three major networking systems, the
ARPA net, IBM's SNA, and Digital's DEC-
NET on to the 150 model. As is cheerfully
admitted, this mapping is at some points a
little strained. Within this framework, the
emphasis is on wide area networks, operating
over noisy lines of limited bandwidth and high
recurrent cost, but again with one chapter
dealing with the rather different problems
encountered for local area networks, especially
those using Aloha-type broadcasting. For UK
readers, the rather cursory treatment of ring-
based systems may be rather disappointing.

Overall this book presents a well-balanced
treatment of its subject area—I enjoyed read-
ing it, and hope that my own students will find
it as enjoyable when I recommend it to them.

M. WELLS
Leeds

GIJSBERT VAN DER LINDEN (ED.)
APL80
North-Holland, Amsterdam, 1980. 370 pp.
$48.75.

This book is a 'must' for the devotees of APL.
It consists of papers presented at an interna-
tional conference on APL held in June 1980 in
the Netherlands. After an introductory paper

by Iverson himself the remaining papers are
grouped under the headings: Use of language,
Methodology, Simulation, APL systems, Pro-
gramming techniques, Design of language,
Application, Database applications, Educa-
tion, Data analysis and Special topics and also
included are a handful of papers by invited
speakers.

The reviewer has always been suspicious of
APL enthusiasts about the use of APL in
business computing, largely on the grounds
that a key element in business data processing
is the detection and handling of input errors,
a topic which few APL specialists have seemed
to find interesting. It was therefore salutary to
find two papers (Mayforth on 'APL as a
language for applications programmers' and
Gardner and Swain on 'A group of input
utility functions') specifically addressing this
problem. My guess is that almost everyone
with a knowledge of APL will find something
of interest in this book.

P. G. RAYMONT
Manchester

PATRICK D. T. O'CONNOR
Practical Reliability Engineering
Heyden, London, 1981. 300 pp. £12.00.

The area of the many aspects of reliability is
hazy for many computer professionals and yet
is one of which we are all going to become
increasingly aware, as systems are used in
ever-increasing numbers.

To those professionals who have not yet
considered reliability or do not know where to
begin, I can readily recommend this book due
to its very easy style, step-by-step introduction
and comprehensive coverage. The many ref-
erences to published works also serve to aid
those who, having read the book, wish to learn
more.

Before anyone should reject the book on the
grounds that it is concerned with 'engineering',
I would like to refer them to Chapter 8,
"Software Reliability', which forms an ex-
tremely good starting point for the computer
professional.

Overall the book is of a high quality, good
presentation and contains few errors.

P. A. BENNETT
Brigg

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 3 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/331/369748 by guest on 10 April 2024

