
Analysis and Optimization of Set Expressions

R. Nigel Horspool and Laurence W. Dunkelmanf
School of Computer Science, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada

The problem of minimizing the lengths of bit vectors used to implement sets in Pascal is considered. An analysis
algorithm is presented that determines these minimum lengths. It is proved that two passes are both necessary and
sufficient. Implementation concerns involving sets and the analysis algorithm itself are considered.

INTRODUCTION

The Pascal programming language, of all the commonly
used languages, is unusual in providing sets. A program
may manipulate sets of integers (or sets of any scalar
type) and perform the standard set operations of union,
intersection and difference. In addition, Pascal defines a
set membership test, set equality tests, set inclusion tests
and a function for calculating the cardinality of a set.
Some less widely available languages that provide sets
and set operations are SETL,1 MODULA,2 EUCLID3

and SUE.4 Of these, all but SETL owe much of their
character to Pascal.

Many different data structures are suitable for the
implementation of sets. Possibilities include data struc-
tures based on linked lists,5 on binary trees,5-6 on 2-3
trees,5 on trie memory7 and on hash tables.5'8 However,
the most convenient data structure from the compiler
writer's point of view is a bit vector. With such a
representation, a one bit in index position i indicates the
presence of / in the set (and a zero indicates its absence).
Of course, it is not mandatory for the first bit to
correspond to index value 1 (or 0); nor is it necessary for
set elements to be integers (we can use the internal binary
representation of almost any datatype to index the bit
vector).

Bit vectors provide the representation that is most
economical in storage if the range of permissible element
values is not great. Furthermore, set operations can be
directly compiled into logical instructions that are almost
always available on the target computer. For example, a
set union may be compiled into an 'OR' instruction.

The Pascal Report (Ref. 9, report section 14) advocates
the bit vector representation for sets and it explicitly
permits implementors to limit the allowed ranges of
element values for this purpose.

If bit vectors are used to implement sets, how large
should these vectors be? In several Pascal implementa-
tions, including the original Zurich compiler for the CDC
6000, all sets occupy exactly one word of memory. For
the Zurich compiler, this leads to the restriction that the
elements of sets must have (internal) values that lie in the
range 0-58 [Ref. 9, user manual section 13.C].

Giving all sets the same storage size and picking some
convenient unit, such as a word or a doubleword, for this
size is unnecessarily restrictive. On some computers this
may have unfortunate consequences. A typical problem

fThis work was supported by the Natural Sciences and Engineering
Research Council of Canada under grant A4333.

is caused by sets with character valued elements.
According to the Pascal manual, a statement with the
structure

if INPUTt in ['A'..'Z\ '0'..'9'] then....

is quite legal and very useful. (In fact, statements similar
to this appear in several programming primers for
Pascal.) However, characters may have a six, seven or
eight bit internal representation (depending on the
computer and the operating system environment). This
implies that a set with character elements may need up
to 64,128 or 256 bits of storage respectively. It is unlikely
that the target computer's word size (or even the
doubleword size) is quite that large. CDC 6000 Pascal
comes quite close—six bit characters are used and the
word size is large enough that nearly all sets with
character elements can be represented. However, we are
faced with the unfortunate fact that several Pascal
implementations so restrict the allowed range of element
values that sets of characters become (almost) unusable.
(Explaining to a class of novice programmers why they
cannot use sets of characters is a trial in itself.) As Welsh
et al. points out,10 even an apparently implementable
type definition such as 'set of 1939.. 1945' may be
disallowed due to compiler restrictions on sets.

Ideally, we would like to totally remove any restrictions
on set element values. The bit vectors used to implement
set constants, set variables and intermediate set expres-
sions should be made just as large as necessary. Code
generation is certainly made a little more difficult because
a single set operation such as union may have to be
compiled into several logical instructions—each process-
ing different segments of the big vectors involved.
Alternatively, it may be more convenient to compile set
operations into calls on run-time support routines.
However the enhanced user convenience should more
than outweigh the difficulties of code generation.

It is a trivial problem for a compiler to determine the
storage needed for set constants and set variables. To
simplify our exposition here, we will assume that bit
strings with arbitrary lengths may be accessed and
manipulated fairly easily on the target computer. Later,
we will discuss some implementation compromises that
are desirable for simplifying code generation and for
making the compiled code more efficient. A variable
declared with the type 'set of 0. .99' clearly requires 100
bits of storage. A set constant such as [5, 10, 12, 22]
requires 18 bits because its type is implicitly 'set of 5. .
22' (although Welsh et al.10 argue that its implicit type is
really 'set of INTEGER') and there are 18 values in the

CCC-0010-4620/82/0025-0340 $03.50
3 4 0 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

ANALYSIS AND OPTIMIZATION OF SET EXPRESSIONS

varS1: set of 0 .. 20;
S2: set of 5 .. 15;

(•PRINT OUT HOW MANY ELEMENTS ARE IN
EITHER S1 0RS2 BUT NOT IN BOTH.')

WRITELN (CARD ((S1 + S2) - (S1 «S2)));

Figure 1

range. It is less trivial for the compiler to decide how
much storage to allocate to an intermediate set expression.
Consider the sample program fragments shown in Fig. 1.
The intersection Sl*S2 is computed and must be saved in
temporary storage. A simple one-pass compiler can easily
determine that the range of values for S1*S2 is the
intersection of the ranges for SI and S2. That is, the
compiler can allocate a temporary set variable whose
element range is 5 . . 15. Similarly, the range of values for
the union SI + S2 can be calculated as 0. . 20.

However, there are frequent situations when a one-
pass compiler cannot deduce a finite range for the
elements in an intermediate set. For example, consider
the pair of Pascal statements given in Fig. 2. If I and J
have been declared as having INTEGER type, then the
possible range of element values in the newly constructed
set (i.e. the term in square brackets) is unknown to the
compiler. We will refer to this new set as a 'set
constructor' in the discussion below. The set constructor
clearly needs to be allocated some temporary storage,
like any intermediate set expression. The implicit type of
the set constructor's result is 'set of INTEGER', therefore
we should theoretically implement the set constructor as
a doubly-infinite bit vector. In practice, a one-pass
compiler would have to impose some implementation
restriction and assume some maximum range for the
elements in a newly constructed set. But inspection of the
example statements reveals that a multi-pass compiler
can find a small finite range for each intermediate set in
the assignment statement. There are two factors at work
here. First, the final effect is to assign a set to variable SI.
This variable has some declared range for its element
values. There is no purpose to computing or remembering
element values outside the range declared for SI. If the
right-hand side of the assignment should turn out to
contain element values outside the range declared for the
left-hand side, this would be an error and a diagnostic
compiler would be obliged to report this error. However,
an optimizing compiler may be forgiven for ignoring the
possibility of such errors. For efficiency, it should simply
not inspect elements in operand sets that are outside the
declared range for elements of the target variable.
Therefore, an optimizing compiler should allocate no
more storage to the set constructor than it does to SI. The
same consideration applies to the two other temporary

var SI: set of 0 . . 100;
S2: set of - 1 0 0 . . 200;
S3: setof-50. .150;
I,J: INTEGER;

READ (I. J);
S1 := ([I,J, I

Figure 2

S2)*S3;

set expressions that are calculated. The second point to
notice is that there is an intersection with S3. This
intersection is guaranteed to eliminate all elements
outside the declared range for elements in S3. Hence the
set constructor and the two temporary sets need be
allocated no more storage than S3. Either or both of these
two effects may be important in minimizing the storage
allocated to temporary sets.

The EUCLID language3 avoids problems with newly
constructed sets because it requires an explicit type name
to be supplied. For example, iflNTSET has been defined
as the name for the type 'set of 0. . 100' then the expression
INTSET (I, J) would be used to denote a set constructor
(for a set of type INTSET) with elements I and J. Thus,
the EUCLID compiler immediately knows some reason-
able bounds for a bit vector to implement the set
constructor. A similar proposal has been suggested for
Pascal10 and implemented in one version of Pascal.1'

In this paper, we will show that the removal of all
implementation restrictions on set element ranges in
Pascal is an impossible goal if we are constrained to use
a pure bit vector implementation. However, for most
practical situations, the goal is realizable. We will present
an algorithm for analyzing set expressions and set
assignments in order to determine minimum storage
allocations. This may permit more efficient translations
of set operations into instructions on the target computer.
We will also prove that two passes through the interme-
diate code, one forwards and one backwards, are required
by our algorithm in the worst case.

OPTIMIZATION OF SET EXPRESSIONS

We will first consider how to analyze an isolated set
expression or a single assignment of a set expression to a
variable. We will discuss more general analysis of set
operations subsequently. We will consider only set
expressions that can be represented as trees. The more
general DAG (Directed Acyclic Graph) form12 that can
arise after certain optimizations have been performed
will be discussed later.

The algorithm is based on iterative improvement of
range information currently known to the compiler. If S
is a set variable, intermediate set variable, set constant or
a set constructor, then we will use Range (S) to denote the
set of all values that the compiler believes to be useful
elements of S at this point in the program. (Useless
elements in S would be any elements whose presence
cannot influence the computation of the complete set
expression or assignment.) For example, if S is a variable
with the declared type 'set of 10.. 100' then Range (S)
will be a set containing some, but not necessarily all,
values in the range 10-100. The result of our analysis will
be used to influence the code generated by the compiler
for the expression under consideration. One of its
objectives is to reduce the amount of storage allocated to
temporary set variables. A second objective is to improve
the execution time of the code generated for the set
expression. However, the analysis cannot immediately
be used to reduce storage allocated to set variables
declared by the programmer. (This would require global
program analysis.)

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 4 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

R. N. HORSPOOL AND L. W. DUNKELMAN

Consider a specific set operation such as

T = L * R

where T denotes a compiler generated temporary set
variable. Initially, no range information would be
available for the elements of T and Range (T) would be
initialized to the universal set. Usually a little information
about L and R would be initially available to the compiler
(from declarations for L and R perhaps). This information
is represented by Range (L) and Range (R). Now, the
range information for T can be improved by applying the
formula:

Range' (T) <- Range (T) • Range (L) • Range (R)

where Range' (T) represents a possibly more restricted
set of possible elements in T and that should replace
Range (T) in future analysis.

The rule for improving the range of T, above, can be
applied in a conventional one-pass compiler. That is,
information about element ranges is propagated forwards
in the program. However, propagation of information in
the opposite direction is also possible. Returning to our
specific example of the intersection, the following rule is
also valid:

Range' (L) <- Range (T) • Range (L) • Range (R)

and there is a similar rule for Range' (R). This pair of
rules corresponds to information being propagated both
backwards in a program and sideways (from sibling to
sibling) in an expression tree.

After this preliminary explanation, we can now state
our analysis algorithm more formally. There are three
parts to the method, of which the first two parts merely
define how the data is to be presented.

Step 1. The set expression or set assignment to be analyzed
must be decomposed into a sequence of elementary set
operations. These elementary operations correspond to
'code triples' that are often used as an intermediate
program representation in compilers.12'13-14 Each oper-
ation must take one of the forms:

T = L op R
or
V = L

where op represents one of the operations ' + ' (union),
' *' (intersection) or' —' (difference); T denotes a compiler
generated temporary set variable; V denotes the target
variable in an assignment; L and R each denote a set
constant, set variable, temporary set variable or a set
constructor. Note that the form 'V ;= L' is only used when
we are analyzing an assignment (rather than an isolated
expression) and, in this case, it is always present and
appears as the last operation.

Step 2. The compiler must determine initial range
information for every object in the expression/assignment
that represents a set. When S is a constant set, Range (S)
is simply equated to that set. When S is a set variable,
Range (S) is simply initialized to a set containing all
values in the declared range. If a set variable S occurs
more than once in the expression or assignment, we must
establish a separate range set for each occurrence of S.
For a set constructor or a temporary set, Range (S) would

normally be initialized to a set containing all values of
the appropriate datatype. Of course, we need a special
representation for a universal set when the element type
is INTEGER. Also, it should be noted that information
obtained from sources other than the program declara-
tions (e.g. from other analysis techniques) may be used to
reduce the sizes of the initial range sets.

Step 3. The compiler makes a forward pass and then a
backward pass through all the set operations in the
sequence. For each operation encountered, the compiler
applies the rules of Table 1 to deduce new range sets for
every operand appearing in the operation. The range sets
cannot become larger as a result of these actions and
would usually become smaller. Note that the analysis
rule given for a set assignment should not be applied if
detection of out-of-range set elements is required. After
these two passes, the range sets are the smallest possible
(without resorting to analysis of other components of the
program) and their contents may be used to optimize set
operations and storage allocations.

Table 1

Operation or
expression

T : = L + R

T:=L*R

T:=L-R

T:=La

L<=R

L> = R

Iteration rules

Range' (T) <- Range (T) '
(Range (L)

Range' (L)«- Range (T) '
Range' (R) - Range (T) *

Range' (T),
Range' (L),
Range' (R) <- Range (T)"

Range' (T),
Range' (L)«- Range (T) *
Range' (R)«- Range (T) *

Range' (L) <- Range (T) *

Range' (R)«- Range (L) "

Range' (L) - Range (L) "

+ Range (R))
Range (L)
Range (R)

Range (L) • Range (R)

Range (L)
Range (L) * Range (R)

Range (L)

Range (R)

Range (R)

'Note: the rule for T := L should only be applied if there is no
requirement to check that the right-hand variable, L, does not
contain elements outside the declared range for V.

An example of the operation of this algorithm is shown
in Figs 3(a), (b) and (c). The relevant fragments of a
Pascal source program are shown in Fig. 3(a); the
corresponding sequence of elementary set operations
(code triples) is shown in Fig. 3(b); the successive
contents of the range sets are shown in Fig. 3(c). (In Fig.
3(c), we have used 'U' to represent the universal set
containing all values of the INTEGER datatype.)

The example illustrates two things. First, it shows that
the range sets do not necessarily consist of consecutive
sequences of element values. This is why we chose to
represent the range information by sets rather than by a
pair consisting of the smallest and largest element values.
The use of such a pair would be a great implementation
convenience and its implications are discussed in the
next section of this paper. Secondly, the example shows
that a single forwards pass is not sufficient for minimizing
the range sets. The reader may verify for himself that a
single backwards pass on this example would not be
sufficient either.

3 4 2 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

ANALYSIS AND OPTIMIZATION OF SET EXPRESSIONS

(a)

(b)

(c)
Set

S1
S2
T1
S3
T2
S4
T3
SO

var

SO:

T 1 :
T2:
T3:
SO:

Range set,
initially

(8.
(17

{9-

(5.

(0.

.12)
..35)
U
.40)
U
• 25)
U
.20)

SO:
S1:
S2:
S3:
S4:

= (S1

= S 1 -
= T1 -
= T 2 .
= T3

set of
set of
set of
set of
set of

+ S 2 -

f S2
- S 3
S4

0 . .
8 . .

17 ..
9 . .
5 . .

S3).

Range set, after
Pass 1

(8. .12)
(17..35)
(8.
IS-
fS.
(8.
(8.
(0.

.12,17.

.12,17.

.12,17.

.12,17.

.12,17.

.20]

.35)

.35)

.35)
•25)

.20)

20;
12;
35;
40;
25;

S4;

Range set, after
Pass 2

(8.
{17
(8.
f9.
{8.
(8.
(8.
{0.

12)
.20)
12,
12,
12,
12,
12,
20)

17.
17.
17.
17.
17.

.20)

.20)

.20}

.20]

.20]

Figure 3

To justify our statement that two passes through the
source code are sufficient, we will introduce a lemma and
then a theorem that proves the desired result.

Lemma. In the second (upward) pass through the code,
the analysis rules applied to any operation of the form:

T = L o p R

cannot cause any modification to the range set for T. •

Proof. Consider a particular operation'T = L op R' in the
sequence. Let 'Pre (T), 'Post (T), 2Pre (T) and 2Post (T)
denote the values of Range (T) immediately before
applying the analysis rules to this operation on the first
pass, immediately afterwards on the first pass, immedi-
ately before on the second pass and immediately
afterwards on the second pass, respectively. Thus,
the result we wish to prove for this lemma is that
2Pre (T) = 2Post (T).

Application of the analysis rules in Pass 1 implies the
following relation:

'Post (T) = 'Pre (T)*Z (1)

where Z denotes a particular function of Range (L) and
Range (R). The form of the function depends on the
operation being carried out.

After the operation is analyzed in Pass 1 and before it
is re-analyzed in Pass 2, the Range (T) set may be
modified (perhaps twice). However, every analysis rule
takes the form:

Range' (X)«- Range (X) * some-set

and this implies that Range' (X) s Range (X). Therefore
we have the relation:

2Pre(T)<= 'Post(T) (2)

Application of the analysis rules in Pass 2 implies the
relationship:

2Post(T) = 2Pre(T)*Z (3)

The important observation to make is that Z denotes
exactly the same set as on Pass 1. Neither Range (L) nor
Range (R) can have been affected in the meantime
because they simply do not appear in any analysis rules.

From Eqns 1 and 2, we infer that 2Pre (T) s Z .
Therefore we have 2Pre (T) * Z = 2Pre (T). Combining
with Eqn 3, we obtain the desired result,2 Post (T) = 2Pre
(T).

Theorem. Two passes through the source code, one down
followed by one up, are sufficient.

Proof. Let us assume the theorem to be untrue. Suppose
that there is a sequence that requires a third pass. Let us
consider the first operation that causes a range set to be
modified on a third pass. (It does not matter whether we
assume that this third pass goes through the code
sequence up or down.) First, this operation in question
cannot be an assignment operation with the form 'V =
L' because it is clear that Range (L) can be changed only
once by the corresponding analysis rule. Therefore, the
operation must have the form'T = L op R\

If L represents a constant set, a set constructor or a set
variable, then Range (L) is a distinct set not subject to
change when any operation other than the one under
consideration is analyzed. If L represents a compiler
generated temporary, then L may only appear on the left-
hand side of some other operation in the sequence.
According to the lemma, Range (L) cannot have been
changed when this other operation was processed in Pass
2. Similar arguments hold for R, that is neither Range
(L) nor Range (R) can have changed since the operation
was analyzed in Pass 2.

T denotes a compiler generated temporary. It does not
precede the operation under consideration in the se-
quence. Thus, Range (T) could not have been changed
subsequently to this operation being analyzed in Pass 2.
Of course, Range (T) could not have been changed in
Pass 3 yet because, by supposition, we are considering
the first operation in Pass 3 where a change occurs.

If none of Range (T), Range (L) and Range (R) have
changed since the analysis rules were applied to the
operation in Pass 2, then re-application of the rules will
not produce any different results.

Thus, we have contradicted our initial assumption that
some range set is altered by Pass 3 and hence a third pass
cannot be required.!

As a final note, we would like to point out that no other
combination of two passes is sufficient. That is, there are
code sequences for which two down passes, two up passes
or even an up pass followed by a down pass do not
produce minimal range sets. An example of an instance
where an up pass followed by a down pass is insufficient
is shown in Fig. 4.

varSO, S1,S2: set of 1 .. 100;
S3, S4: set of 1 .. 10;

S0:=(S1 +S2)*(S3 + S4);

Figure 4

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 4 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

R. N. HORSPOOL AND L. W. DUNKELMAN

IMPLEMENTATION CONCERNS

The analysis algorithm presented in the previous section
is a little too powerful and too expensive in storage for
most applications. The algorithm generates sets that list
all relevant element values for an expression or assign-
ment. However, the compiler probably needs to know
only the values of the smallest and largest elements that
need to be fetched, stored or manipulated. This infor-
mation is sufficient for allocating storage to temporaries
and for generating the logical instructions that implement
the various set operations.

It is natural to propose that the algorithm should be
modified so that the Range sets are implemented as value
pairs. The pair naturally consists of the values of the
smallest and largest useful elements. These value pairs
may be merged and intersected in an analogous way to
sets, so there should be no need to re-explain the analysis
algorithm.

There is one drawback to using value-pairs as the
implementation of the Range sets. It is that we can no
longer guarantee two passes through the code to be
sufficient. In the worst case, the number of passes may be
proportional to the number of set unions in an expression.
An example set assignment that needs three analysis
passes is exhibited in Figs 5(a), (b) and (c). In Fig. 5(c),
'U' denotes the universal range and '# ' denotes an empty
range. A generalization of this example is given in Fig.
6. This figure shows an example containing 2k — 2 unions
that requires 2k passes.

varS1:setof 10..19;
S2: set of 3 0 . 3 9 ;
S3: set of 50 . . 59;

T1: set of 20 . . 29;
T2: set of 4 0 . 4 9 ;
T3: set of 60 . . 69;

(a)

(b)

(c)
Set

S1
S3
T1
S2
T2
SO

Range set,
initially

<1- 10)
<21,30>

U

U
<1, 1000>

varSO: set of 1 ..
S1: set of 1 ..
S2: set of 11 ..
S3: set of 21 ..

S0:=(S1 +

T1 :=S1
T2:=T1»
S0:=T2;

Range set,
after pass 1

<2'i,30>
(11,20)
(11, 20)

S3)*

+ S3;
S2;

1000;
10;
20;
30;

S2;

Range set,
after pass 2

<11,
<11,

<t>
i>
<t>
20)
20>
20>

Range set,
after pass 3

<t>
<P

m

m

Figure 5

Inspection of Fig. 6 reveals that the sample set
expression possesses a curious property. The analysis
algorithm successively finds that the unions can have no
effect on the final result. This situation characterizes the
case when additional passes through the code are
required. Expressions that contain totally redundant
terms are not very common. However, programmers may
justifiably choose to structure their expressions for clarity

V:setof0..MAXINT;
V:=(S1+S2+ ...+S*)

Figure 6
... +T*);

rather than for efficiency. Therefore, we recommend
making the following addition to our analysis algorithm.
We simply add a fourth step as follows:

Step 4. If any Range sets were newly discovered to be
empty in the upward pass of step 3 then return to step 3.

We shall omit a formal proof that the revised algorithm
is correct. Instead, we will suggest some modifications to
the proof of the original algorithm that render it
applicable to the new version of the algorithm. First, the
lemma must be restated to say that the upward pass
through the code cannot modify the range set for T unless
one of the range sets for L or R has been found to be
empty in this pass. (The proof of the lemma needs to be
restructured so that the properties of range unions and
range intersections are used rather than the properties of
set unions and set intersections.) Second, the theorem
must be restated to say that two passes are sufficient
except when a range set is newly discovered to be empty
in the second, upward, pass. The proof of the theorem
needs no substantive change. Finally, we argue that step
4 of the revised algorithm automatically forces two more
passes through the code whenever the theorem does not
apply. Hence, we can conclude that step 4 guarantees
that a sufficient number of passes through the code are
made.

A minor issue of concern to implementors is bit vector
alignment in the generated code. Most computers group
bits together into basic units such as bytes or words. The
logical instructions of the computer would normally
operate on an entire storage unit at a time. It would be
quite inconvenient to generate code for a set union if the
first operand were not aligned with respect to word
boundaries in the same way as the second operand.

To avoid alignment problems, it is desirable to pad
sets with filler bits so as to maintain consistency between
all sets in the program. For example, with a 16-bit word
size, we would pad the sets so that the first bit in every
word used for set storage corresponds to the same element
value modulo 16.

DISCUSSION

There are a few contexts in Pascal where strict typing
restrictions are not imposed on sets. One obvious example
occurs with the built-in function CARD, which counts
the number of elements in a set. CARD is a generic
function that may be applied to a set of any size or with
any element type. An implication is that we may be
unable to derive a suitable size for a bit vector that
implements the argument to the CARD function. For
example, the statement

I=CARD([1,4,9,J*K]);

3 4 4 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

ANALYSIS AND OPTIMIZATION OF SET EXPRESSIONS

defeats our analysis algorithm. Unless there are some
reasonably tight bounds available for the values of J and
K in the example, we cannot determine any bounds on
elements of the set constructor.

Other examples of contexts where generic sets are
permitted occur with comparisons between sets and in
passing sets to formal procedures (i.e. procedures that
are parameters of the current procedure).

A Pascal compiler implementor has only two choices,
unless he changes the language by, perhaps, following
the lead of EUCLID. Either the implementor must retain
some default size of bit vector that will be used for set
constructors (in cases where the compiler cannot deter-
mine the element range) or else he must use a different
implementation for sets. Possibly a sophisticated com-
piler might support two different implementations for
sets, using a general implementation such as linked-lists
for only those situations where the compiler cannot
derive the limits.

Most analysis and optimization algorithms can operate
on several different program levels. The four levels often
cited in the literature (e.g. see Refs 12 and 13) are: (1) the
expression level; (2) the basic block level; (3) the
procedure level and (4) the program level.

We have presented our analysis algorithm as one that
operates on the lowest level only, a single expression (or
assignment). Our choice was made so as to simplify the
explanation and also because the most worthwhile
optimizations should involve the use of temporary set
variables. Such temporary sets can only occur within the
code generated for a set expression.

It is possible to extend the algorithm to higher program
levels. We will not give the necessary extensions in great
detail because we are not convinced of the usefulness of
analysis performed at the higher levels. We will simply
sketch out the algorithm as adapted to basic blocks (and
therefore also to DAG-structured expressions). We leave
it to the reader to fill in any missing details.

A basic block is simply a sequence of program
statements which has no internal control flow (other than
the implicit sequencing from one statement to the next).
At the code triple level, a basic block is a sequence of
triples where only the last triple is permitted to effect a
control transfer (such as a conditional branch). Our
analysis algorithm will piocess all the code triples twice,
once in a downwards pass and then once in an upwards
pass.

There are two preliminaries. We should first perform
a use-definition analysis13 of the basic block. This
analysis determines all the places within the basic block
where a value is used after it has been created (or
defined). We also must associate separate range sets with
every occurrence of each set variable or temporary in the
basic block. These range sets should be initialized in the
same way as before.

When the downward pass encounters a triple perform-
ing a set operation, with the form ' T = L op R', the
actions are as follows. If L represents a variable or
temporary that has been previously defined (i.e. assigned
to) in this basic block, then there is a range set associated
with that definition. Let us call this set Range (LJ. We
use Range (L<j) to restrict the range set associated with
the current use of L by performing the intersection

Range (L) <- Range (L) * Range (LJ.

A similar action should be performed for R, if required.
Then, the rules given in Table 1 may be applied.

The actions needed for the upward pass are different.
When a set triple of the form'T = L op R' is processed,
we must propagate range information backwards into
Range (T). The value of T that is computed by this triple
is used in one or more subsequent triples. Each of these
uses has an associated range set; let us denote these sets
by Range ('TJ, Range ^TJ, etc. The propagation is
performed by the operation,

Range (T) *- Range (T) * (Range OTJ +
Range (2TJ + . . .)

After this, the rules of Table 1 may be applied again to
this triple.

We contend that set analysis is unlikely to produce
very interesting or useful results when applied at program
levels higher than the expression level. Assuming that
the programmer is not writing redundant code, the kind
of information that is generated is limited. All that this
information can show is that some set variables do not
get used to their full potential. That is, at some points in
a program a set variable may not hold the full range of
elements that are implied by the variable's declaration.
Sometimes, this information may be used to optimize a
subsequent set operation, but we feel that this will occur
rarely.

The set analysis algorithm is quite unusual in that it
requires both forward and backward propagation of
information. The standard algorithms of the literature
perform their information propagation in one direction
only. Some algorithms, such as available expression
analysis, propagate forwards and other algorithms, such
as live variable analysis, propagate backwards.12'13

There is a simple intuitive reason why our algorithm
must propagate in both directions. It is because we deal
with two kinds of information which, when combined,
yield tight ranges on set elements. In the forwards
direction, we propagate information about which element
values can possibly occur in the result of a set operation.
(Since this information is derived from similar informa-
tion about the operands of the operation, the propagation
is forward.) In the backwards direction, we propagate
information about which element values are useful.
Knowledge that elements outside a certain range can
have no effect on the final result of an expression can be
propagated from an operation's result to its operands.

As a final topic for discussion, we consider interactions
between set analysis and other compiler analysis and
optimization algorithms. The order that different optim-
izations are applied can be quite important. We recom-
mend that the set analysis algorithm be applied before
common subexpression elimination.12 One trivial reason
is that common subexpression elimination can destroy
the normal tree structure of expressions. If two occur-
rences of the same subexpression are found in the same
expression, combining them transforms the expression
tree into a DAG. Our original algorithm does not operate
correctly on a DAG and requires the extensions outlined
earlier. A second, and more important, reason is that
common subexpression elimination may actually worsen
the code generated for set expressions. An example of
this is illustrated in Fig. 7. However, if the set analysis is

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 4 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

R. N. HORSPOOL AND L. W. DUNKELMAN

varA, B, D, S:
C:
E:

S:=((A +

set of 0 ..
set of 0 ..
set of 90

99;
9;
. 99;

CONCLUSIONS

D) - (A + B) * E ;

Figure 7. (Note: The subexpression A + B should not be
recognized as being common. If it is, it will require a logical OR of
two 100-bit vectors. If it is not, both occurrences separately require
a logical OR of only 10 bits each.)

performed first and if operations that manipulate differ-
ent ranges of elements are not considered to be identical,
the two subexpressions are no longer found to be
common.

The problem of determining minimum (finite) storage
allocations for Pascal sets implemented as bit vectors is
known to be unsolvable. For most practical situations,
however, the goal can be realized without imposing
restrictions on set element ranges. An algorithm for
performing the necessary analysis was presented. The
first version of the algorithm required two passes through
the intermediate code of the Pascal program. A second
version of the algorithm that is more easily implementable
in a compiler was subsequently presented; however, this
version of the algorithm sometimes requires more than
two passes.

REFERENCES

1. K. Kennedy and J. Schwartz, An introduction to the set theoretic
language SETL. JournalofComptr. and Math, with Applications
1,97-119(1975).

2. N. Wirth, MODULA 2. Technical Report 36, Institut fur
Informatik, E.T.H., Zurich (March 1980).

3. B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell and
G. L. Popek, Report on the programming language Euclid.
SIGPLAN Notices 12, 2 (Feb. 1977).

4. B. L. Clark and F. J. B. Ham, The Project SUE System Language
Reference Manual. Computer Systems Research Group, Uni-
versity of Toronto, Tech. Report CSRG-42 (Sept. 1974).

5. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
Massachusetts (1975).

6. M. R. Brown and R. E. Tarjan, A fast merging algorithm. Journal
of the ACM 26, 211-226 (April 1979).

7. L. Trabb Pardo, Set Representation and Set Intersection. Ph.D.
Thesis, Computer Science Dept, Stanford University, 1978.

8. R. B. K. Dewar, A. Grand, S.-C. Liu, J. T. Schwartz and E.
Schonberg, Programming by refinement, as exemplified by the

SETL representation sublanguage. Transactions on Program-
ming Languages and Systems 1 (No. 1), 27-49 (July 1979).

9. K. Jensen and N. Wirth, Pascal User Manual and Report. 2nd
edition, Springer-Verlag, Heidelberg (1975).

10. J. Welsh, W. J. Sneeringer and C. A. R. Hoare, Ambiguities and
insecurities in Pascal. Software—Practice and Experience 7,
685-696 (1977).

11. C. J. Copeland, Extensions to Pascal. MSc. Thesis, Queen's
University, Belfast (1975).

12. A. V. Aho and J. D. Ullman, Principles of Compiler Design.
Addison-Wesley, Reading, Massachusetts (1977).

13. M. S. Hecht, Flow Analysis of Computer Programs. North-
Holland, Amsterdam (1977).

14. D. Gries, Compiler Construction for Digital Computers. Wiley,
Chichester(1971).

Received May 1981

© Heyden & Son Ltd, 1982

346 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/340/369796 by guest on 10 April 2024

