
Expected Worst-case Performance of Hash Files

Per-Ake Larson
Department of Information Processing, Abo Akademi, Fanriksgatan 3, SF-20500 ABO 50, Finland

The following problem is studied: consider a hash file and the longest probe sequence that occurs when retrieving a
record. How long is this probe sequence expected to be? The approach taken differs from traditional worst-case
considerations, which consider only the longest probe sequence of the worst possible file instance. Three overflow
handling schemes are analysed: uniform hashing (random probing), linear probing and separate chaining. The
numerical results show that the worst-case performance is expected to be quite reasonable. Provided that the hashing
functions used are well-behaved, extremely long probe sequences are very unlikely to occur.

INTRODUCTION

It is well-known that the worst-case performance of a
hash file is 0(n), where n is the number of records stored.
This is true for any of the basic operations: retrieval,
insertion or deletion of a record. This result is seen
immediately by considering the longest probe sequence
of the worst possible file instance. However, the proba-
bility that the worst possible file instance will actually
occur is incredibly small. It is an extremely pessimistic
view which does not give any information about the
expected worst-case performance of a 'normal, well-
behaved' hash file.

In this paper the worst-case performance of a hash file
is approached from a different angle. The problem
studied can be stated as follows: consider a certain hash
file and the longest of the probe sequences required to
retrieve a record stored in the file. What is the expected
length of this probe sequence? In other words, not only
the longest probe sequence of the worst possible file
instance is of interest, but the whole distribution of the
longest probe sequence over all file instances. The term
'expected worst-case' will be used to refer to the latter
type of analysis. The former, traditional approach might
perhaps be called the worst-of-the-worst approach.

The analysis reported here is restricted to the retrieval
performance of externally stored hash files. The length of
a probe sequence, or simply the search length, is measured
in the number of accesses to secondary storage. Three
different overflow handling schemes are studied: uniform
hashing (random probing) (section two), linear probing
(section three) and separate chaining (section four). The
bucket size is one or larger than one. Only the case of
initial loading is considered, i.e. no deletions are allowed.

So far only two analyses of the expected worst-case
performance of hashing have been reported: one by
Gonnet1 and one by Larson.2 Gonnet studied internally
stored hash tables (bucket size one) assuming that
overflow records are handled by random probing or by
separate chaining. He showed that the expected length of
the longest probe sequence grows logarithmically in the
case of random probing, and sublogarithmically in the
case of separate chaining. Larson analysed a new hashing
scheme called Linear Hashing with Partial Expansions.
Gonnet was able to obtain simple approximate formulae
for the schemes considered. The modelling of the schemes

considered in this paper is considerably more complex
mathematically, and therefore we will have to be content
with numerical results.

From elementary probability theory we recall the
following useful theorem. In a random sample
xx, x2,..., xn the probability that the largest observed
value is less than or equal to a fixed value x0 equals the
product of the probabilities that each observed value is
less than or equal to x0, i.e. P(max(Xj) < xo) = P(JCI <
*o) P(*2 ^*o) - • Hxn<x0). This is true if all the
random variables are mutually independent.

The analysis of each scheme follows the same basic
pattern. First, the probability distribution of the length
of a probe sequence (successful search) is derived.
Thereafter, the probability distribution of the length of
the longest probe sequence, hereafter abbreviated to lips,
in a sample of n sequences is readily found by applying
the above theorem. Finally the expected value of the lips
is numerically computed and tabulated. The results are
approximate because the random sample is considered to
be drawn from an infinite file. This simplification was
necessary because, for the schemes considered, either the
distribution of the length of a probe sequence in a finite
file is not known or, when known, the numerical
computations involved are far too time-consuming. The
results given here overestimate the expected length of the
longest probe sequence. For moderately large files the
error is no more than a few per cent.

To facilitate comparisons the expected lengths of both
successful and unsuccessful searches have also been
computed and compiled into an appendix. Note that
these expected values are for an arbitrary successful or
unsuccessful search, not the longest one.

UNIFORM HASHING ~

Consider a hash file consisting of m buckets, each bucket
having a capacity of b records, b > 1. There are n records
stored in the file. The storage utilization, denoted by a, is
then a = n/(mb). We shall assume in this section that
overflow records are handled by uniform hashing
(random probing, rehashing); i.e. each overflowing
record is rehashed randomly until a non-full bucket is
found (see Ref. 3).

Let P(L = k),k = \,2,..., denote the probability that
retrieval of a record requires k accesses. For finite m this

CCC-OOKM620/82/0025-0347 $03.00
© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 4 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/347/369821 by guest on 10 April 2024

P.-A. LARSON

distribution is known only for the case b = 1.3 For b > 1,
the asymptotic distribution, obtained by letting m—• oo
keeping the storage utilization constant, was derived by
Larson.4 It can be computed as

P(L = k) = (I/a)
Jo

)
Pb(yf~ '(1 -

where
b - l

(ybV/jl

and where the function x(a) is (implicitly) defined by Eq.
(1).

fr-2

a = 1 — exp(—xb){\ — x)]T (xbf/kl

— exp(—xb)(xby>~1/(b — 1)! (1)

Let Qk denote the probability that retrieval of a record
requires at most k accesses, i.e. Qk — P(L < k). This
probability is

k

Qk = I 0/a) | P^y - 'U - Pb(y))2dy
j=i

which can be reduced to
Jo

-l-a/oof*0]
Jo

The integral must be computed numerically. The value
x(a) must also be computed numerically from Eqn (1).

Consider a sample of n records from an infinite file
with bucket size b and storage utilization a. By applying
the theorem mentioned above, we immediately find that
the probability that the longest probe sequence encoun-
tered in the sample is at most k accesses equals QJJ. The
expected length of the longest probe sequence is thus

Rn = I *(QZ - QZ-,) = i + I (l - QZ)

The distribution QZ has been plotted in Fig. 1 for n =
lOOO.oc = 0.8and6 = 5,10. We see that with a probability
greater than 90%, the length of the longest probe
sequence will not exceed 9 when b = 5 and 6 when b =
10. The length of the longest probe sequence is very
stable; the probability that it will be either 4 or 5 is as
high as 73.3 per cent when b = 10.

Table 1 shows the expected length of the longest probe
sequence for a few parameter combinations. The values
are surprisingly low, especially for larger buckets. The
longest probe sequence in a file with b = 10, a = 0.8 and
storing one million records is expected to be only 10.9
accesses, for example. For expected search lengths, see
the Appendix.

0.8

0.6

0.4

0.2

-

-

-

-

i i—

1—

rJ
b = S

1 1 1 1 1

6 8 10
k (accesses)

12 14

Figure 1. The probability that lips <, k for uniform hashing, n =
1000, o=0.8. b = 5, 10.

LINEAR PROBING ~

Linear probing is one of the earliest and most widely
used techniques for handling overflow records. The
search path of a record hashing to bucket k is k, k +
1 , . . . , m — 1,0, 1 k — 1 and the record is inserted
into the first non-full bucket encountered on this path.
The performance of linear probing has been analysed by
several authors, but either only the case b = 1 or only the
expected performance is considered,3'5'6'7 The first
analysis of" the case b> 1, which includes the whole
probability distribution, not merely the expected value,
of the search length, was published in 1978 by Blake and
Konheim.8 The analysis below is based on their model,
but the formulae are rewritten in a form better suited for
numerical computations.

Assuming an infinite file, the probability that k
accesses will be required to retrieve a record can be
computed as

{<pb(x)exp(-xb)

s = 0

The integral must be computed numerically. The numbers
{Vbj+S },j > 0,0 <, s <, b — 1, occurring in the formula do
not depend on the storage utilization x. They can be
computed using the recurrence

Vhi+S =
for s = 0

+ *)){(/+l)Vw+,_,
j

i = l

for 5 = 1 , 2 , . . . , b - 1

Table 1. Expected Ups for uniform hashing

No. of records
Bucket size, b

1
2
3
4
5

10
15
20

103

10.5
6.6
5.1
4.3
3.8
2.5
2.1
1.9

10*

14.4
8.9
6.9
5.8
5.1
3.4
2.7
2.2

105

a = 0.6

18.4
11.4
8.8
7.3
6.4
4.3
3.3
2.9

10s

22.5
13.9
10.7
8.9
7.8
5.2
4.1
3.3 .

103

14.0
8.7
6.8
5.7
5.0
3.4
2.7
2.3

10*

19.6
12.1
9.3
7.8
6.9
4.6
3.7
3.2

105

a = 0.7

25.3
15.5
12.0
10.0
8.8
5.9
4.7
4.0

10s

31.2
19.1
14.7
12.3
10.7
7.2
5.7
4.8

103

20.5
12.6
9.7
8.2
7.2
4.9
4.0
3.4

10*

29.2
17.9
13.7
11.5
10.1
6.8
5.5
4.7

10s

a = 0.8

38.3
23.4
17.9
15.0
13.1
8.8
7.1
6.1

10°

47.7
29.0
22.2
18.6
16.2
10.9
8.7
7.5

103

37.4
22.6
17.2
14.4
12.6
8.5
6.9
6.0

10*
a

55.4
33.3
25.4
21.2
18.5
12.4
10.0
8.6

105

= 0.9

74.4
44.6
34.0
28.3
24.7
16.5
13.3
11.4

10s

94.0
56.3
42.8
35.6
31.1
20.8
16.7
14.3

348 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/347/369821 by guest on 10 April 2024

EXPECTED WORST-CASE PERFORMANCE OF HASH FILES

where the boundary values for./ = 0 are given by Vs =
Wef/sl, s = 0, 1 , . . . , b - 1. The numbers {Vbj+S} are
related to the numbers {Tb>bj+s} defined in Ref. 8 by Vbj+
s = T6,6j+s(6/e)b-'+7(fe/ + s)\. The change has been made
purely for numerical reasons; the numbers
{T(,,bj+S} grow extremely rapidly.

The function q>b(x) is a normalization factor which
ensures that the probabilities sum to one. It is given by

cpb(x) = b(l -
7=1

where <o is a primitive feth root of unity; o> = cos(2nlb) +
isin(27i/fe), for example. The complex-valued function
0(z), zeC, is defined by the series

r = 0

The series converges slowly, however, and numerically
the function 6(z) is most easily computed from the
functional equation 9{z) = exp (zd(z)) using Newton-
Raphson iteration. A first approximation is readily found
by computing a few terms of the series.

The rest is then straightforward. The probability that
retrieval of a record requires at most k accesses is

and the probability that the longest probe sequence
occurring in a sample of size n is of length k or less is
Q£. The expected lips is then given by Rn = 1 +
£ k = i 0 - Q Z) -

Exactly as for uniform hashing, the analysis of linear
probing is also approximate and slightly overestimates
the expected value. The error is thus 'on the safe side'.
Compared with uniform hashing the numerical compu-
tations are considerably more complex.

Figure 2 shows the cumulative probability distribution
QJj for two different bucket sizes. Compared with uniform

5 10 15 20
k (accesses)

Figure 2. The probability that lips < k when using linear probing,
n= 1000,a = 0.8, b = 5, 10.

hashing, the probabilities grow very slowly; the risk of
long probe sequences occurring is much greater. The
expected values given in Table 2 are considerably larger
than the corresponding values for uniform hashing. This
poor worst-case performance is not unexpected if the
tendency of linear probing to create long clusters of full
buckets is borne in mind. For expected search lengths,
see the Appendix.

SEPARATE CHAINING

When using separate chaining, overflow records are
stored by linking one or more secondary pages from a
separate storage area to the overflowing (primary)
page.3'9 Each secondary page holds records from only
one chain, i.e. chains are not allowed to coalesce. The
secondary page size, denoted by c, c > 1, may differ from
the primary page size b.

Consider a file where the expected number of records
per bucket is zb, z > 0. The parameter z denotes the load
factor. Note that the load factor is not the same as storage
utilization and that the load factor may be larger than
one. For a large file the probability that j,j = 0, 1
records hash to a bucket can be approximated by the
Poisson probability exp(-zb)(zb)J/j\. Hence the proba-
bility that a chain of pages will be of length k or less, k >
1, (the primary page plus k — 1 secondary pages) is

= exp(-z6)

If a file consisting of N primary pages is considered to
have been created by sampling from an infinite file, the
probability that the longest chain will be of length k or
less is Qk(z)N. This is at the same time the probability that
the longest probe sequence will be of length k or fewer
accesses. Observe that we now have the number of
primary pages in the exponent, not the number of records
as in the two previous cases.

Separate chaining is a totally different type of overflow
handling scheme from uniform hashing and linear
probing. Performance figures for separate chaining
cannot be compared with those of the two other
techniques unless the following two conditions are
fulfilled. (1) Storage utilization is the same for all three
methods, and (2) files of the same size, i.e. the same
number of records, are considered. These conditions can
be fulfilled by adjusting the parameters z and N
respectively.

In order to be able to compute the storage utilization,
we must make two simplifying assumptions. The space
occupied by pointers, (one per page) and overflow space

Table 2. Expected Ups for linear probing

No. of records
Bucket size, b

1
2
3
4
5

10
15
20

103

23.6
12.2
8.3
6.4
5.3
3.0
2.3
1.9

10*

36.7
18.7
12.7
9.7
7.9
4.3
3.2
2.5

10=
a = 0.6

51.4
26.0
17.6
13.4
10.9
5.8
4.1
3.3

10»

67.1
33.9
22.9
17.3
14.0
7.4
5.2
4.1

103

40.8
20.7
14.1
10.7
8.7
4.7
3.4
2.7

10*

65.6
33.2
22.3
16.9
13.7
7.2
5.1
4.0

10s

» = 0.7

93.7
47.2
31.7
24.0
19.3
10.0
7.0
5.4

10"

124
62.4
41.8
31.6
25.4
13.1
9.0
6.9

10*

85.5
43.1
29.0
21.9
17.7
9.2
6.4
5.0

10*
t

144
72.2
48.4
36.5
29.3
15.0
10.3
7.9

10s

i = 0.8

211
106
70.8
53.2
42.7
21.8
14.8
11.3

10"

284
142
95.1
71.5
57.4
29.1
19.6
14.9

10*

288
144
96.4
72.4
58.1
29.4
19.9
15.1

10*

521
261
174
131
105
52.8
35.4
26.8

10s

a = 0.9

798
400
267
200
161
80.5
53.9
40.6

10"

1106
553
369
277
222
111
74.4
56.0

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 4 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/347/369821 by guest on 10 April 2024

P.-A. LARSON

allocated but not in use, i.e. empty overflow pages, is
ignored. They both depend on the details of the
implementation. Under these assumptions the load factor
z required to achieve storage utilization a can be
computed numerically from Eqn (2).

OO

zb/a = b + cexp(-zb) £ (k + 1)
fc = O

t (zbf+kc+i/(b + kc + 0! (2)

This equation defines z as a function of a and this
function will be denoted by z(a).

The expected number of records per bucket is z{d)b.
To store n records in the file, the number of buckets must
be approximately

= n/(z(a)b). (3)

Finally the expected length of the longest probe sequence
can be computed as

f c = l

To sum up: given storage utilization a and page size b
and c, the required load factor z(a) is computed
numerically from Eqn (2). Thereafter the number of
pages N(a) is given by Eqn (3) and finally the expected
value can be computed.

Figure 3 shows the cumulative probability distribution
of the lips for a = 0.8, n = 1000, c = 1 and b = 1, 5, 10.
The computed load factor is z(0.8) = 1.202 for b=\,
z(0.8) = 0.899 for b = 5 and z(0.8) = 0.845 for b = 10.
Observe that separate chaining behaves differently from
the two other techniques: the probability of long probe
sequences increases with increasing primary page size.
The same behaviour can be observed in Table 3 for

0.8

0.6

0.4

0.2

-

-

o — 1

-

1 1

A
i

r
= H 1 1 1 1

higher storage utilizations. For expected search lengths,
see the Appendix.

The tables lists numerical results for the case c = 1
only, the secondary page size most often used in practice.

CONCLUSIONS

The expected worst-case retrieval performance of three
hashing schemes, uniform hashing (uh), linear probing
(lp) and separate chaining (sc) has been analysed. Figure
4 is an attempt to summarize the major results of this
analysis.

The analysis reveals that the expected worst-case
performance is not very bad. With the exception of linear
probing using small buckets, the longest probe sequence
occurring in a file is expected to be of quite reasonable
length. At least to the author, this was a surprise. The
expected length of the longest probe sequence increases
with the file size. For uniform hashing the growth is
logarithmic, and for the two others nearly logarithmic. It
is not easily seen from Fig. 4, but the growth is

10°

a(/I
8u
<

30

20

10

(b)
-
-

-

-

-

Number

s'
/'

_s'

s'
/'

of records

s'

s
s/'

i i i i i i i i i i

Figure 3.
chaining,/;
10.

2 4

The probability
1 n D ft

6 8
k (accesses)

that
r 1

llpss
h 1

10 12

k when
c in /

14

using separate

Table 3. Expected Ups for separate chaining with

No. of records
Bucket size, b

1
2
3
4
5

10
15
20

103

4.9
5.2
5.3
5.3
5.3
4.6
3.5
2.5

104 105

a =

5.9
6.5
6.8
6.9
7.0
6.9
6.3
5.5

0.6

6.9
7.7
8.1
8.4
8.6
9.0
8.8
8.3

10°

7.9
8.8
9.4
9.8

10.1
10.9
11.0
10.8

103

5.4
5.8
6.0
6.2
6.2
6.1
5.5
4.8

c = l

104

6.5
7.2
7.6
7.9
8.2
8.6
8.6
8.3

105

a = 0.7

7.5
8.5
9.1
9.5
9.9

10.8
11.2
11.3

106

8.5
9.7

10.4
11.0
11.5
12.9
13.6
13.9

Figure 4.

uh, ()

103

5.9
6.6
7.0
7.2
7.4
7.8
7.7
7.5

10J 10
Number of record:

Expected length of

104

i

7.2
8.1
8.7
9.1
9.5

10.5
11.0
11.2

105

j = 0.8

8.3
9.5

10.2
10.8
11.3
12.9
13.8
14.4

10"

9.4
10.7
11.7
12.4
13.0
15.1
16.4
17.3

the longest
Fnr h 10'

103

6.9
7.7
8.3
8.7
9.0

10.1
10.6
10.9

10J

>

probe

10°

sequence as a
IM Fr-- <> >
\D) rr

104

a =

8.3
9.4

10.2
10.8
11.3
13.1
14.2
15.0

105

= 0.9

9.6
10.9
11.9
12.7
13.3
15.7
17.2
18.4

106

10.8
12.4
13.5
14.4
15.2
18.0
20.0
21.5

3 5 0 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/347/369821 by guest on 10 April 2024

EXPECTED WORST-CASE PERFORMANCE OF HASH FILES

sublogarithmic for separate chaining and slightly faster
than logarithmic for linear probing.

The worst-case performance of uniform hashing is
considerably better than that of linear probing. This was
to be expected because linear probing tends to create
long clusters of full buckets. For small bucket sizes the
performance of separate chaining is better than that of
uniform hashing, but for large buckets the order is
reversed.

The main result of all the mathematics above is
perhaps simply this: it offers a theoretical explanation
for the empirical observation that very long probe
sequences are unlikely to occur in a well-designed hash
file.

A few comments on the results listed in the appendix
are in order. The expected search lengths of uniform
hashing is always lower than those of linear probing.
This comes as no surprise. However, for large buckets

the search lengths for both uniform hashing and linear
probing are lower than those of separate chaining with
c = 1. The explanation for this somewhat surprising fact
is quite simple: When the primary page size is increased,
keeping the total size of the primary storage area
constant, the total number of overflow records decreases,,
but so does the number of overflow chains. So even
though there are, in total, fewer overflow records, there
may be more of themper chain, resulting in longer chains.
This problem can be overcome by using either larger
overflow pages or several overflow chains per primary
page, selecting one of the chains by hashing.

Acknowledgement

The help of B. Qvist in solving some of the computational
problems was imperative and is gratefully acknowledged.

REFERENCES

1. G. H. Gonnet, Expected length of the longest probe sequence in
hash code searching. Journal of the ACM 28 (No. 2) (1981).

2. P.-A. Larson, Performance analysis of linear hashing with partial
expansions. ACM Transactions on Database Systems (to appear).

3. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison Wesley, Reading, Massachusetts
(1973).

4. P.-A. Larson, Analysis of uniform hashing. Abo Akademi, Reports
on Computer Science & Mathematics Ser. A, No. 1 (1978).

5. P.-A. Larson, Frequency loading and linear probing, BIT, Bind 19
(No. 2), 223-228(1979).

6. G. Schay and W. G. Spruth, Analysis of a file addressing method.
Communications of the ACM 5 (No. 2), 459-462 (1962).

7. G. Tainiter, Addressing for random-access storage with multiple
bucket capacities. Journal of the ACM 10 (No. 2), 307-315
(1963).

8. I. F. Blake and A. G. Konheim, Big buckets are (are not) better I
Journal of the ACM 24 (No. 4), 591-606 (1977).

9. J. A. van der Pool, Optimum storage allocation for initial loading
of a file. IBM Journal of Research and Development 16 (No. 6),
579-586(1972).

Received June 1981

© Heyden & Son Ltd, 1982

APPENDIX

Expected length of successful and unsuccessful searches

The tables below list the expected length of an arbitrary
(not the longest) successful and unsuccessful search for

uniform hashing, linear probing and separate chaining.
The results are asymptotic, i.e. for an infinite file, and
slightly overestimate the search lengths for a correspond-
ing finite file.

Table A l . Expected search lengths for uniform hashing4

Bucket size Successful

0.6

1
2
3
4
5

10
15
20

1.527
.222
.126
.081
.056
.014
.005
.002

search

0.7

1.720
1.330
1.202
1.140
1.103
1.035
1.016
1.009

0.8 0.9
2.012 ;
1.498
1.325
1.237
1.184
1.079
1.045
1.029

2.558
.818
.561
.429
.348
.177
.117
.086

Unsuccessful search

0.6

2.500
1.757
1.494
1.357
1.272
1.099
1.045
1.022

0.7

3.333
2.249
1.860
1.654
1.524
1.243
1.141
1.089

Ct

0.8
5.000
3.236
2.602
2.264
2.049
1.572
1.386
1.284

0.9

10.000
6.171
4.803
4.077
3.616
2.591
2.186
1.957

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 5 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/347/369821 by guest on 10 April 2024

P.-A. LARSON

Table A2.

Bucket size S

Expected search lengths for linear probing3' '•8

Successful search

0.6
1
2
3
4
5

10
15
20

1.750
1.293
1.158
1.098
1.066
.015
.005

1.002

0.7
2.167
1.494
1.286
1.190
1.136
1.042
1.019
1.010

a
0.8
3.000
1.903
1.554
1.386
1.289
1.110
1.058
1.036

0.9
5.500
3.147
2.378
2.000
1.777
1.345
1.209
1.144

Unsuccessful search

0.6
3.625
2.181
1.714
1.487
1.356
1.114
1.049
1.023

0.7
6.056
3.387
2.509
2.075
1.819
1.323
1.172
1.103

a
0.8
13.000
6.850
4.810
3.794
3.187
1.987
1.597
1.407

0.9
50.50
25.59
17.30
13.15
10.67
5.71
4.06
3.24

Table A3. Expected search lengths for separating chaining (c = I) 3 - 6

Bucket size Successful search

1
2
3
4
5

10
15
20

0.6
1.363
1.217
1.146
1.104
1.078
1.024
1.009
1.004

0.7
1.463
1.313
1.232
1.182
1.146
1.064
1.033
1.019

•
a
0.8 0.9
1.601
1.455
1.369
1.310
1.267
1.152
1.100
1.071

1.840
.713
.629
.567

1.518
1.372
1.293
1.242

Unsuccessful search

0.6
1.210
1.209
1.191
1.171
1.152
1.082
1.044
1.024

0.7 0.8
1.322
1.348
1.344
1.331
1.314
1.230
1.166
1.119

1.503
.580

1.608
.617

1.617
1.568
1.501
1.437

0.9
1.866
2.050
2.154
2.224
2.274
2.392
2.421
2.416

'a denotes the storage utilization. The corresponding load factor is computed from Eqn (2).

352 THE COMPUTER JOURNAL, VOL 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/347/369821 by guest on 10 April 2024

