
Binary-Relational Storage Structures

R. A. Frost
Department of Computer Science, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow Gl 1XH, UK

Any database, no matter how complex, can be represented as a set of binary-relationships. Consequently, a structure
which can store such binary-relationships is logically sufficient as the storage mechanism for a general purpose
database management system. For certain applications, the advantages of using such a structure would appear to
outweigh the disadvantages. Surprisingly, however, very few systems have been built which use a binary-relational
storage structure. The main reason would appear to be the difficulty of implementing such structures efficiently.

INTRODUCTION

The binary-relational view of the universe is increasingly
being used during the data analysis stage of database
system design. The approach is currently taught at a
number of British Computer Science departments, and
a similar method has been used by Shave1 and described
by Rock-Evans.2 Use of the view, however, need not be
limited to this aspect of systems work. Systems which
have been specified using a binary-relational schema may
also be implemented using a binary-relational storage
structure. The conceptual tool which helps the analyst
specify user requirements may also be the means by
which the designer realizes the solution at a physical
level.

Use of a common conceptual framework throughout
the system project is not the only advantage which results
from using a binary-relational storage structure. Simpli-
fied system design and improved data-independence also
result. Surprisingly, however, very few systems have been
built which use binary-relational storage structures. The
main reason would appear to be the difficulty of
implementing such structures efficiently.

The purpose of this paper is twofold: (i) to appraise the
use of the binary-relational structure as the storage
mechanism in a database management system, and (ii) to
present the results of a survey, and analysis of, various
implementations of this structure.

THE BINARY-RELATIONAL VIEW OF THE
UNIVERSE

The binary-relational view regards the universe as
consisting of entities with binary-relationships between
them. An entity is any 'thing' which is of interest and can
be identified. A binary-relationship is an association
between two entities. The first entity in a relationship is
called the subject and the second entity is called the
object. A relationship is described by identifying the
subject, the type of relationship, and the object. For
example: IBM • employs • John

N—ary relationships such as 'John bought the car from
Smiths' may be reduced to a set of binary-relationships
by the explicit naming of the implied entity. For example:

sale # 1 . buyer . John
sale # 1 . seller . Smiths
sale # 1 . item sold . car

English description

1. John is married to Sally
2. a bought b from c

3. John is a policeman
4. John said Paul thinks

that the moon is made
of cheese

Corresponding set of binary
relationships
(John . married to . Sally)
(sale #1 . buyer . a)
(sale #1 . item . b)
(sale jfl . seller . c)
(John . e . policeman)
(moon . made of. cheese)# 1
(Paul .thinks . §l)jf2
(John .said . jfl)

Figure 1. The binary-relational view.

The binary-relational view is used in artificial intelligence
as well as database work. In Fig. 1, we give a few
examples showing how parts of the universe may be
represented by sets of binary-relationships. Notice that:

(i) no distinction is made between 'things' and 'prop-
erties' of things;

(ii) n-ary relationships are reduced to sets of binary
relationships;

(iii) if a proper name uniquely identifies an entity, in
that part of the universe in which we are interested,
then that name may be used to represent the entity
in the relationship. If this is not the case, then a new
name must be introduced. For example, if patient
names do not uniquely identify patients, then the
situation: 'the patient called Smith, aged 27, is in
ward 14', must be regarded as:

(patient # 1 . named . Smith)
(patient # 1 . aged . 27)
(patient # 1 . is in . ward 14)

(iv) imagined as well as real relationships may be
depicted.

(v) entity sets are regarded as entities.
(vi) e, the set membership relation, is treated like any

other relation. This simplifies specification of integ-
rity constraints and inference rules.

A detailed description of the binary-relational view, and
of the binary-relational conceptual schema which derives
from it, is given elsewhere.3

DEFINITION OF A BINARY-RELATIONAL
STORAGE STRUCTURE

Any part of the universe, no matter how complex, can be
thought of as a set of binary-relationships. Consequently,

CCC-0010-4620/82/0O25-O358 $05.00
3 5 8 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

BINARY-RELATIONAL STORAGE STRUCTURES

a structure, within which representations of such rela-
tionships can be manipulated, is logically sufficient as the
storage mechanism for a general purpose database
system. We shall call such a structure a binary-relational
storage structure.

Informally, we can describe a binary-relational storage
structure as a data structure into which representations
of binary-relationships (which we shall call triples) may
be inserted and from which triples may be deleted or
retrieved. Triples are inserted singly, and deleted or
retrieved in sets. Such sets have one or more fields in
common. The common fields correspond to the search
key(s) which were used in the deletion or retrieval
request. Thus, we may think of a binary-relational storage
structure as a box which stores and manipulates triples.
For example:

insert (h .a . p)

(h.a.p) >

x.b
t .b
p y
s .y
n.b
P °
h.a

Feldman introduced the t

. z

. c

. z

. c

. c

. r
•P

retrieve (? . b . c)

- • (r .b .c),(n.b.c)

erm 'simple associative forms'
or SAFs to describe the seven basic ways in which triples
may be retrieved.4 Using our own notation, the seven
forms are:

retrieve
retrieve
retrieve

1 (a
2(1
3 0

retrieve 4 (a
retrieve
retrieve
has

5 0
6 (a

(fi

. ? . ?) - »

.*>.?)->

. b .' ?) ->

. b . c) -»

. ? . c) —*

.b.c)-+

The seventh SAF yields true or false depending on
whether the triple is in the database. Other SAFs yield
sets of triples which match on the given fields. For
example, (? . b . ?) retrieves all triples with b as
relationship type. Not all binary-relational structures
described in later sections provide all seven SAFs. Those
that do may be thought of as general associative memories
since they provide complete content addressability to the
set of triples.

ADVANTAGES AND DISADVANTAGES OF
USING A BINARY-RELATIONAL STORAGE
STRUCTURE IN A DATABASE MANAGEMENT
SYSTEM

In this section we are only concerned with the advantages
and disadvantages which arise from the inherent nature
of binary-relational structures. We are not concerned
with advantages and disadvantages arising from the
performance of such structures. We deal with those later.
For the present we assume that an efficient implementa-
tion exists.

Several advantages and disadvantages of using binary-
relational storage structures have been identified by
people working with them. The advantages fall loosely
into two categories: (a) simplification of system design
and use; and (b) improvement in data-independence.

The first of these was recognized by Levien and
Maron,5 Feldman and Rovner,6 Ash and Sibley,7 and
Titman8 who also noted that a simple uniform design
should lead to a more reliable system. Titman8 and
Johnson9 recognized that use of a binary-relational
storage structure should improve data-independence.

The disadvantages of using binary-relational storage
structures are largely due to the fact that data may only
be retrieved singly, and that groups of 'related' items
may only be acquired by issuing several retrieval
commands.

We now discuss the advantages and disadvantages
under various sub-headings.

Advantage of a consistent conceptual framework

If the binary-relational view is also used for analysis and
specification of the system, as is increasingly the case,
then its use as a basis for the storage structure means that
a consistent conceptual framework is applied throughout
much of the project.

Simple interface with other modules

Interface between a binary-relational storage structure
and other modules of a database management system
consists of three procedures: (i) insert (triple); (ii) delete
(partial specification of triple); (iii) retrieve (partial
specification of triple).

Retrieval requests such as 'list all employees of IBM'
are met by issuing a simple retrieval call (IBM. employs.
?) which delivers only that data which has been requested.
As Ravin points out,10 the programmer need not be
concerned with details of the backing-store data structure,
and no more workspace than that required to store the
requested data is needed. In addition, the task of
extracting data and formatting it according to user
requirements is straightforward. This is demonstrated in
ASDAS where user specifications of output reports are
automatically translated to application programs which
may be run against the data structure to produce the
required output.''

File design is no longer necessary

File design is one of the most difficult tasks of information
system design. We illustrate this with the following
example: a system is concerned with parts, suppliers of
parts and machines which are constructed from these
parts. Suppose the system is required to provide the
following types of output: (a) 'output the description and
stock-on-hand for a given part' or (b) 'output the stock-
on-hand and supplier of all parts used as components of
a given machine'.

Initial data analysis yields the binary-relational model
shown in Fig. 2. Analysis of access path requirements
may be facilitated by the introduction of four basic access
types, namely:

Al—access to an entity set
A2—access from an entity set to a given member of

that set
A3—access from an entity set to all its members
A4—access from one entity to one or more entities

related to it by a given relation.

© Heyden &Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25, NO. 3.1982 3 5 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

R. A. FROST

cSuppliers

Has description Supplied by

Parts

as stock Is component of
on hand

Stock on hand

Figure 2. A binary-relational data model.

f Machines ^

Using these definitions, analysis of the access path
requirements of outputs (a) and (b) yields:

output (a): Al to the set of parts
A2 from the set of parts to given part
A4 from part to description
A4 from part to stock-on-hand

output (b): Al to set of machines
A2 from set of machines to given machine
A4 from machine to component parts
A4 from each component part to stock-on-
hand
A4 from each component part to supplier.

Even for this simple set of requirements, choice of an
appropriate storage structure is complicated. Consider
the structure in Fig. 3 consisting of two hash tables. At

Hash on Part

Part Stock on
hand

Description

Hash on Machine

Machine Part Stock on
hand

Supplier

Figure 3. A possible implementation.

first sight it might appear to be a viable solution.
However, closer examination identifies several shortcom-
ings, which include the following.

(a) Part/stock-on-hand relationships are replicated many
times. As these are volatile relationships, database
consistency will be difficult to maintain.

(b) Updating stock-on-hand for a given part is difficult.
(c) Part/supplier relationships are replicated many times

thereby wasting space.

The problem is two-fold: in the first place, problem
specifications must be much more comprehensive than
that given above. In the second place, even if a complete
set of requirements is available, and has been analysed,
choosing an appropriate data structure is often difficult.

If, however, a binary-relational storage structure is
available, specification and analysis are not so critical,
and problems of file design are reduced. This is because
all conceptual access paths are implemented equally

efficiently in the binary-relational structure. As far as
storage and retrieval of data are concerned, the
analyst/designer has little else to do other than specify
what entity-sets and binary-relations are to be represented
by data.

Integration of multi-attribute retrieval requests into the
overall system design is facilitated

To illustrate this we extend the example given above to
include a third type of output: 'output those parts
supplied by a given supplier and used as components on
a given machine.' It is difficult to analyse the access path
requirements of such multi-attribute queries without
introducing aspects of implementation strategy. For
example, using our previous notation, analysis might
yield:

Al to set of suppliers
A2 from set of suppliers to given supplier
A4 from supplier to parts
Al to set of machines
A2 from set of machines to given machine
A4 from machine to component parts

However, this analysis is implementation dependent.
It assumes that the request will be met by retrieving the
set of parts supplied by a given supplier, and the set of
parts used on a given machine, followed by computing
the intersection of these two sets. This may not be the
most appropriate strategy. In fact it is impossible to
analyse multi-attribute retrievals in terms of access path
requirements without introducing an implementation
strategy.

Consequently, it is difficult to integrate multi-attribute
queries into an overall design strategy. The situation is
simplified if a binary-relational storage structure is used.
Access paths for multi-attribute retrievals need not be
analysed to the extent described above, since all concep-
tual links between entities, which the user wants to store
as direct links, can automatically be represented by
equally efficient physical access paths. The choice of
methods for servicing a multi-attributable retrieval
request may be left to the application programmer since
all possible methods will be available to him. He may, for
example, decide to retrieve all parts supplied by a given
supplier and then for each of these parts find out if they
are used on the given machine.

The important point to note is that multi-attribute
retrieval requests need only be specified by the
analyst/designer. Their inclusion does not affect choice
of storage structure, and consequently, the difficult task
of analysing, and integrating the results of such analysis
with other aspects of the system, may be avoided.

Multi-attribute retrieval may be inefficient

Use of a binary-relational structure for multi-attribute
retrieval might not be the most efficient method (irre-
spective of the way in which the structure is imple-
mented). To illustrate this, consider the example given
by Martin12: 'retrieve (the names of) all 18 year old
unemployed actresses with experience in movie-acting,

3 6 0 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 ©HeydenA Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

BINARY-RELATIONAL STORAGE STRUCTURES

and talents for singing and sky-diving'. Using a binary-
relational structure, one could issue the retrievals:

(?. aged. 18)
(?. job-status, unemployed)
(?. profession, actress)
(?. experience, movie-acting)
(?. talent, singing)
(?. talent, sky-diving)

and merge the resultant sets to obtain the required data.
This is probably much faster than having to do a
sequential search through the whole database, which
would be necessary if the database were held as a file of
records (name, age, job-status, profession, experience,
talents) ordered on name.

However, the search would be even faster if the data
were held as a file of records ordered on name, together
with appropriate inverted list/file indexes. The shortest
list (possibly talent = sky-diving) could then be used, and
the records of sky-divers examined to see if they were 18
year old unemployed singing movie-actresses.

It is possible that use of the binary-relational structure
could be improved by employing a different strategy such
as retrieving the smaller sets first:

(?. experience, movie-acting)
(?. talent, sky-diving)
(?. talent, singing)

merging these to form set S, and then for each s,€ S
issuing the retrievals:

(sj. aged. ?)
(SJ . job-status. ?)
(s;. profession. ?)

Whatever strategy is used it is unlikely that the binary-
relational structure could compete with a tailor-made
structure designed for a given type of multi-attribute
retrieval.

might require major re-organization of the database.
These arguments can be applied, to a lesser extent, to a
system based on n-ary relations.

The advantage of using a binary-relational storage
structure is that it can improve data-independence. The
structure provides maximum flexibility as regards the
addition of new entities and relations: relevant triples
are simply inserted. In addition, if all seven SAFs are
available, then any new application program, whose
access path requirements are consistent with the concep-
tual data model, may be added, since all conceptual
access paths exist and are implemented with equal
efficiency.

'Related' entities must be retrieved separately

One major disadvantage of using a binary-relational
structure is due to the fact that 'related' entities, such as
the age, address, and salary of J. Smith, may not be
retrieved as a group. In this example, three separate
retrieval calls have to be issued: (J. Smith, aged. ?), (J.
Smith, address. ?), (J. Smith, salary. ?). Such queries
would be more efficiently, and simply, answered if
appropriate records or n-tuples were stored.

Batch processing techniques may not be used to improve
performance

The method of collecting transactions, sorting them, and
running them against a sorted master file is called batch
processing. Such techniques are commonly used to speed
up processing since disc-head movement is minimized.
Such improvement in performance is unlikely to be
achieved if a binary-relational storage structure is used,
since all relevant 'fields' of each 'master file record' have
to be retrieved independently.

Data-independence is improved

Data-independence refers to the independence of a
database and the application programs which use it. In
a data-independent system, application programs are Some early systems

A SURVEY OF IMPLEMENTATIONS AND
APPLICATIONS OF BINARY-RELATIONAL
STORAGE STRUCTURES

insulated from the effects of changes made to the
database, its organization, and the physical devices on
which it is stored. New types of data and application
programs may be added with minimal effect on existing
programs.

In 1976, Kent13 noted that, although record oriented
structures give us a very efficient basis for processing
data, they do not reflect the evolving nature of entities
and relationships. The introduction of a new entity-type,
for a new application program requires a new field to be
added to a record. Since records are the units of
communication between application programs and the
database, any existing program using the modified record
will have to be modified itself. In addition, records may
be organized for fast search, but only on one key field.
Other, often very much less efficient, access strategies
must be used if the records are to be retrieved using a
different field as key. Some access paths might not be
implemented at all. In such a case, addition of a new
application program, wanting to use that access path,

Binary-relational storage structures have a long history,
dating at least from the work of Levien and Maron5 on
a system called the Relational Data File (RDF). RDF
was one of the first systems capable of performing logical
inference over its database. An RDF database consists
of a set of triples replicated four times and held in four
separate arrays: one ordered by subject, one by relation,
one by object and one by triple ID. Inferential capability
is achieved by allowing the user to specify how certain
relations can be derived from others. This information is
held in a separate file called the 'intensional' file, as
distinct from the 'extensional' file which contains the
basic triples. An example of an intensional file entry is:

(x/GRADUATED FROM/;') = (for some w)
(x/RECEIVED DEGREE/(w/AWARDED BY/y))

Requests for triples given in terms of such defined
relations are dynamically interpreted in terms of the
relations actually stored. The main advantage of this

©Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 6 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

R. A. FROST

approach is that it permits all of the information that is
represented in a triple to be utilized instead of having to
enter the information redundantly in each of the several
ways in which it might be referenced.

Use of a binary-relational structure for RDF was
chosen primarily to simplify file structure and not for
logical or linguistic reasons. To quote Levien and Maron:
'the conventional organization of databases into files,
which contain records, which in term contain fields, is
too awkward for efficient logical analysis, in which the
smallest unit of information must be directly accessible
for computer manipulation'. The triple was recognized
as the smallest unit of information, and consequently,
the RDF data structure was based on it.

RDF was developed primarily as a question-answering
system, rather than a general purpose database manage-
ment package. However, a language called FOREMAN
was developed to aid user input of triples. Unfortunately,
no continuation of this aspect of the system appears to
have evolved. On the other hand, some of the inferential
ideas seem to have influenced the work of Ash and
Sibley7 on a system called TRAMP, which is described
later.

The next binary-relational system to appear was the
LEAP programming language, developed by Feldman
and Rovner during the early sixties and described by
them.6 LEAP is embedded in Algol, and besides having
Algol-like types and statements, has facilities for manip-
ulating sets and triples. For example, there are operators
for inserting a member into a set, a loop statement of the
form foreach x in s do—allowing a set to be processed, the
make operator which allows the user to create a new
triple, and commands corresponding to each of the seven
simple associative forms (SAFs) of retrieval. The LEAP
data structure consists of a set of triples replicated three
times and held in three separate hash tables: one keyed
on the combination relation-subject, one on the combi-
nation subject-object, and the third on the combination
object-relation. The structure of these hash tables is such
that all seven SAFs can be handled reasonably efficiently.
A detailed description of the LEAP structure is given in
Feldman and Rovner's paper.

One of the major uses of LEAP has been in interactive
graphics systems. Applications include a system for block
diagram problems,14 and a system for the analysis of
business decisions.10 LEAP has also been used in pattern
recognition systems. For example, a LEAP data structure
has been used to store information about line drawings in
a system which can analyse and compare drawings of
three-dimensional objects.15 The LEAP language has
also been used to code pattern recognition algorithms.

Development and extension of some of the LEAP
ideas is found in the work of Ash and Sibley on a system
called TRAMP.7 TRAMP consists of two packages of
functions: the first manipulates a data storage structure
which is very similar to that used in LEAP. The second
package, called the relational memory, allows logical
inference to be performed on the database. This deductive
capability is similar to that provided by the intensional
file in RDF. As in RDF, the whole strategy of TRAMP's
inference mechanism is to allow the user to make a single,
simple retrieval call, such that, where appropriate, a
much more complex retrieval call will be generated to
encompass all the defined implications of the simple call.
Ash and Sibley's work is frequently cited in reviews and

books on database systems (see for example Refs 17 and
18). However, direct continuation of the TRAMP project
is not described in the literature. Neither do the ideas
developed in TRAMP appear to have influenced any
later system.

The LEAP data structure has also been used to develop
an extension of PL/1.19 The primary aim of this work
was to provide a data structure for storing graphical
information. Symonds also developed the ideas of
Johnson20 to show how graphical structures can be
represented by a set of triples. This work led to the
development of the SAM system21 and from that to the
Relational Memory (RM) system which was imple-
mented by Lorie and Symonds.21 RM was further
extended to support n-ary relations and evolved into the
Extended Relational Memory (XRM) described by
Lorie.23 XRM has been used as a storage subsystem for
SEQUEL, GMIS, GXRAM, and QUERY BY
EXAMPLE.

Some later binary-relational systems

Later work on binary-relational systems is largely
unrelated to the earlier systems. Titman,8 for example,
makes no reference to any earlier work when describing
his own system. Titman's system was developed to
determine whether a database using a binary-relational
storage structure could be implemented in a way which
compared favourably, in cost performance terms, with
conventional systems. In this system, triples are held in
ordered arrays; one array for each relation. Each entity
set is also held in a separate array and is called a value
set. Figure 4 shows an example, given by Titman, of Jtoe
structure for a simple bill of materials application. Part,
name, and quantity are value sets. BM corresponds to
the 'uses component' relation, and the array BMQ
contains data representing the quantity of each compo-
nent part used in each assembly. The subject of a BMQ
'triple' is the ID of a 'triple' from the BM relation. Notice
that Titman's method of reducing an w-triple does not
correspond to that described earlier, since no new implied
entity has been identified and named. Titman explicitly

Part

ID

1
2
3
4

Value

0099
0129
3172
3174

Name

ID

1
2
3

Value

BOX
CARD

SCREW

Quantity

ID

1
2
3
4

Value

1
2
4
6

BM

ID

1
2
3
4
5

PART
ID

3
3
4
4
4

Part
ID

1
2
1
2
3

BMQ

ID

1
2
3
4
5

BM
ID

1
2
3
4
5

Quantity
ID

3
4
1
1
1

Part Name

ID

1
2
3
4

Part
ID

1
2
3
4

Name
ID

3
3
1
2

Figure 4. Bill of materials database.

3 6 2 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

BINARY-RELATIONAL STORAGE STRUCTURES

identifies a relationship, by giving it an ID and then uses
the relationship as an entity in another relationship.

Titman states that certain types of retrieval are
particularly well suited to his structure. An example he
gives is a request for a list of all parts in an assembly
which are used in that assembly and no other. Such a
request might be made when an assembly is made
obsolete, for example. Titman claims that this retrieval
can be answered quickly because only one relation is
accessed, and in many cases the whole of this relation
can be transferred into mainstore. We note, however,
that in the example given this particular relation is likely
to be very large. Nonetheless, since only one relation is
involved, and since only data relevant to the retrieval
need be transferred into mainstore, Titman's claim seems
justified. Titman also points out that his structure is data-
independent. For example, new relations may be easily
added. Titman's analysis of his structure showed a
reduction in storage requirements. The original data,
held in a sequential hierarchical file, occupied 5M
characters. The binary-relational form required only
1.5M characters. This is somewhat surprising. Titman
gives the following reasons for this reduction: (i) some
fields in the original records were blank; (ii) some field
values had highly skewed distributions and (iii) some
relations were small subsets of the cross product of their
domains.

Titman's work has been cited in few publications. One
paper was concerned with a new system called the
Peterlee Relational Test Vehicle26 and in that paper the
author acknowledges that he was not the first to use value
sets. Another system, the Non-Programmer Database
Facility (NDB) developed by Sharman and Winterbot-
tom25 was directly influenced by Titman's work. NDB is
a fully operational system which was developed at the
IBM Hursley Laboratories, UK during the mid-seventies.
The major objectives of NDB are flexibility and ease of
use. In order to achieve these objectives, NDB has the
following features: (i) database creation and restructuring
is program controlled, (ii) triples may be retrieved using
subject relation or object relation pairs as keys (note that
only two of the seven SAF's are available), (iii) the
storage configuration is automatically re-organized at
regular intervals to improve response time.

A generalized list structure is used to store the triples.
Entities are represented by three-field structures: the first
field contains a pointer to the entity set to which the
entity belongs, the second field contains a pointer to the
triples in which the entity is involved, and the third field
contains the 'value' representing the entity. The value
may be a variable length name or external identifier such
as Part # 1234, or it may be null in which case the three-
field structure acts as an internal identifier. Relationships
are represented by linked structures such as that shown
in Fig. 5 (a). A similar structure is also used to provide
access from an entity set to its members as shown in Fig.
5 (b). The complete interlinked structure is very much
like a graph and corresponds closely to the structure
which the binary-relational view regards the universe as
having.

Access to data in NDB is always via entity sets. For
example, the query (John, employed by. ?) must be
qualified by a statement to the effect that (John. e.
people). This retrieval would then be processed as
follows:

(a)
'Entity list'.,
'Relation list'~^_

A
John

Related to
Employed by

^

•—

(b)

PEOPLE

Susan

Has member •
/

\
John

\

Figure 5. Representation of (a) relationships and entities in NDB;
(b) set membership structure in NDB.

Locate the entity set 'people'
Follow the pointer to the relation list for 'people'
Locate the 'has member' relation
Follow the pointer to the entity list
Locate 'John'
Follow pointer to relation list for 'John'
Locate 'employed by' relation
Follow pointer to (list of) required entities

NDB has been used for many applications at a number
of locations.

Another system which uses a structure similar to that
proposed by Titman is the WELL system developed by
Munz.26 However, Munz does not refer to Titman's work
nor to the NDB system. In the WELL system, the
database is regarded as a graph called a web. Nodes of
the web correspond to entities, and edges to binary-
relationships. The web structure is implemented as a set
of sorted arrays. An array is maintained for each relation
and is ordered on subject entity. A 5-tree-like organiza-
tion is used as an index to the set of arrays. The database
is organized so that the majority of accesses are from
subject to object entity. Consequently, a sequential search
of an array is not often required. To improve efficiency,
a facility for batching insertions and deletions of'triples'
is provided. To access part of a WELL web, the user
specifies a subweb in which some nodes have values and
some have the word ANY. The subweb acts as a pattern
which selects that part of the web (if any) which it
matches. Values are then returned for the nodes contain-
ing ANY. For example, the subweb shown in Fig. 6
specifies a request for the names of all managers who
manage more than seven persons who work on the
project named 'DBS' and earn more than £8000. 'Count'
is a mechanism for stating, the number of times a certain
relationship must exist.

In Hungary, Futo et al.21 have investigated the
efficiency of using the PROLOG programming language
to make deductions over a binary-relational database.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 6 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

R. A. FROST

Figure 6. A WELL subweb output specification.

The particular database used contained data relating to
57 drug preparations together with 135 deduction rules.
The system was reported as having retrieved and printed
all deducible interactions between any given pair of
preparations in an average of 2-3 seconds. In addition
the program developed was capable of (i) retrieving all
data about a given preparation; (ii) listing all preparations
containing given agents; (iii) retrieving all data about a
given agent and (iv) listing all agents belonging to a
given chemical group. The implementation uses an
extended PROLOG which includes use of backing store
files and a faster table look-up technique.

Systems currently under development

Results of a survey, carried out by the author during
1980, suggest that there are only two other database
systems which use binary-relational storage structures:
the FACT machine, and a simple database system called
ASDAS. Both of these systems are currently being
developed at Strathclyde University.

The FACT machine. The FACT machine28 is one of the
first systems to use 'generic' information to expand the
scope of a query. A 'generic' fact is one which is
attributed to a set, but which applies to all members of
that set. For example, the fact 'all people drink water' is
a generic fact. In the FACT machine, generic information
is identified by use of the quantifier 'for all' (V). For
example (V people . drink . water). All members of the
powerset of the entity with the quantifier V inherit the
property indicated by the other fields in the triple. The
effect is as though the property were stored explicitly
with each member of the powerset.

Before generic information can be used, something
must be known of the set structure within the database.
Such information may be represented as a two dimen-
sional array. For example:

People Employees Smith

1

1 1

1 1

People

Employees

Smith

indicating that 'employees' is a subset of 'people', etc.
Using the information in this array, and the generic fact

given above, the query (Smith . drink . ?) may be
expanded to:

(Smith. drink.?)
(Vemployees . drink . ?)
(Vpeople . drink . ?)

The storage structure currently used in the FACT
machine, for the basic triple storage, consists of a 'master
file' of triples together with a set of inverted lists. For
each entity x there are three inverted lists: one giving the
address of all triples with x as subject, one giving the
address of all triples with x as relation, and one giving
the address of all triples with x as object. To service a
retrieval request, the relevant inverted lists are identified
and merged to form an intersection list. The addresses in
this list are then used to locate the required triples.
Planned enhancements to the FACT machine include:
(i) use of a special purpose processor called LEECH to
speed up triple retrieval,29 and (ii) use of new hardware
techniques to represent the set-structure array. Much of
the processing time of the FACT machine has been
found to be taken up in determining which sets an entity
belongs to. Consequently, a hardware representation of
this information has been considered. At first, the cost
would seem prohibitive: for 10 000 entities one would
expect that an 100 000 000 element array would be
required. Malone,30 however, has found that this is not
necessarily the case. The arrays tend to be fairly sparse
and the entries clustered. Consequently, only limited
parts of the array need be represented. Malone proposes
that small, flexibly-linked, hardware modules could be
used. This technique is analogous to using linked lists to
represent sparse arrays in mainstore. McGregor and
Malone have produced an outline design for such
hardware modules which is capable of being implemented
in LSI circuitry. However, the cost of manufacturing
such hardware has not yet been estimated.

Although the FACT machine is still in the development
stage, a prototype system has been applied, experimen-
tally, to several problem areas. These include the
following.

(i) Machine aided reviewing of literature. One feature
of the FACT machine is that it can recognize 'sets'
of entities which have several properties in common.
This process, called 'clustering' in the FACT
terminology, is carried out quite automatically.
Blake has found clustering to be a useful aid in the
reviewing of literature.31

(ii) The clustering feature also enables the FACT
machine to generate hypotheses. The existence of a
large set of entities with several apparently unrelated
properties in common could indicate some 'correla-
tion' between these properties. This aspect of the
FACT machine is being studied with respect to
factors related to gastro-intestinal disorders.

(iii) The FACT machine has been used by Malone to
create a personal information retrieval system
containing information relating to several hundred
documents, with an index containing a few thousand
terms.

(iv) The FACT machine is currently being considered
for use with the Autoprog system.33 Autoprog is a
programming environment which encourages and
facilitates the use of pre-coded program modules. In
such a system, it is often difficult to identify all

3 6 4 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

BINARY-RELATIONAL STORAGE STRUCTURES

program modules which are affected (and often need
to be re-compiled) by a change made to a particular
module. The problem is similar to the problem of
identifying all members of the powerset of a set.
This problem has been tackled in the FACT
machine and it is hoped that the solution will be
appropriate for the Autoprog system.

ASDAS—A simple database management system

ASDAS is also under development at Strathclyde
University.'' Like NDB, ASDAS is specifically designed
for ease of implementation and use. At present it is in the
experimental stage and is being used as a 'test vehicle' for
research into new storage organizations, input/output
languages, and schema definition languages. The storage
structure currently in use consists of a set of triples
replicated and held in six dynamic hash tables. In the
first table the triples are hashed on subject, in the second
on relation, in the third on object, in the fourth on subject
and relation, and so on. This allows the seven SAF's to be
answered with more or less equal efficiency. Dynamic
hashing is a relatively new method of data organization.33

The method is similar to normal hashing but differs in
that a dynamic hash table can grow and shrink as the
database changes size. This improvement over conven-
tional hashing is achieved by the use of an index
structured as a forest of binary trees. Two additional
advantages of using dynamic hashing are: (i) retrieval of
a triple requires only one disc access; (ii) the technique
does not suffer from the problems normally associated
with collision and deletion.

At present, the interactive query language developed
for ASDAS is very basic. However, a fairly powerful
report specification language is available. The language
is called WAROUT and is based on ideas developed by
Warnier.34 As an example of the use of WAROUT,
consider the specification of a list of all 20 year old
students, whose hometown is Hull, in which the name
and details of courses attended is to be printed:

'for all' e, students ['if hometown is = Hull
'and' aged = 20
'then' [named,

attends [coursename is,
taught by [named]

Specification of requirements in WAROUT may be
regarded as the navigation of a route through the
database. The starting point for the route is either a
single entity or a set of entities with some property in
common. In the example above, the starting point is
specified by 'for all' e, students [which is translated, quite
straightforwardly into a set of commands containing the
command RETRIEVE (? . e . students). The route is
continued down paths which are identified by the
specification of relation names such as 'hometown is',
'aged', 'named', 'attends', etc. Some paths are only
followed to retrieve entity representations which are to
be used within the context of a conditional statement,
e.g. 'if hometown is = 20. Other entities may be regarded
as 'throughroutes' whose value is not to be printed, e.g.

in the statement'. . . taught by [named]', the representa-
tion of the lecturer is not to be printed, although the
representation of the lecturer's name is to be printed.

Translation of WAROUT specifications, by ASDAS,
is made simple by the nature of the binary-relational
storage structure interface. For example, the
specification:

'for all' e, students [named,
attends class [held in room]

]
would be translated into code with the following
structure:

retrieve (? . e . students);
stack students delivered;
while students left on the stack

do begin
retrieve (peek . named . ?);
print name delivered;
retrieve (peek . attends class . ?);
stack classes delivered;
while classes left on the stack

do begin
retrieve (peek . held in room . ?);
print room number delivered;
pull from stack
end;

pull from stack
end

In addition to WAROUT, Frost et al. have developed
a conceptual schema definition language which is based
on the binary-relational view of the universe.3 The
language, called SCHEMAL, contains a set of concepts
which corresponds to a subset of first-order predicate
calculus. A characteristic of SCHEMAL is that the
consistency of schemas written in it can be determined.
An example of a SCHEMAL statement is:

(x • is • w) <= [(x • colour • y) A (x • weight • z)
A (w-colour y) A (w- weight z)]

This states that the colour and weight of an entity
uniquely identify it, in the database in question.

Current work on ASDAS includes the development of
automatic means of generating procedures from
SCHEMAL statements which maintain database con-
sistency. The ultimate aim of the ASDAS project is to
produce a database management system which can be
used by someone with little or no experience of
computing. It is believed that use of a binary-relational
storage structure will facilitate the achievement of this
aim.

REVIEW OF IMPLEMENTATIONS AND
SUGGESTIONS FOR ALTERNATIVE
APPROACHES

The simplest implementations are those of Titman8 and
Munz.26 In these systems the triples are held in ordered
arrays: one array for each relation. This scheme is simple,
extendible and storage efficient. However, it suffers from
limited and slow retrieval capabilities.

The hashing scheme of LEAP appears to be the most

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 3 6 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

R. A. FROST

widely used implementation strategy. Variations are used
by Ash and Sibley,7 Symonds,19 Crick etal.2i and others.
The advantages of this method are that all seven SAFs
are implemented with more or less equal efficiency and
new relations can be added easily. Disadvantages are (i)
data is replicated, (ii) it is not simple to program and (iii)
the method inherits all of the problems associated with
conventional hashing: collision resolution, difficulties
with deletion and the need to estimate the maximum
hash table size before use.

The linked-list structure of NDB overcomes the need
to replicate data somewhat, and Sharman and Winter-
bottom25 estimate that an NDB database is likely to
require less total storage than the corresponding conven-
tional realization. The major disadvantage of the struc-
ture is that retrieval of a triple is likely to be quite slow.
(In fact only two of the seven SAFs are implemented at
all efficiently). Although the physical structure of an
NDB database is automatically re-organized in order to
cluster elements according to their access patterns, a
typical retrieval is likely to require several disc transfers.

The inverted list structure currently used by the FACT
machine also avoids replication of the triples. However,
the saving in space is partially offset by the space required
by the lists. All seven SAFs are implemented, though not
with equal efficiency. Retrievals of type (x . ? . ?) are
processed faster than retrievals of type (x. y . ?). This is
because the former requires only one inverted list to be
retrieved, whereas the latter requires two lists to be
retrieved and merged to give a list of addresses of
required triples. These triples are not necessarily held
together on backing store and often require several disc
accesses to be fetched.

The dynamic hashing scheme of ASDAS would appear
to be the fastest software implementation of a binary-
relational structure. A single triple requires only one
access to backing store, and to retrieve N triples with
equal key requires only ROUND ((N/B) +1) accesses,
where B is the number of triples per block. This is
because triples with equal key are held in blocks which
are chained together. However, the ASDAS structure is
extremely inefficient in terms of storage space. Six copies
of the triples are maintained and this also leads to slow
triple insertion.

In all of the implementation strategies reviewed so far,
retrieval requests of the form 'list all people aged over 18'
may only be processed by issuing the retrieval (? . aged .
?) and subsequently examining the object field of each
triple returned to see if it contains a value greater than
18. However, if the LEECH processor were used with
the FACT machine, as has been proposed, then this type
of 'range' retrieval could be executed as fast as requests
of the form (?. aged . 18). Thomson35 has estimated that
the LEECH processor could scan data at a rate of about
178 megabytes per second. Assuming that a sufficiently
fast backing store were available, it would take about
one tenth of a second to scan a database containing one
million 16 byte triples. This is the same order of
magnitude as the retrieval time to be expected with

ASDAS. The problem with using LEECH, or any other
sequential scan content addressable device such as
CAFS36 is that retrieval time tends to be linearly
proportional to database size. The situation can be
improved by using several such devices in parallel.

An alternative approach, for implementing a binary-
relational structure, is to develop one of the other ideas
used in the FACT machine. Instead of building a
hardware matrix for the set-membership relation alone,
a separate matrix could be used to represent each binary-
relation in the database. This approach would result in
very fast retrieval and would simplify the processing of
multi-attribute searching. However, at present, the cost
of such a structure, even for a small database, is likely to
be enormous.

CONCLUDING COMMENTS

We began by introducing the binary-relational view of
the universe and followed this by giving a definition of a
binary-relational storage structure. We then discussed
the relative merits of using such a structure as the storage
mechanism in database management systems. We con-
tinued with a survey of the few systems which use binary-
relational structures, and then completed the study by
reviewing the implementation strategies used by these
systems. Our conclusions are as follows.

(i) Use of a binary-relational structure may simplify
system design and improve data-independence in
some circumstances.

(ii) Use of a binary-relational structure might be
inappropriate if there are many multi-attribute
retrieval requests, and/or batch processing of records
is required frequently. Note that batch processing
of triples from a single binary-relation could be very
fast. It is the batch processing of records that brings
little benefit.

(iii) Assuming that the major part of the database resides
on disc, then the fastest software implementation
currently in use has a retrieval time equivalent to
one disc transfer.

(iv) Economically viable sequential scan, content ad-
dressable devices are, currently, no faster than the
best software implementations for databases greater
than one million triples.

Our overall impression is that binary-relational storage
structures are easy to integrate into an overall system
design, and provide a high degree of flexibility and
modifiability. Their use, however, is limited by their
inappropriateness for multi-attribute retrieval and batch
processing of records, and by the fact that current
implementations are slow and/or space inefficient. We
believe that an improvement in performance will only be
possible through the design of special-purpose hardware
such as that currently being considered for use with the
FACT machine.

3 6 6 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

BINARY-RELATIONAL STORAGE STRUCTURES

REFERENCES

1. M. J. R. Shave (1981) Entities, functions and binary relations:
steps to a conceptual scheme. The Computer Journal 24 (No.
1), 42-45 (1981).

2. R. Rock-Evans, Data analysis. Computer Weekly, IPC Electrical-
Electronic Press Ltd (1980).

3. R. A. Frost, A. D. McGettrick and R. K. Welham. The simplified
binary-relational view of the universe and a conceptual schema
definition language based on it. Department of Computer
Science, Strathclyde university, internal report (Oct. 1981).

4. J. A. Feldman, Aspects of associative processing. Technical
note 1965-13, MIT Lincoln Laboratory, Lexington, Massachu-
setts (1965).

5. R. E. Levien and M. E. Maron, A computer system for inference
execution and data retrieval. Communications of the ACM 10
(No. 11), 715-721 (1967).

6. J. A. Feldman and P. D. Rovner, An ALGOL-based associative
language. Communications of the ACM 12 (No. 8), 439-449
(1969).

7. W. L. Ash and E. H. Sibley, TRAMP: an interpretive associative
processor with deductive capabilities. Proceedings of the ACM
23rd National Conference, pp. 144-156. Brandon/Systems
Press, Princeton, New Jersey (1968).

8. P. Titman, An experimental database system using binary
relations in Data Base Management. Proceedings of the IFIP-
TC-2 Working Conference, Cargese, Corsica, ed. by Klimbie
and Koffeman, pp. 351-361. North-Holland, Amsterdam
(1974).

9. C.I. Johnson, Interactive graphics in data processing: Principles
of interactive Systems, IBM Systems Journal! (No. 3/4), 147-
173(1968).

10. J. Ravin and M. Schatzoff, An interactive graphics system for
analysis of business decisions, IBM Systems Journal 12 (No.
3), 238-256 (1973).

11. R. A. Frost, A simple database system aimed at the naive user.
Proceedings of 6th ACM European Regional Conference on
Systems Architecture, pp. 234-240, IPC Business Press Ltd,
London (Feb. 1981).

12. J. Martin, Computer Database Organisation, p. 403. Prentice-
Hall, Englewood Cliffs, New Jersey (1975).

13. W. Kent, New criteria for the conceptual model, in Systems for
Large Data bases, ed. by P. C. Lockemann and E. J . Newhold.
North-Holland, Amsterdam (1976).

14. L. A. Belady, M. W. Blasgen, C. J. Evangelisti and R. D.
Tennison, A computer graphic system for block diagram
problems. IBM Systems Journal 10 (No. 2), 143-161 (1971).

15. J. Gips, A syntax-directed program that performs a three-
dimensional perceptual task. Pattern Recognition 6, (No. 3/4),
189-199(1974).

16. F. Hayes-Roth, Representation of structured events and
efficient procedures for their recognition. Pattern Recognition
8 (No. 3), 141-150(1976).

17. M. E. Senko, Data structures and data accessing in database
systems past, present, future. IBM Systems Journal 16 (No. 3),
208-257(1977).

18. C. J. Date, An Introduction to Database Systems, 2nd Edn, pp.
191-201. Addison-Wesley, Reading, Massachusetts (1977).

19. A. J. Symonds, Auxiliary-storage associative data structure for
PL/1. IBM Systems Journal! (No. 3/4), 229-245 (1968).

20. T. E. Johnson, Mass storage Relational Data Structure for
Computer Graphics and Other Arbitrary Data Stores. MIT,
Department of Architecture report, Cambridge, Massachusetts
(1967).

21. M. F. Crick and A. J . Symonds, A Software Associative Memory
for Complex Data Structures. IBM Technical report G320-
2060(1970).

22. R. A. Lorie and A. J. Symonds, A relational access method for
interactive applications, in Database Systems, Courant Com-
puter Science Symposia, Vol. 6. Prentice-Hall, Englewood
Cliffs, New Jersey (1971).

23. R. A. Lorie, XRM—an Extended (n-ary) Relational Memory,
Report No. G320-2096. IBM Cambridge Scientific Center,
Cambridge, Massachusetts (1974).

24. S. Todd, The Peterlee relational test vehicle—a system overview.
IBM Systems Journal IS (No. 4), 285-307 (1976).

25. G.O.H.SharmanandN.Winterbottom,/vZ>fl:/Vo/J-/Vog/-a/wne/-
Database Facility, IBM Technical Report TR 12.179. IBM UK
Laboratories Ltd., Hursley Park, Winchester SO21 2JN, UK
(1979).

26. R. Munz, The WELL System: A multi-user database system
based on binary-relationships and graph-pattern-matching.
Information Systems 2 (No.2), 99-115 (1978).

27. I. Futo, F. Daruas and P. Szeredi, Application of PROLOG to
development of QA and DBM systems in Logic and Data Bases,
ed. by H. Gallaire and J. Minker. Plenum Press, New York
(1977).

28. D. R. McGregor and J. R. Malone, The FACT Database System,
Proceedings of Symposium on Research and Development in
Information Retrieval, Cambridge. Butterworths, Sevenoaks,
Kent (1980).

29. D. R. McGregor, R. G. Thomson and W. N. Dawson, High
performance hardware for database systems, in Systems for
Large Databases, ed. by P. C. Lockemann and E. J. Newhold.
North-Holland, Amsterdam (1976).

30. J. R. Malone, Personal communication (1981).
31. M. L. Blake, Towards routine machine state-of-the-art review-

ing: condensations of bibliographic search output. Information
6. Oxford (1981).

32. J. A. Mariani and D. R. McGregor, AutoProg—A Software
Development and Maintenance System. The IUCC Bulletin 3
(No. 1) (1981).

33. P. Larson, Dynamic Hashing, BIT 18, 184-201 (1978).
34. J. D. Warnier, Logical Construction of Programs. H. E. Stanfert

Kroese BV, POB 33 Leiden, Netherlands. (1974).
35. R. G. Thomson, A Special Purpose Processor for Database

Systems. PhD Thesis, Strathclyde University, Scotland (1977).
36. V. A. J. Mailer, The content addressable file store—CAFS. ICL

Technical Journal 1 (No. 3), 265-279 (1979).

Received August 1981

© Heyden & Son Ltd, 1982

©Heyden& Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 367

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/358/369833 by guest on 09 April 2024

