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The numbers of occupancy states of linear or circular arenas for dynamic storage allocation of immovable blocks of
arbitrary size are expressed simply in terms of Fibonacci numbers, as are the numbers of equivalence classes of states
induced by reflective and rotational symmetries.

1. TERMINOLOGY

In the standard model for dynamic storage allocation
with immovable blocks,1 a state is a partition of an arena
of length n into blocks of positive integral lengths, where
each block is marked either busy or idle. Betteridge2 and
Benes3 considered the state model in analysing the
behavior of allocation policies under Poisson inputs and
were able to get exact results for small arenas; Robson's
minimax results4 provide qualitative insight about the
effectiveness of certain allocation policies in large arenas.
Knuth1 and Reeves5 have made preliminary progress in
the statistical mechanics of large arenas. This paper
considers the sizes of various pertinent state spaces.

It has proved convenient to study circular arenas,
where all cells are inherently similar.5 Indeed, the
artificial construct of a small circular arena may, by
avoiding end effects, model the behavior of a large arena
better than would a similarly small linear arena. We may
reduce the size of models still further by assuming
homogeneity and treating circular states that are rotated
images of each other as identical. In the same way,
Benes profitably combined mirror-image states of linear
arenas.3 Thus it will be useful to understand equivalence
classes of states under various automorphism groups—
reflection, rotation, or both.

The internal layout of a contiguous run of idle blocks
does not matter; for convenience we shall let all idle
blocks have length 1. In mathematical terms, a state is an
ordered partition of n in which two species of 1 may
occur.

States invariant under an automorphism—in particular
reflection—will be called symmetric. States not known to
be symmetric under any but the identity automorphism
will be called unrestricted.

In making proofs, it is helpful to recognize certain
special states called closed. The closed states of a linear
arena are those states that have a busy block at a given
end. In a circular arena, some cell boundary may be
chosen as a cut or origin for numbering the cells. Then
the closed states of the circular arena are those states in
which a block spans the cut. The spanning block, which
must be busy, is called the cut block.

Any state of an arena of length n will be called an
n-state for short, and a block of length k will be called a
k-block. The term n-state may be further qualified as
linear or circular according to the kind of arena. A
rotation of a circular arena throughy cell positions will be
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Figure 1. The 13 unrestricted linear 3-states. Busy blocks are
labelled B, idle blocks I. Unpaired states are the five states symmetric
under reflection. Pairings show the nine equivalence classes under
reflection. States 2,5, 7 ,8 ,10,11, 12,13 are the eight states closed
on the right.

called Sij-cell rotation. See Fig. 1 for examples of much of
this terminology.

The Fibonacci numbers, 0, 1, 1, 2, 3, . . . , which
appear as a pleasant surprise in this study, are denoted

2. NUMBERS OF STATES

The number of n-states of linear and circular arenas will
be designated Ln and Cn. Restriction to closed states will
be signified by a superscript c: Un and Cc

n; symmetry
reflection by an overbar: Ln, Un, Cn, and Cc

n; and
symmetry under ./-cell rotation by a second subscript: Cnj
and Cn j . Most of these quantities satisfy simple difference
equations, for which the initial conditions can be read off
from Table 1.

Table 1. Unrestricted and reflectively symmetric states of 1-cell
and 2-cell arenas. A cut 2-block is shown as two open-
ended busy blocks. From this table may be read the
initial values for the difference equations of section 2.
For example, the four boxes under n = 2 in rows under
the heading linear states contain 5 states; hence L2 = 5

n= 1
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1-states

Unrestricted
2-states
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1 -states

Symmetric
2-states

Circular states Cn
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2.1. Unrestricted states

Consider the number Ln of linear n-states and the number
Lc

n of closed linear n-states. A closed n-state may be made
either by appending a busy 1-block to an unrestricted
n — 1-state or by extending the closing busy block of a
closed n - 1-state:

££ = ! * _ , + ! £ _ , (1)

An n-state may be closed or may be made by appending
an idle block to an unrestricted n — 1-state:

(2)

Recalling the Fibonacci difference equation,

we see that Eqns (1) and (2) are satisfied by

Ln = F2n+l (3)

Lc
n = F2n (4)

These solutions satisfy the initial conditions, Lx = 2 =
F 3 and L\ = 1 = F2. Equation (3) was first given by
Betteridge.2

Turning next to circular arenas, observe that a closed
circular n-state may be made either by extending the
closing block of a closed linear n — 1-state into a new cell
added at the other end of the arena to make a cut block,
or by inserting a new cell into the cut block of a closed
circular n — 1-state:

With the appropriate initial condition, C2 = 1, this
difference equation is satisfied by

Cc
n = F2n.t-l (5)

A circular n-state is either a closed circular n-state or is
identical to a linear n-state:

C = Cl + Ln

Substituting from Eqns (3) and (5), we find that

Cn = F2n+1 + F 2 n _ i — 1

2.2. Reflectively symmetric states

(6)

A closed symmetric n-state of a linear arena may be
made by extending the closing block(s) of a closed
symmetric linear n — 2-state by one cell at each end or by
adding a busy 1-block at each end of a symmetric linear
n-state.

Zc
n = Zc

n_2 + I n _ 2 (7)

A symmetric linear n-state either is a closed symmetric
linear n-state or may be made by adding an idle block at
each end of a symmetric linear n - 2-state:

Ln — Ln + Ln-2

Recurrences (7) and (8) are satisfied by
(8)

U = Fn+l (9)

L n = Fn+2 (10)

Since L\ = 1 = F2, L\ = 2 = F3, I , = 2 = F3, and
L2 = 3 = F4, these solutions start right. According to
Eqn (10), we have LQ = 1, a convention that will be
useful later on.

The interesting automorphisms of circular arenas are
rotations (cyclic groups), reflections, and both together
(dihedral groups). We first consider reflection of a cut
circular arena. A closed symmetric circular n-state may
be made either by adding a cut 2-block to the ends of a
symmetric linear n - 2 state, or by extending the cut block
of a closed symmetric circular n — 2-state with two new
cells:

The solution that satisfies the initial conditions, C\ = 0
and C\ = 1, is

Q = F n + 1 - l (11)

A symmetric circular n-state is identical either to a
symmetric linear n-state or to a closed symmetric circular
n-state:

C — 7 A- Cc

whence, from Eqn (10) and (11),

Cn = F n + 3 - l (12)

This solution extends correctly down to n = 1 and n = 2.

2.3. Circular states under rotation

Under repeated y-cell rotations of a circular n-state, with
1 <j<n, any given cell visits sites spaced at integer
multiples of (nj), where (n,j) denotes the greatest
common divisor of j and n. Thus the number of circular
n-states invariant under such a rotation is

Cn,J = Qnj) (13)

Finally, consider the combined effect of a reflection
followed by a y-cell rotation, 1 <j<n, with this permu-
tation scheme:

1 2 . . . j - l j j+l j+2 . . . n - 1 n
j j - l . . . 2 1 n n - 1 . . . j+2 j+l

An n-state invariant under such a permutation partitions
into two reflectively symmetric substates of j and n—j
cells. If the n-state is closed, then the substates must be
also, and each closed y-substate must either be one of the
Cf reflectively symmetric closed circular y-states or be
wholly contained within a larger busy block. Thus

where the term — 1 accounts for the impossibility of both
substates being spanned by one endless busy block. Non-
closed n-states symmetric under reflection and ./'-cell
rotation must be the product of reflectively symmetric
linear j - and n— y-states. Adding these to the closed
configurations, we finally find the number of n-states
symmetric under reflection and y-cell rotation to be

C j = (C/+ 1)(CJ-; + 1) - 1 + LjLn_j

which becomes, upon substitution from Eqns (10) and
(11),

CnJ = Fj+iFn_j+l + Fj+2Fn-j+2 - 1 (14)

Though Eqn (14) has been derived only for 1 ^y < n, it
holds fory=n as well, in which case it reduces to Eqn
(12).
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2.4. Numbers of states: summary

The following theorem summarizes the results of
Section 2.

Theorem 1. The numbers of n-states of linear and circular
arenas invariant under (1) identity, (2) reflection, (3)
y-cell rotation, and (4) reflection theny-cell rotation are as
given in Table 2.

Table 2. Numbers of n-states invariant under various automor-
phisms. Ft, F2, ... are Fibonacci numbers, 1, 1, 2,
3 , . . .

(3)

(10)

(6)

(12)

(13)

(14)

Some numerical values of these quantities may be
found in Table 4.

3. EQUIVALENCE CLASSES

All the results of this section depend on the following.

Counting theorem.6 The number of equivalence classes
induced on a finite set of points by an automorphism
group G is

Arena
type

Linear

Circular

Auto-
morphism

Identity

Reflection

Identity

Reflection

Rotation

Reflection
and rotation

Symbol and number

Ln =

cn =
C =
cn.r-
Cn,-

Fm+i

Fn+2

Fln+\ + ^2/1-1 ~ 1

Fn+3~1

= CM). 1 <j<n

- F/+ \Fn_j+!

+ F/+2Fn-i+2 ~ '

where |G| is the order of G and f(g) is the number of
points fixed under the action of group element g.

In the present instance, the points are n-states and the
group G comprises reflections, rotations, or both.

Script letters designate the number of equivalence
classes under the various automorphism groups:

£„ linear arena under identity
£„ linear arena under reflection
Qn circular arena under identity
Qn circular arena under reflection
C° circular arena under rotation
&n circular arena under reflection and rotation

Trivially,

(15)

(16)

3.1. Equivalence classes under reflection

Each of the Ln states of a linear arena has a distinct
mirror image, except for the Ln symmetric states. Thus,

by counting each state once and each symmetric state a
second time, we count two representatives of each
equivalence class. Hence the number of equivalence
classes is

£„ = !(£„ + !„) = i(F2n+l + Fn+2) (17)

This formula illustrates the counting theorem: there are
two group elements, identity and reflection, under which
Ln and Ln states are invariant, respectively.

By the same reasoning it follows that the number of
equivalence classes of states of a circular arena under
reflection is

en = cn)
By Theorem 1,

(18)

3.2. Equivalence classes under rotation

Again from the counting theorem, together with Eqn
(13), we obtain the number of equivalence classes under
the group of ally-cell rotations, 1 < j<n:

nJ=
C(nJ) = 1 £ <t>{nld)Cd (19)

ld\n

Here (f>(n) is Euler's function: 0(1) = 1, otherwise (f>(n) is
the number of positive integers j , 1 <j<n, such that
(n,j) = 1. The author knows of no closed form for Eqn
(19).

The counting theorem gives the number of equivalence
classes under the full dihedral group of rotations and
reflections as

- i f " " "I

Here the first sum covers the nonreflecting elements of
the dihedral group and the second covers the reflecting
elements. Substituting from Eqns (14) and (19) we obtain

i\n
Fj+iFn_j+l

i
n

-n\ (20)

It may be shown (see Appendix) that

n_, - Fn) (21)

Simple changes of variable in the second and third sums
in Eqn (20), which we call Vm yield

— Gn+2 — F0Fn+2 — FtFn+i — Fn+2F0
"n + 4 — rorn + 4 — FlFn + 3

— F2Fn+2 — Fn+3Fi — Fn+^F0

Since Fo = 0, Fx = 1, and F n + 1 + fn+2 = Fn+3,
'n = "n+2 + Gn + A — 3Fn+3

which becomes, upon substituting for Gn from Eqn (21)
and simplifying with Fibonacci identities,

Vn = riFn+3
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Finally, substituting Vn back for the sums in Eqn (20)

yields

+ n(Fn+3 - 1)
d\n

Table 3. Numbers of equivalence classes of n-states under various
automorphism groups

(22)

3.3. Equivalence classes: summary

Theorem 2. The numbers of equivalence classes induced
upon /i-states of linear and circular arenas by (1) identity,
(2) reflection, (3) rotation, and (4) reflection and/or
rotation are as given in Table 3.

Table 4 gives some numerical values for these
quantities. The asymptotic formulas there follow from
linear relations among various solutions of the Fibonacci
recurrence,

_ tf-if

Arena
type

Linear

Circular

Auto-
morphisms

Identity

Reflection

Identity

Reflection

Rotation

Symbol and number

+ '2n-1

Fn+3-2)

(15)

(17)

(16)

(18)

(19)

un =
2 J

and from noticing that the d = n terms dominate the
sums in Eqns (19 and (22).

Reflection
and rotation

(22)

Table 4. Numbers of states and equivalence classes, with asymptotic formulas. In the asymptotic formulas
u = (1 + 75)/2

n i n = en Ln lr C» = e . C 2, e% 5°n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2
5
13
34
89
233
610
1597
4181
10946
28657
75025
196418
514229
1346269
3524578
9227465

24157817
63245986
165580141

2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711

</"V5

2
4
9
21
51
127
322
826
2135
5545
14445
37701
98514

257608
673933
1763581
4615823
12082291
31628466
82798926

u7"* 7(V5)

2
6
17
46
122
321
842
2206
5777
15126
39602
103681
271442
710646
1860497
4870846
12752042
33385281
87403802
228826126

U2" L
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APPENDIX

Generating functions may be used to prove Eqn (21). Let whence

F(x) = £ FnX". G(x){l-x- x2)2 = x2.

From the definition of the Fibonacci numbers it follows A s i t s characteristic equation has the same roots as that
t< t for Fn, but repeated, the implied recurrence for Gn must

F(x)(l — x — x2) = x. have homogenous solutions of the form

oo oo „ Gn = AxFn + A2Fn+i + A3nFn + A4nFn+l.
G(x) = £ Gnxn = Z X " 1 FkF»-k = ^X*) 2 .

n=o n=o k=o Equation (21) follows by equating coefficients.
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