
Short Note

A Note on Computing Precedence Functions

An algorithm for computing the precedence
functions of a given precedence matrix is
presented. This algorithm is based on the parallel
traversal of digraph representing the precedence
matrix. It applies equally well to the computa-
tion of both simple precedence and operator
precedence functions. Furthermore, it has
pedagogical value in explaining the concept of
longest path in the digraph context.

Introduction

Given a precedence matrix of relations be-
tween symbols of a programming language,
there are several ways documented in the
literature for computing its precedence func-
tions. These are found to be unsatisfactory for
various reasons. Floyd's original algorithm is
based on the incremental adjustments of
precedence functions with respect to the
precedence matrix.1 The incremental adjust-
ments are enclosed in a loop, making the time
efficiency of his algorithm an order of the
matrix entries. Aho and Ullman document the
other algorithm based on the digraph ap-
proach.2 The precedence value of a symbol is
simply stated to be the length of the longest
path beginning from the node concerned,
without further elaboration. Presumably one
has to trace out every path from the node
concerned in order to figure out which one is
the longest path, and repeat this process for all
the nodes in the digraph. This process is
clearly very inefficient. The most efficient
algorithm, outof all, certainly is Bell's solution3

(see also Ref. 4). His method encodes the
digraph of relations into a Boolean matrix.
After computing the transitive closures of
relations, the sums of row entries yield the
precedence functions. Unfortunately, this al-
gorithm still produces the precedence func-
tions when there are none, as the following
example shows. Suppose the following prece-
dence matrix is given.

Applying Bell's algorithm, we have the follow-
ing precedence functions:

/
9

Clearly, these precedence functions are mis-
leading as the precedence relations are cyclic.
One therefore has to carry out the consistency
test between the precedence functions so
produced and the original precedence matrix.

a b
>
<

c
<
>

a
3

1

b
1

2

c
0

0

We describe in what follows an alternative
for computing the precedence functions based
on the parallel computation approach. The
non-existence of the precedence functions is
automatically detected in the process of com-
puting them.

Algorithm

The algorithm for computing the precedence
functions has two phases. During the first
phase, a digraph is constructed from the given
precedence matrix. In the second phase, a
parallel traversal of digraph is carried out for
assigning a precedence value to each node.
The resulting precedence values form the
precedence functions. The following is a
detailed sketch of the algorithm:

(1) Create two nodes, fa and ga, for each
symbol including $. (Following Ref. 2, $ is
used as the begin and end of the input
symbol.)

(2) Form a digraph as follows: If a > ft, place
a directed link from/, to gb; l(a<b, place
a directed link from gb to fa; If a = b,
place an undirected link between/, and gb.
(Strictly speaking, the last precedence
relation turns the digraph into a weak
digraph.)

(3) Assume all nodes have zero precedence
values to begin with. Starting from/j and
g%, move backwards along the directed
links in parallel. When a node./- is reached,
its precedence value is compared with that
of the node / just moved from. If the
precedence value of Jj is greater than that
of fi, then do nothing. Otherwise, the
precedence value of fj is updated such that
it is one greater than that of/. The new
precedence value is then propagated to its
companions connected by undirected
links, if any. This parallel process is
repeated until the computation converges
or a node is assigned a precedence value
equal to the number of nodes in the
digraph. The former indicates the exist-
ence of precedence functions, and their
values are the precedence values in the
digraph. The latter signifies the contrary.

We can prove the correctness of this
algorithm informally in the following. Since
the bottom-up parsing traces out the canonical
derivations in reverse, the longest path from
any node will not exceed the distance between
the nodeyj or g$ and the node concerned. By
starting the parallel traversal of digraph from
/{ and <?$, we are guaranteed to find the longest
paths of all nodes, if any. When a node is
reached via a directed or undirected link, if
the new precedence value is greater than the
old one, it means that the new path is longer
than the old path being replaced, and vice
versa. By this way, the minimum biggest

precedence value, and hence the longest path,
is always assigned to a node, as the digraph is
traversed in parallel. If the graph is acyclic,
the traversal will terminate when all sources
are reached. As the precedence value assigned
to each node equals to the longest path
beginning from the node concerned, the
precedence functions so computed are there-
fore consistent with the precedence matrix. If,
on the other hand, the graph is cyclic, no
precedence functions will exist, and the algo-
rithm will fail to find ones when a precedence
value equalling to the number of nodes in the
digraph is assigned to a node.

Example

We now give an example to demonstrate how
the algorithm works. The following prece-
dence matrix of operator-precedence relations
is adapted from:2

id S

The digraph constructed according to the
algorithm is shown in Fig. 1.

The numbers written beside the nodes are
the precedence values. By tabulating them in
the usual way, we have the precedence
functions.

/

9

+
2

1

*

4

3

(
0

5

)
4

0

id

4

5

$

0

0

Concluding remarks

This note arose from the pedagogical need in
explaining the construction of precedence
functions to students. The algorithm described
in this note is based on the parallel traversal of
digraph representing the precedence matrix.
One could imagine that the way the parallel
traversal works is similar to sending cars down
the directed links. If all directed and undi-
rected links are one and zero units long
respectively, and all cars travel at the same
speed from/j and g$, the latest car arriving at
a node must have travelled the longest dis-
tance. This analogy offers an intuitive expla-
nation on why the algorithm works.

The parallel algorithm described in this
note is applicable to the computation of both
simple precedence and operator precedence
functions.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25, NO. 3,1982 3 9 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/397/369905 by guest on 10 April 2024

SHORT NOTE

» I f 3

« (t > i 5

Acknowledgement

This work was supported under RGC Grant
05-143-105.

M. C. ER
Department of Computing Science,
The University of Wollongong, P.O. Box 1144,
Wollongong,
New South Wales 2500,
Australia

References

1. R. W. Floyd, Syntactic analysis and
operator precedence, Journal of ACM
10,316-333(1963).

2. A. V. Aho and J. D. Ullman, Principles of
Compiler Design. Addison-Wesley,
Reading, Massachusetts (1977).

3. J. R. Bell, A new method for determining
linear precedence functions for prece-
dence grammars. Communications of the
ACM 12, 567-569(1969).

4. D. Gries, Compiler Construction for Dig-
ital Computers. Wiley, New York (1971).

Figure 1. Digraph constructed according to the algorithm. Received January 1982

© Heyden & Son Ltd, 1982

398 THE COMPUTER JOURNAL, VOL. 25, NO. 3,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/3/397/369905 by guest on 10 April 2024

