
Data Analysis and System Design by Entity-
Relationship Modelling
A Practical Example

A. Parkin
Leicester Polytechnic, PO Box 143, Leicester LEI 9BH, UK

A published case study from the 1960s is dis-analysed and the assumptions and limitations revealed. The case is
redesigned and the new solution is contrasted with the original.

INTRODUCTION

Entity-relationship modelling1 is valuable because it
gives systems analysts a language for thinking in. The
aim of this paper is to illustrate the thought processes
inspired by the technique, by taking a practical example
which contains a realistic level of complexity. The reader
is forewarned that to follow the fine points of the
discussion he will have to make a substantial investment
of his time. Readers who are unfamiliar with the
principles of system design through data analysis should
read Ref. 2.

A technical difficulty in systems analysis is the
conception of an efficient overall system design, complete
enough to fulfil all present requirements and robust
enough to survive expansion and change. This difficulty
is severe when the requirements are complex. The
strength of the entity-relationship model lies in its ability
to cut through the complexity, helping the analyst to
explore alternative high-level decisions. A further value
is the aid it gives to raising questions which should be put
to management prior to concluding the design.

An expository difficulty in explaining the use of the
technique with a realistic example is the need to provide
a rich set of facts describing the case, facts which the
expositor should avoid marshalling in too orderly a
fashion lest he destroys the point of the example. The
facts which practising analysts acquire for background
are usually discovered over a period of time, and arise in
a disorderly fashion which is hard to simulate. This paper
compromises with background facts from an old case
whose design was not influenced by data analysis
thinking. This also allows the process of dis-analysis to
be illustrated. Dis-analysis is the construction of a data
model from the record layouts of master and transaction
files in a system. This is useful for interpreting system
specifications for purposes such as tuning, estimation,
maintenance and package evaluation.

Presumably the analysts concerned with the original
design faced an even richer set of facts than those
recorded. I played no part in the case and have no special
knowledge of the type of business, a bakery. Therefore I
share with the reader the need to interpret the case purely
at face value; the need to question the facts and to
speculate about points of detail. The mention of limita-
tions of the original design is certainly not meant as any
slur on the analysts concerned, whose priorities and
design philosophy must be judged in the context of the

time. The reader should now study the facts in case study
two, Order Control and Sales Accounting, Ref. 3.

DISCUSSION OF BACKGROUND

Figure 1 is my attempt to describe the feature facts on a
single page: the principal inputs, outputs and reports;
the overall data flow; the principal processes and their
frequency; the main master and transaction files needed
to support each process; which processes are supported
by each file. It is usually safe to omit from high-level
consideration workfiles, recovery files and recovery
procedures, control and error reports and other routine
procedures which are only secondary to the productive
processes leading to the principally desired results. No
doubt though there are exceptional cases where the tail
must wag the dog. Figure 1, by omission, judges the
temporarily stored commodity totals in run B22 to be a
workfile, but this is debatable.

In section 2.3 of the case, it says that the sales analysis
information in the commodity master and analysis file
covered the previous 12 weeks. Later it appears to cover
8 weeks and 24 months; the latter is assumed to be
correct.

In section 2.4 of the case, the use of the
standing/required/delivered quantities by runs B20, B21
and B22 (section 2.5) is rather difficult to follow. There is
more than one way in which these fields could be
physically used to achieve the desired result, which is
that if there is no return or adjustment, the required
quantity is deemed to have been delivered, and if there
is no order amendment, the standing quantity is deemed
to be the required quantity. One interpretation is that for
each day (Monday, Tuesday, . . .) there are three
quantities—a standing quantity, a required quantity and
a delivered quantity (see Fig. 2). When a delivery note is
produced for a day, the required quantity is moved to the
delivered quantity for that day, and the standing quantity
is moved to the required quantity, which now stands for
the required quantity on that day next week. Just after
the delivery notes are produced, the six required
quantities for a given commodity make a (circular) list of
the required quantities for the next six days, starting the
day after the day to which the delivery notes referred. At
the weekend, the six delivered quantities will represent
the quantities delivered over the preceding six days, as
amended by returns and adjustments. These six quantities

CCC-0010-4620/82/0025-0401 $04.50
© Wiley Heyden Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25, NO. 4,1982 4 0 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

A. PARKIN

Computer
files Computer dept Driver Office Loading bay Bakery

Update
ordered

quantities
daily

Baking
programme

Commodity
master &
analysis

Produce
daily

schedules

Bake goods
pick goods

to bays
Pick

goods to
vansPick goods

from van
to customer

Returns &
adjust-
ments

Adjust
delivered
quantities

Weekly
invoices and

sales statistics

Report
generator
(optional)

Payment
received

Cash from
customer

Monthly
statements

Aged
debts
report

To
customer

Figure 1. The overall system.

Customer 027, lib sliced white

Standing quantities

M T W Th F S

(a) 100 100 100 100 100__200_

(b) 100 100 100 100 100 200

(c) 100 100 100 100 100 200

Required quantities

M T W Th F S
50 100 100 100 200__20O_

50 100100~~100~*100 200

50 100 100 100 100 200

Delivered quantities

M T W Th F S

100 100 100 100 0 0

100 100~100~lob~*200 0

0 0 0 0 0 0
Figure 2. A possible interpretation of the use of the 18 customer/commodity quantities. Time (a), before
production of Friday's delivery notes; Time (b), just after production of Friday's delivery notes; Time (c),

after the invoice has been prepared.

402 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

DATA ANALYSIS AND SYSTEM DESIGN BY ENTITY-RELATIONSHIP MODELLING

are then set to zero after they have been accounted for in
the weekly invoice. Figure 2 illustrates this idea. At time
(a), before production of Friday's delivery notes, order
amendments have been received for this Friday and next
Monday. Last Monday's order was not amended. At time
(b), just after producing Friday's delivery notes, the
required quantity is assumed to be safely delivered and
the required quantity next week is assumed to be back to
normal. At time (c), when the invoice is prepared
between Saturday and Monday delivery note production,
the recorded delivered quantities are used to bill the
customer and then reset to zero. Let us assume that this
is a legitimate interpretation of the use of these fields.

Returns and adjustments which arise after preparation
of the weekly invoice, but which relate to a delivery prior
to the invoice, are not offered to the same process since
there would be wrong amounts allowed if a price change
occurred between the original delivery and the invoice
preparation. Also, customers would be unable to reconcile
the deliveries claimed in the invoice. These returns and
adjustments, not processed in the referent week, are one
source of supplementary transactions in run B25 (presum-
ably of class 3 or class 4). The frequency of processing
these, and the payments received etc., is not stated. It
should be at least monthly and is presumably weekly or
daily.

The home-made index for the accounts file (section
2.4) seems to introduce an awkward limitation if one of
the multiples decides to increase its number of shops in
the area; presumably the storage is allocated so that there
is a slot for at least one extra branch in each multiple.

Another interesting feature is the sales history on the
commodity record, which is supposed to cover a two-
year period broken into 24 months, the last two months
being further divided into eight weeks. A difficulty arises
in interpreting this, because in two calendar months
there may be nine weekly invoices raised. In run B23, it
seems that the week's invoice amount just raised is
inserted in the most recent week's figure and added to the
most recent month's figure. This suggests that the months
are calendar, but the corollary is that some monthly totals
contain five weeks' invoices, and some four, according to
where the Saturdays lie. The alternative interpretation is
that the months are lunar, but then the totals would not
span a two-year period unless the eight weeks were end
on to the 24 months. Let us assume that the totals refer to
calendar months and that sales comparisons are to be
made on this basis in spite of the 25% perturbation.

The money values in the sales analysis reports do not
seem to be stored anywhere, so presumably they are
derived by using the current prices. This will mean that
the past figures may vary with current prices; this could
be interpreted as reporting the past in present value
equivalent.

In the case as implemented, an estimate of the file
storage used for master and transaction files is:

Standing orders file (indexed)
Data: 10 900 x 64 697 600
Provision for 38% oflo 265 088
Indexes: 27 x 40 x 10 + 270 11 070

Commodity master and analysis file
(relative)

Data and spare: 499 x 4456
Accounts file (special index)

Data 292 x 719
Spare or wasted:
292 x (1000-719) +

(360-292) x 1000

973 758 973 758

2 223 544

209 948

150 052

Total characters

360 000 360 000

3 557 302

In a byte-oriented environment, it is sensible to get this
global picture divided between alphanumeric characters
and numeric digits, since packing the numbers may make
for significant compression.

The explanation that follows will be more concise if
file and attribute names are abbreviated:

SO, standing order; SQ, standing quantity; RQ,
required quantity; DQ, delivered quantity.

COMM, commodity; C # , commodity code; PQ,
quantity per pack; P£, pack price; PP, pack points;
PD, pack description; WS, weekly sales quantity;
MS, monthly sales quantity.

ACC, account; A # , account number; AC, account
class; B%, bread discount; C%, confectionery
discount; IN A, invoice name and address; CNA,
consignment name and address; CB, current balance
of account and separate sign; PB, previous balance
of account and separate sign; T # , transaction
number, TC, transaction class; TD, transaction
date; T£, transaction amount; TF, statement flag.

so

1
Many

ACC

1

1

25

TRANS

Many

Many

COMM

25

TRANS COMM

(a) (b)

Figure 3. Alternative models (optionality of relationships neglected).

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 403

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

A. PARKIN

PIS-ANALYSIS OF THE EXISTING DESIGN

The aim is to derive a data model which is descriptive of
the design implemented in the case. Clearly the accounts
records are not fully normalized; the transaction
(TRANS) group needs to be treated as a separate entity.
Treating the other tabular entities as fully normalized
(on the grounds that their table position allows the
derivation of a unique name for each quantity), and for
the moment accepting the idea of A # as a single
attribute, the candidate entities/relationships are: ac-
count, commodity, standing-order and transaction. Two
ways in which these are likely to be composed in an
entity-relationship model are shown in Fig. 3.

The difference between these two is in the interpreta-
tion of the idea 'standing order'. Version (a) considers
that a customer has a single standing order, covering all
his desired commodities. This seems to be the vernacular
use of 'standing order' in the bakery. In version (a), the
SO-COMM relationship is concerned with the lines that
appear in the standing order. In version (b), the meaning
of standing order is the same as that of a record in the
existing SO file, i.e. what is meant by SO-COMM in
version (a).

These two models are of course essentially the same.
The 1:1 ACC-SO relationship in version (a) can be
simplified by merging those two entities. If we decompose
the many:many SO-COMM relationship of version (a)
into its 1:many, many: 1 components, it is apparent that
the alternative meaning of SO is revealed. This flexing is
illustrated in Fig. 4.

There is no special key for SO, occurrences being
identified by (A#, C #) . The key of the relationship
ACC-SO formed by pooling the keys of the two entities
it joins will also be (A#, C#) , as will be the key of the
SO-COMM relationship. Since any attributes under this
key can be stored with SO, the model could be simplified
to that of Fig. 5.

As a general rule it is worthwhile to decompose
many: many relationships, at least mentally, even if they
are eventually documented in more compressed form.

The degree assumptions of Fig. 5, which should be
checked out with user management, are as follows:
(1) A given transaction may concern only one account.
(2) A given account can have a maximum of 25

transactions.
(3) A given account may place standing orders for many

commodities.
(4) A given commodity may be the subject of standing

orders from many accounts.
The model of Fig. 5 corresponds closely to the records
designed in the case, each entity and relationship being
realized as a record type, the transaction record type
being posted 25 times into the account record type. It is
recognized in the case that this posting does not square
with the facts, since accounts have a variable number of
transactions in a two-month period. Also, unless there is
some business rule or policy which will refuse the 26th
transaction or assimilate it manually, the upper limit is
presumably not reliable. The probability of an account
having more than 25 transactions may be very small, but
one could conjecture some systematic change in the
future which would result in this limit being regularly
exceeded. The design would be more robust if this
limitation were avoided.

While on the subject of transactions, the flagged
transactions seem to be a loose end since they are not
used after they have appeared on the statement. Perhaps
they are included in the aged debts report, or perhaps
there is a plan to provide facilities to enquire about the
current and previous month's transactions. In keeping
with the general viewpoint of this paper, the required
outputs and the facts that are to be stored may be
questioned, but the discussion will continue on the basis
of matching the facilities of the original system.

DEEPER ANALYSIS—A # FACETS, SPARE
ATTRIBUTES

We now relax the assumption about A # being a single
attribute, and recognize its facets, round number (R#),

(a)

(b)

Figure 4. Alternative (a) can be flexed into alternative (b).

TRANS 25

TRANS (! # , TC, TD. T£, TF)
TRANS-ACC (T # . A #)
ACC (A £ , AC, B%. C%. INA, CNA, CB, PB(3))
SO (A # . C # . SQ(6), RQ(6), DQ(6))
COMM (C # , PQ. P£, PP. PD, WS(8,24). MS(24,24))

Figure 5. A simple representation of the existing design.

404 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

DATA ANALYSIS AND SYSTEM DESIGN BY ENTITY-RELATIONSHIP MODELLING

group code (G#) and branch code (B#). However, we
still assume that these codes and C # are given, and not
open to redesign at this stage.

We expect every data item of the case to be either an
attribute of an entity or relationship of the data model, or
a derivation of the former attributes, this derivation not
needing to be stored, or a parameter of the processes of
the system, being a data item which is introduced to a
process but which does not need to be stored when the
process is concluded. Attributes of the entities and
relationships are eventually to be realized in the master
and transaction files designed for the system. Derivations,
such as totals and page counts, will be realized by
processes, or by workfiles, work records or control records
passed between processes. Parameters, such as today's
date, will be realized in messages stored in or temporarily
passed to the processes.

Working through the case, and neglecting data items
such as indexes invented purely to support the chosen
physical design, I classified every remaining data item
mentioned as a derivation or parameter, apart from the
commodity totals stored during delivery note production,
and the loading bay letter (BAY#). I put a question
mark over the commodity totals, but decided this was a
point of detail which could be left out for the time being.
BAY # could be treated as a parameter, but in view of its
connection with R # it may be preferable to treat it as an
item to be stored. This leaves it as a loose end in our
present model. We cannot put BAY# in with entities
which hold R # (e.g. ACC) since this would leave the
entity not fully normalized. The pair (G#, B#)
determines R # , and therefore BAY#, but R # alone
determines BAY# whereas it does not alone determine
other attributes of ACC. Separating out the entities
ROUND and BAY gives Fig. 6. The dotted line in this
figure illustrates the fact that ROUND also participates
in the SO relationship in the present design, because of
its inclusion in A # . The participation of ROUND in the
SO relationship adds no information that cannot be
found from the participation of ACC in this relationship,
i.e. an occurrence of the SO relationship concerns only
one occurrence in ACC, and this occurrence in ACC
concerns only one ROUND. The dotted line represents

ROUND (R#) BAY (BAY#)

\ Many

(R#- \
G#, B#)\

Many

Many COMM (C#, . . .)

(G#, B#,C#,. . .)

Figure 6. R # extracted.

a tuning decision embodied in the design; storing this
relationship may assist processing when the model is
physically realized, but it can be left out of our present
search for the heart of the matter.

Turning to the commodity sales history, one interpre-
tation of the present record is that it contains the attribute
G # , whose value is implicit in the position of the totals.
Even if we persist in seeing COMM as fully normalized
(by taking G # into the formation of unique names for
the attributes), we may now recognize that G # appears
in two places—explicitly in ACC and implicitly in
COMM. An attribute should appear in only one entity or
relationship of the model, with two exceptions: (a) when
two separate entities need the attribute in question to
form their primary keys, and (b) when the attribute in
question is in a relationship and is the primary key of an
entity joined by the relationship. This, and the 1 :many
relationship between groups and branches, strongly
suggests that GROUP is an entity which should be
accounted for, and that the sales totals for past weeks
and months arise in connection with a many:many
GROUP-COMM relationship (actually implemented in
the case as a 24: many relationship). Figure 7(a) shows
a short representation of this, Fig. 7(b) shows it
decomposed.

(a)

(b)

ACC (G#,

ACC (G#,
/

B#,.

B#,.

.)

• •)

Many
GROUP (G#)

(G#, B#)

Many
GROUP (G#)

(G#, C#, WS(8), MS(24))

Many

COMM (C#, .

SH (G#, C#, .

• •)

Many

COMM (C#,. . .)

Figure 7. Sales history (SH) drawn out as a GROUP-COMM relationship.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 405

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

A. PARKIN

This raises the question of whether or not ACC
occurrences with B # = 999 should be stored with other
ACC occurrences if our present idea of ACC is that it is
a branch involved in ordering and to whom we render an
account. Perhaps a more precise view would be that there
is a branch, which orders, and an account, which is
rendered either for a branch or for a group. There is a
many: 1 branch-group relationship, a 1:1 branch-ac-
count relationship and a 1:1 group-account relationship;
a given account participates in one relationship and not
the other. Should we be storing account attributes with
GROUP?

There is no great harm in storing B # = 999 entities in
ACC and in one sense it keep things simple. However, it
might be more in keeping with the facts and the
processing if we were to recognize group account
attributes as different from branch account attributes.
Let us put this on one side for the time being. In other
accounting systems I have investigated it has been
profitable to split up the TRANS entity into different
entities representing different types of transaction. In
this case, though, every TRANS enjoys all the attributes
and relationships which are to be stored, so they may as
well be considered one entity-type.

Finally, let us consider the array attributes which have
implicit day indexes in SO and implicit week/month
indexes in SH and ACC. A standing order could be
conceived as something which connects a SQ, RQ, DQ
trio of quantities to an account, a commodity and a day.
A representation is given in Fig. 8. The meaning of a
relationship like this should always be checked out by
substituting an entity for the relationship and considering
the relationships between this entity and the original
entities. For brevity, this process is skipped here.

If we were to realize the relationship described in Fig.
8 in the most straightforward fashion, we would pay a
penalty of storing G # , B # , C # , D # for every
occurrence of the trio SQ, RQ, DQ (whereas at present
we stand to store G # , B # , C # for every six occurrences
of the trio); but we gain by not having to store the trio for
inapplicable days (at present we store the trio for every
day). Which is preferred from an economy of storage
point of view is a question of the facts of the case, which
can be analysed as follows. Let x be the average number
of days (out of six) for which customers require a type of
commodity. Implicit days may be preferred if (total
characters stored with implicit days, Fig. 5 with G # ,
B # substituted for A #) is less than (total characters
stored with explicit days, Fig. 8), i.e.

10 900 x 62 < 10 900 x (2 + 3 + 3 + 1 + 3 + 3+3) or
x > 3.4.

SO (G#, B#, C# ,

ACC
(G#, B#, . . .)

D#,

Manv^

SQ, RQ, E

6

DAY (D#)

DQ)

—^Many
COMM (C#,. . .)

Figure 8.

Let us assume that the implicit representation results in
less storage requirement. On the whole, a design which
minimizes storage seems to put one in a good position for
considering the processes. Only if a processing constraint
is struck will it be necessary or desirable to trade some
storage for faster processing, and it is very difficult in
complex cases to forecast the processing constraints prior
to getting down to detailed timings.

Although for this discussion we are putting the days
back into SO, it was good to take them out and give them
an airing, because of the degree assumption embodied.
We must check out with management that a given
standing order can concern at most six trading days.

Essentially the same arguments can be made about the
implicit week/month index in the sales history, SH. Let
us assume that GROUPs and COMMs on average persist
long enough to warrant providing for all the weeks and
months of all of them. We must also check out that one
sales history can at most concern eight weeks and 24
months. Similarly with the previous balances in ACC;
one account is to have at most three previous balances
stored.

FURTHER ANALYSIS—REMOVE DEGREE
CONSTRAINTS, REDESIGN CODES

We have already considered that the degree assumption
of 25 transactions per account is arbitrary and should
ideally be many: 1. Let us take the average number of
transactions per account to be 20. A further degree
assumption in the present system is that a commodity
will have sales history relationships with 24 groups. We
know there are only 21 at present, and although new
groups may be slow in arising there is no definite limit to
the number. Ideally the sales history relationship should
be many:many. There are other degree constraints
embodied in the value domain of the existing codes (e.g.
maximum of 99 rounds) but these seem very much further
removed.

Let us now reconsider the code systems of the primary
keys of the entities. BAY#, R # , T # , G # are all simple
sequence codes and unobjectionable. The hierarchical
(G# , B#) to identify ACC is ungainly. We would like
to redesign B # so that it uniquely identified occurrences
of ACC, allowing us to drop G # from the key. We could
do this by assigning a simple sequence code to B# ,
running independently of G # , but for one fact: we would
destroy the flag value information in each existing
occurrence of ACC where B# = 999, i.e. we would no
longer know which accounts were group accounts. This
is a confirmation that occurrences with B# = 999 are
unhappy where they are and should be stored in the
GROUP relation. A further confirmation that this is a
better view is that the B# =999 accounts do not
participate in the ACC-ROUND relationship nor the
SO relationship. It is therefore proposed that G # be
dropped from the key of ACC, which could be renamed
BRANCH, and that GROUP takes up the relevant
attributes of ACC (they will be prefixed by G to show
that they are the GROUP version of the attributes). The
account class attribute, AC, is presumably an attribute of
GROUP and not of BRANCH, whereas CNA is
presumably an attribute of BRANCH but not of
GROUP.

4 0 6 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

DATA ANALYSIS AND SYSTEM DESIGN BY ENTITY-RELATIONSHIP MODELLING

A consequence of this decision is that it is no longer
necessary to store G # in the SO relationship. Which
GROUP participates in the SO can be discovered
through the BRANCH. The shortened key of SO would
make it slightly more likely to be worthwhile to store
explicit days; branches now need to order commodities
for an average of 3.75 days or more.

C # is a block code and therefore conceals an attribute.
If we redesign C # as a simple serial code and add a new
one-character attribute, commodity type (CT), we in-
crease the record size slightly, but increase opportunity
to reduce filesize because there is no need to provide
independent growth allowance for bread items. There is
not sufficient information to be precise, but let us say that
providing for 450 commodities with the redesigned code
would give roughly the same growth potential as the
existing provision for 99 bread commodities and 400
confectionery commodities. Presumably the designers of
the existing system were influenced to build in a growth
allowance either because memory management facilities
of the day made extension of files difficult, or because the
commodity codes which exist at one moment are allocated
sparsely over the range, perhaps as a result of rapid
change of the commodities on offer.

If sequential codes can be preserved in a close group,
this increases their potential for use as keys of relative
files. BAY#, R # , G # values all appear to be quite
stable. Presumably the B # s in use are also quite stable,
but there is more of a question mark over values of C # .
The stability of the set of codes in use can be promoted
by reuse of defunct allocations, but such reuse needs to be
strictly controlled if ambiguities are to be avoided. A
suitable rule for B # here could be that a B # may not be
reused until after the existing occurrence with that B #
is deleted from BRANCH; and an occurrence of
BRANCH may not be deleted until there are no
transactions for that branch and the account balance is
zero. This will mean that the B # of a defunct customer
could be reused, at the earliest, two months after the last
transaction with him. A C# should not be reused until
after the existing occurrence of that C # is deleted from
COMM, and this deletion should not be permitted until
all SH occurrences for that C # have zero sales. This
means that a defunct C # is not available for reuse until
two years after the last delivery involving that commodity.
Figure 9 shows the state of the data model after
incorporating the changes discussed in this section.

ROUND
Many

COMMTYPE

Many

TRANS

BAY (BAY#)
BAY-ROUND (BAY#.R#)
ROUND (R#)
ROUND-BRANCH (R # , B #)
BRANCH (B#, B%, C%. INA, CNA. CB. PB(3))
BRANCH-TRANS (B # . T #)
TRANS (Jjt, TC, TD, T£, TF)
BRANCH-GROUP (B # , G #)
GROUP (£ & , GAC. GB%, GC%, GINA. GCB, GPB(3))
SO (B # , C # . SQ(6), RQ(6), DQ(6))
COMM (C&. PQ. PC PP. PD)
SH (C # . G # . WS(8), MS(24))
COMM-COMMTYPE (C#.CT)
COMMTYPE (CT)
TRANS-GROUP (T # . G #)

Figure 9. The primitive model, stripped of tuning relationships.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 407

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

A. PARKIN

CHECKING OUT THE STORED COMMODITY
TOTALS

It will be recalled that we put aside the question of
whether or not the commodity totals stored during
production of the delivery notes should be included in the
model. Perhaps we now have sufficient overall grasp of
the facts to tackle this question of detail.

At the end of the delivery note run, the stored totals
represent the accumulated quantities for each commod-
ity, within each round, within first or second delivery.
These stored totals are used to produce the two reports
that summarize the deliveries: the van loading report
and the bakery loading report. For this purpose, the
stored totals are simply a derivation of data stored in
accordance with the model, and therefore can be
considered a workfile. However, the case description
states that the delivery note run relates to deliveries of
the next day's bread, but the next-but-one day's confec-
tionery. Obviously the delivery note lines for two different
days cannot be intermingled. It would be possible to
mingle bread and confectionery lines relating to the same
day, if this were desired, if there were two passes of the
standing orders file per day, one being a read-only pass to
forecast the day after next's confectionery for van and
bakery loadings, and one updating pass to produce the
next day's confectionery and bread delivery notes,
followed by the van and bakery loadings for bread. The
confectionery notes produced in this way would be the
ones that related to the standing orders included in the
previous day's forecast; to preserve data integrity, the
system would have to reject any attempt to amend the
required quantity after the forecast had been made. But
this cannot be the procedure because it would not, as the
case insists, then be necessary to store the round/delivery
totals from one day to the next.

We must conclude that only one pass of the standing
orders file is made, confectionery delivery notes being
produced separately from bread delivery notes. Let us
assume this to be the correct interpretation, and that
confectionery notes are required a day earlier than bread.
Presumably, what I have just described as one pass is in
fact two sweeps of the standing orders file, all the
confectionery notes being produced on one sweep, all the
bread notes on the other. This means that when the van
driver gets his delivery notes in the morning, he gets the
bread notes prepared the day before and the confectionery
notes prepared the day before that. Similarly the bakery
manager gets bread loadings prepared on the day on
which the evening shift starts, but confectionery loadings
prepared a day and a night before the day shift starts.
The delivery note run is done in two parts: one to produce
all the delivery notes, van loading and bakery loading for
bread items to be delivered tomorrow, and one to produce
all the delivery notes, van loading and bakery loading for
the confectionery items to be delivered the day after
tomorrow. The notes produced from the second part on
a given day need to be held and married with those
produced from the first part on the next day.

In order to know where to break the deliveries, when
producing the bread delivery notes on a given day, the
accumulated pack points for the confectionery deliveries
prepared the previous day must be available. Although
these pack points were a straight derivation at the time
they were stored, are they still a derivation by the time

they are re-input the next day? The pack points could not
be rederived from the required quantities if the standing
quantities were used to update the required quantities in
the manner previously explained. This is because a
temporarily required quantity used in the original pack
points calculation will have been restored to the standing
quantity.

If this account is correct, it follows that the accumulated
pack points per round from the last delivery note run is
an attribute which should be accounted for in the model.
The pack points are an attribute of the round—ROUND
(R#, BAY#, B/F CONFECTIONERY POINTS).
(Even if this attribute is technically a derivation, because
it may be the aggregate of the recorded delivered
quantities, there is no harm in including it in the model
if it helps understanding.) This point is perhaps a little
academic, but it has brought out a feature which is
unclear in the present design. Presumably the existing
system works something like this: the bread delivery
notes are produced before the confectionery delivery
notes, the bread phase of the program re-accumulates the
pack points from the stored totals, the bread delivery
notes etc. are produced, the stored totals are set to zero,
then the confectionery notes are produced, updating the
stored totals.

It is not surprising that some manual adjustment is
needed when making up the van loadings. There are a
number of interesting speculations about how well the
delivery system works, but once again in the interests of
a brief discussion the functional targets of the system will
be taken as given.

This point also reveals a rather fine system anomaly.
Suppose the ROUND of a BRANCH changes. The B/F
CONFECTIONERY POINTS (or stored totals) for the
old round will include points (quantities) which should
be in the points (stored totals) of the new round. Similarly,
the confectionery delivery notes and van loading will be
for the old round, the bread delivery notes and van
loading for the new round. This may make the delivery
break more inappropriate than usual, and may entail a
bit of juggling with the delivery notes; perhaps little more
than the usual manual adjustment. A more perplexing
possibility is that the new round belongs to a different
bay. If the system functions normally, the confectionery
products for the customer will be delivered to one loading
bay and his bread products to another. The van driver,
probably having in his head the round change and the
bay associated with the previous round, may yet be able
to untangle this. This anomaly could be avoided by
storing a next-round relationship between ROUND and
BRANCH. The confectionery notes would be produced
using next-round, if present, then the next run would use
the next-round to update the current round for the bread
delivery notes. Let us assume this is not necessary.

REALIZATION OF THE MODEL

A set of files derived from Fig. 9 in the most straightfor-
ward manner is as follows:

ROUND(R#, BAY#, B/F CONFECTIONERY
POINTS)

BRANCH(B # , R # , G # , B%, C%, IN A, CNA, CB,
PB(3))

TRANS(T # , B # , G # , TC, TD, T£, TF)

4 0 8 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

DATA ANALYSIS AND SYSTEM DESIGN BY ENTITY-RELATIONSHIP MODELLING

GROUP(G#, GAC, GB%, GC%, GINA, GCB,
GPB(3))

SO(B # , C # , SQ(6), RQ(6), DQ(6))
COMM(C#, CT, PQ, P£, PP, PD)
SH(C#,G#,WS(8),MS(24))

In the interest of brevity, details of the redesign of the
system procedures using the new files are omitted.
Interested readers can obtain this detail from the author
should they desire.

The conclusion of the redesign is that filestore
requirements are reduced to 2 668 304 characters approx-
imately. The original daily schedules program, which of
all the programs probably used the most computer
resource and had a deadline with little slack, had an
estimated 15 000 disk accesses with an average seek of 12
cylinders. Redesigning this program using the new files,
but for the same moving-head disk assumed for the
original program, gives a revised estimate of 19 000
similar disk accesses with an average seek of only \\
cylinders. Probably the disk I/O resource usage of both
versions is similar even without making any tuning
adjustments to the redesign. Probably both old and new
versions of the program would be 'printer-bound' on the
assumed equipment.

Should tuning of the daily schedules program be
thought necessary, maintaining an alternate index to the
BRANCH file on the attribute R# eliminates 6000
retrievals which arise from the need to search for
branches on the current round. This tuning shows a clear
advantage without complicating the design. Alterna-
tively, the BRANCH file can be efficiency-split into
BRANCH-DEL(B#, R # , CNA) and BRANCH-
ACC(B#, G # , B%, C%, IN A, CB, PB(3)). Only
BRANCH-DEL is needed for delivery notes and this
allows a larger blocking factor, roughly halving the 6000
searching retrievals.

The stored totals workfile contained limitations be-
cause of its assumptions about the maximum number of
rounds, deliveries and commodities. These assumptions
are eliminated in the redesign, without significantly
increasing computer resource usage, by writing a scratch
sequential workfile with records (CT, R # , DE-
LIVERY # , C # , RQ) which is then used separately to
produce the van and bakery loadings.

In the redesign, all the master files are left in primary
key sequence, which bodes well for simplicity of file
maintenance, and efficiency and flexibility in meeting
new requirements.

CONCLUSIONS ~

Estimating resources used by computer runs is error-

prone, and doubly so when not all the pertinent facts are
known about the hardware, software and process char-
acteristics. However, it seems likely that the tuning
assumptions embodied in the original design were not
justified. The data analysis has created a track through
the jungle of detail, made tuning decisions explicit and
given a basis for comparing alternatives. The data
modelling has reduced redundancy a little and reduced
wasted space. As a result the starting requirements for
online filestore have been substantially reduced. Disk
I/O resource usage of seeking, latency and transfer can
be reduced if this is a target. Processor overhead is
probably much the same.

The original design had limitations if more than three
new groups arose, if rounds ever exceeded 45, if bread
commodities (existing at any time in a two-year period)
exceeded 99, if confectionery commodities exceeded 400,
if an account had more than 25 transactions, if a round
had more than two deliveries, if some groups opened
more than one new branch, if a new commodity type was
required. These limitations, except the last, have now
been postponed to the limits of filestore capacity or the
limits of the value domains allowed by the primary keys.
To allow additional commodity types, the many:many
discount relationship between GROUP or BRANCH
and COMMTYPE would have to be explored, as well as
possible many:l COMMTYPE-ROUND relationships
concerning pack points.

The original design gave rise to processing complexi-
ties, or data anomalies, if a branch changed its round (as
a result of management decision) or a commodity
changed its type (as a result of reclassification). These
complications have been removed.

We do not know where the ROUND-BAY relation-
ship was stored in the original design, but this has now
been drawn out as a file, thereby parameterizing the van
and bakery loading reports and facilitating loading bay
changes. The data analysis encouraged detection of a
deep-seated anomaly which would occur when a change
of the round of a branch also gave rise to a change of
loading bay. The need to check out degree and other
assumptions gives direction to the fact-finding and
improves the reliability of the design.

Data analysis may affect program complexity. It
encourages the use of simple files containing fixed-length
records of only one type. It leads to more files per
program, and perhaps to the use of search algorithms
that are not so familiar to programmers. Nevertheless,
there does not seem to be an inherent difference in
complexity when compared with traditional designs.
Quite plain algorithms tend to result if there is suitable
software support for alternate indexes.

REFERENCES

1. P. P. Chen, The entity-relationship model—towards a unified
view of data. ACM Transactions on Database Systems 1 (No. 1),
9-36 (March 1976).

2. A. Parkin, Systems Analysis. Edward Arnold, London (1980).

3. H. D. Clifton, Data Processing Systems Design. Business Books,
London (1971).

Received June 1980

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 409

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/401/366337 by guest on 10 April 2024

