
Permutation Generation on Vector Processors

M. Mor and A. S. Fraenkel*
Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel 76100

An efficient algorithm for generating a sequence of all the permutations P(i) on N symbols using parallel processors,
all of which perform identical operations, is presented (0 < i < M). Starting from a naive version in which all
permutations have to be kept in memory, a final version in which each processor has to store only a single permutation
is evolved. The algorithm is most efficient if the number of processors is s! for some s < /V but can be used, at the price
of some bookkeeping, for any number of processors. Some properties of the sequence {P(i)} are pointed out, such as
the fact that the ft! permutations on 1, . . . , k are generated prior to moving element k + 1 (1 < * < N). The
correspondence i <->/"(/) is given explicitly.

1. INTRODUCTION

Generating all N! permutations of N elements is usually
done by generating the (/ + l)th permutation from the
ith permutation, for i = 1, . . . , AM — 1 (see e.g. Refs. 1
and 2). Such algorithms are therefore very inefficient for
SIMD (single-instruction stream multiple-data stream)
machines,3 systolic machines,4 and vector processors,5'6

where the same operation is performed synchronously in
parallel on different data. This paper describes a simple
efficient algorithm for generating all AM permutations of
N elements on such machines.

The basic idea of the parallel permutation-generation
on vector processors (in short: PEP) algorithm is to
arrange the AM permutations of Af elements into a specific
order such that large blocks of permutations can be
generated simultaneously by performing the same trans-
formation on previous blocks of permutations. The naive
PEP scheme that will be described in Section 2 enables
one to generate iteratively kk\ permutations in the
(k + l)th iteration using A:! SIMD-processors (or, equiv-
alently, using a vector processor for vectors of length k!).
If only t < k! SIMD processors are available, the scheme
can easily be modified to enable generation of t
permutations at almost every step, by dividing every
iteration into [k \/t\ subiterations. The naive PEP scheme
assumes that all permutations can be kept in memory. In
Section 3 this assumption will be removed, and a PEP
algorithm for t processors when t = s! for any s will be
described where every processor needs to store only one
permutation. This PEP algorithm is further expanded in
the final Section 4, to enable its application for any
number of processors, but in this case some extra book-
keeping is needed.

2. THE NAIVE PEP SCHEME

We may assume that all permutations will be stored in a
matrix A of N! rows and N columns, where each row A (J)
of the matrix contains one permutation p(j, 1), p(j, 2),
... ,p(j, N) of N elements. (0 <j<N\ - 1).

Let us assume that the kth subset (k < N) of permu-
tations, consisting of all k! permutations of the first k

elements, has been generated after k iterations, and stored
in the first k! rows of A, numbered 0 to k ! — 1:

'Partially supported by a grant of Bank Leumi Le-Israel.

p (0 , l) , p (0 , 2) , . . . ,p(0,k), k+l,k
p{\, 0 , / K l , 2) , . . . , p{\, k),k+l,k

2,...,N

p{k\ - 1, \),p{k\ - 1, 2),. . .,p{k\ - 1, k), k + 1,

The next step in the algorithm is to interchange the
(k + l)th column with the kth column in the above
displayed k! rows A(Q), . .., A(k\ — 1), using k\ proces-
sors simultaneously, and store them in A as the next k!
rows with serial numbers A(k\) to A(2k\ — 1). The next
step is to interchange the kth column with the (k — l)th
column in A(k\) to A(2k\ - 1), etc. until finally the
second and first column are interchanged in A(kk!) to
A((k + l)k\ - 1). At this stage the (k + l)th iteration
terminates, the (k + l)th subset of permutations has been
generated and stored in A(0) to A((k + 1)! — 1) and the
process is continued with (k + 2). Table 1 shows the
permutations of four elements as generated by this
algorithm.

This scheme evidently has the following properties:
(a) each permutation is generated by a single interchange
of two (adjacent) elements; (b) the kth subset of
permutations is generated before the (k + l)th element is
moved. (This property, shared by some serial algorithms,
is discussed, e.g. in Refs. 2,7 and 8); (c) the reflection of
theyth permutations is the (AM —j — l)th permutation,
0 <j < AM. (A(i) is a reflection of A(J) if />(', N-l) =
p(J, I + 1), 0 < / < N.) Consequently, the first and the
second half of the sequence of permutations generated
do not contain the reflection of any permutation of that
half. A sequence of permutations, with the latter property
is called by Roy2 a 'reflection free1 sequence and it is
claimed to be an advantage in many applications.9

Properties (a) and (b) are obvious. As to property (c),
We prove:

Lemma

They'th permutation generated by the naive PEP scheme
is the reflection of the (AM— j — l)th permutation
(0<y<AM).

CCC-OOlO-4620/82/0025-0423 $03.00
© Wiley Heyden Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25. NO. 4.1982 4 2 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/423/366370 by guest on 10 April 2024

M. MOR AND A. S. FRAENKEL

Table 1.

Row No.

0
1
2
3
4
5_
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Permutations
generated
scheme

by

Permutation

1
2
1
2
3
3
1
2
1
2
3
3
1
2
1
2
3
3
4
4
4
4
4
4

2
1
3
3
1
2

2
1
3
3
1
2
4
4
4
4
4
4
1
2
1
2
3
3

of four elements
the naive

3
3.
2
1
2
1
4
4
4
4
4
4
2
1
3
3
1
2
2
1
3
3
1
2

PEP

4
4
4
4
4
4

3
3
2
1
2
1
3
3
2
1
2
1
3
3
2
1
2
1

Proof. Without loss of generality, the elements permuted
are the first N natural numbers here and below. For
N = 2 the assertion is true, since the permutations
generated by the PEP scheme are 12 and 21 in this order.
Let us assume that the assertion is true for N = k, that is,

Now let N = k + 1. We have to show that

p((k + 1)! -j - 1, k + 1 - l)=pU, I + 1)
(0 <;./< (A:+l)!,0<:/</fc.+ l).

For 0 £j <(k+ 1)!, let q = [jlk\\. Then 0 <> q < k. In
permutation /, the element (k + 1) is at position k + 1 —
[j/kll = k + 1 — q, and in permutation (k + 1)! — j —
1 it is at position k + 1 - [((k + 1)! -j- l)/k\\ = q +
1. Thus the element k + 1 is indeed reflected properly.

We can think of the generation of the (k + 1)!
permutations as consisting of two stages:

(i) Write down k + 1 blocks of k! rows each, consisting
of the k\ permutations of 1, . . . , k generated by the
algorithm.

(ii) In the 47th block, insert the element {k + 1) at position
k + 1 - q (0 <, q £ k).

For stage (i), the induction hypothesis implies, since
all blocks are congruent,

p{tk\-j-\,k-l)=p(J,l+\)
(O£j<tkl,O<l<k,O<t<k+\),

and, in particular,

When stage (ii) is performed, element (k + 1) is
inserted symmetrically: at position k + 1 - q in permu-
tation; and at position q + 1 in permutation (k + 1)! -
j — 1. Hence the elements 1, . . . , k preserve their
symmetry also after stage (ii) was performed, and

p((k + l)\ -j - l,k+ I - [)=p(JJ + I)
(0<j<(k+ \)\,0<I<k + 1).

Therefore permutation (k + 1)! —j - 1 is a reflection of
permutation/

Remark. By using the reflection property, the parallelism
in the naive PEP scheme can be about doubled as
follows: (a) Two copies of the permutations 0 to (AH/2) -
1 are generated in parallel, that is, the naive PEP
algorithm is terminated after AM/2 permutations have
been generated, (b) In one of the two copies, element
(J + 1) is exchanged with N — y (0 <j < N).

In the above described naive PEP scheme the jth
permutation can easily be obtained from the number j ,
0 <j < AM, as follows. (The transformation j-*A(J) is
called 'orderly listing' or 'ranking'.10)

Algorithm A

Let the AM permutations be numbered 0 to AM — 1. In
order to find the/th permutation 0 < j < AM - 1:

(1) Represent; by its factorial representation (Ref. 10, p.
7)

j = ajv-,(Ar- 1)! + aN.2(N- 2)! + • • • + o22! + a,l!
0 < a i < / 0 = l , 2 , . . . , i V - l) .

(2) Starting from the identity permutation 1,2, . . ., N,
move the (i + l)th element o, positions leftward for
i = 1,2,. .. ,N — I. The result is the/th permutation.

The correctness of algorithm A follows from the
correctness proof of algorithm B below.

Example. Evaluate permutation no. j = 1 000 000 of the
PEP scheme for N > 10.

(1) 1000000 = 2 x 9!+ 6 x 8! + 6 x 7!+ 2 x 6!
+ 5 x 5 ! + l x 4 ! + 2 x 3 ! + 2 x 2 ! +
0 x 1 !

(2) The identity permutation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

Element
2
3
4
5
6
7
8
9

10

Positions
moved
0
2
2
1
5
2
6
6
2

Result
1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , .
3, 1, 2, 4, 5, 6, 7, 8, 9, 10, .
3 , 4 , 1 , 2 , 5 , 6 , 7 , 8 , 9 , 1 0 , .
3,4, 1 ,5 ,2 ,6 ,7 ,8 ,9 , 10,.
6 , 3 , 4 , 1 , 5 , 2 , 7 , 8 , 9 , 1 0 , .
6, 3, 4, 1, 7, 5, 2, 8, 9, 10, .
6 ,8 ,3 ,4 , 1 ,7 ,5 ,2 ,9 , 10, .
6 ,8 ,9 ,3 ,4 , 1,7,5,2, 10,.
6 , 8 , 9 , 3 , 4 , 1 , 7 , 1 0 , 5 , 2 , . ,

.N.

.N.

.N,

.N.

. N.

.N.

.N.

.N.

.N.

Hence the permutation numbered 1000000 (starting the
enumeration from 0) is: 6, 8, 9, 3, 4, 1, 7, 10, 5, 2, 11,
. . . ,N Obtaining conversely, the serial number/ of
a permutation II generated by the PEP scheme, is a
special case of algorithm C below.

4 2 4 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/423/366370 by guest on 10 April 2024

PERMUTATION GENERATION ON VECTOR PROCESSORS

3. LIMITED MEMORY SPACE

Since AM grows exponentially, the above described
scheme can be used for small N only. (Already 11! =
39916800 exceeds the memory space of all current
computers.)

In this section a slight modification of the PEP scheme
will be given, which enables to run it on / processors
when t = s\ for any s, and where every processor needs
to store only one permutation at a time. (In the next
section the restriction t = s! will be removed at the price
of some additional bookkeeping.)

Definitions

A direction pointer is a pointer attached to every element
m in the range s < m < N, pointing to the left or to the
right, denoting the direction in which the element m
should be moved. A movable element m is every element
s <m< N such that there exists an element k, 1 < k <
m in the direction of the direction pointer of m. The
smallest movable element is a movable element ms such
that for any other movable element m, ms < m.

The PEP-algorithm

Initialization. Assign the permutation with serial number
j to processor pjt j = 0, . . . , 5! — 1 by a direct serial
process such as algorithm A, or by the naive PEP scheme
outlined in Section 2. Set all direction pointers pointing
left.

Generation. Interchange the smallest movable element ms
with the nearest element k satisfying 1 < k < ms in the
direction of the pointer of ms, simultaneously in all 5!
processors.

Change the direction of the pointer in all elements /
satisfying s < I < ms. Assign to every newly generated

Table 2. Generating all permutations of four
elements by 2! SIMD processors

permutation the serial number of the permutation from
which it was created, increased by s\. If there is no
movable element, stop.

Examples of using this algorithm for N = 4 and s = 2
and 5 = 3 are given in Tables 2 and 3, respectively.

At each step 5! permutations are generated simulta-
neously, one in every processor. We enumerate the
permutations (here and below) starting from the first
permutation of the first processor, then the first permu-
tation of the second processor etc. (as in Tables 2 and 3).

The algorithm has the following properties:

(a) Each permutation is generated by a single inter-
change of two elements, not necessarily adjacent.

(b) The kth subset of permutations is generated before
the (k + l)th element is moved.

(c) The sequence of permutations is reflection-free,
(follows from (b)), but the yth permutation is not
necessarily a reflection of the (AH —j — l)th permu-
tation (see e.g. Table 2).

Table 3. Generating all permutations of four elements by 3! = 6
SIMD processors (s = 3)

Pa

0) 1 2 3 4
6) 1 2 4 3

12) 1 4 2 4
18) 4 1 2 3

Pi

3) 2 3 1 4
9) 2 3 4 1

15) 2 4 3 1
21) 4 2 3 1

1) 2 1 3 4
7) 2 1 4 3

13) 2 4 1 3
19) 4 2 1 3

4) 3 1 2 4
10) 3 1 4 2
16) 3 4 1 2
22) 4 3 1 2

2) 1 3 2 4
8) 1 3 4 2

14) 1 4 3 2
20) 4 1 3 2

5) 3 2 1 4
11) 3 2 4 1
17) 3 4 2 1
23) 4 3 2 1

Algorithm B for obtaining they'th permutation in the PEP
algorithm

Let the N\ permutations be numbered 0 to AM — 1.

(1) Represent j by its factorial representation:

j = aN^(N- l)\ + aN.2(N- 2)\ + • • • + a22\ + aiV.

(2) F o r a l l s ^ i ^ N - l evaluate
0) 1 2 3 4

2) 1 3 2 4

4) 3 1 2 4

6) 3 1 4 2

8) 1 3 4 2

10) 1 2 U

12) 1 4 2 3

14) 1 4 3 2

16) 3 4 1 2

18) 4 3 1 2

20) 4 1 3 2

22) 4 1 2 3

1) 2 1 3 4

3) 2 3 1 4

5) 3 2 1 4

7) 3 2 4 1

9) 2 3 4 1

11) 2 1 4 3

13) 2 4 1 3

15) 2 4 3 1

17) 3 4 2 1

19) 4 3 2 1

21) 4 2 3 1

23) 4 2 1 3

0 + D!
(mod 2), M, = 0 o r l .

(3) For 1 = 1 to N — 1, do the following:
Starting from the identity permutation, if i < s or

«i = 0, then move the (/ + l)th element a, positions
leftward. Otherwise, (i > s and «, = 1) move the
(/ + l)th element i — a, positions leftward.

The result is theyth permutation.

Note that for s = N we get back algorithm A, since
then 1 < s for all I <i < N.

Example. N > 4,j= 19.

(1) 19 = 3 x 3! + 0 x 2 ! + l x 1!,
a, = \,a2 = 0, a3 = 3.

(2a) If* = 2,

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 2 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/423/366370 by guest on 10 April 2024

M. MOR AND A. S. FRAENKEL

U2 =

"3 =

19
37
19"
4!

= 1 (mod 2)

= 0 (mod 2).

The identity permutation 1 2 3 4 5 . . . N.

Element Positions moved Result
2 1 2 1 3 4 5
3 2 - 0 = 2 3 2 1 4 5
4 3 4 3 2 1 5 . . N

Therefore for 5 = 2, the permutation for j = 19 is
4 32 1 5 . . . AT (see Table2).

(2b) If s = 3, only w3 is pertinent.

Element
2
3
4

Positions moved
1
0
3

R(
2
2
4

esult
1 3
1 3
2 1

4
4
3

5
5
5

. . . #

. . . N

... N

Therefore for s — 3, the permutation for j = 19 is:
4 2 1 3 5 . . . AT (see Table 3).

Correctness proof of algorithm B. We shall establish a one-to-
one correspondence, based on the factorial number
scheme, between the permutations generated by the PEP
algorithm and the permutations generated by algorithm
B.

In the factorial number representation, digit at assumes
integer values in the range [0, /], and is incremented by 1
exactly after all the /! possible increments of the digits ak,
1 <, k < i. In the PEP algorithm, element / + 1, s < i + 1
< AT, is moved alternately i times leftward and then i
times rightward, since there are i elements smaller than
i + 1. It is moved exactly once after all /! permutations of
the elements { 1 , 2 , . . . , / } were created, otherwise i + 1
is not the smallest movable element. Element / + 1 is
alternately either in a 'left sweep mode' or in a 'right
sweep mode', according to the indication of the direction
pointer. The direction is changed when element / + 1 has
completed i moves, completing (/+ 1)! permutations.
Hence a correspondence between the (/ + l)th element
and digit a, in the factorial representation of integers can
be established. In particular, for permutation j generated
by the PEP algorithm, digit at of the factorial represen-
tation of j , j = ^Al=~ilaii\, represents the number of
positions element (i + 1) was moved in the PEP algo-
rithm. The direction of its movement is determined by
the parity of «, = [j/(i + 1)!J and since «, starts from an
even value (0), and i + 1 starts with a leftward move,
therefore, if M, is even, (/ 4- 1) is in a left sweep mode, and
if Ui is odd, then (/ + 1) is in a right sweep mode.
Therefore the position of every element in a specific
permutation can be determined as described above, and
this is exactly performed by algorithm B.

A similar reasoning can be applied and the same
correspondence can be established for 1 < / + 1 < s, but
in this case every element / + 1 performs in the PEP
algorithm only a single left sweep, therefore there is no
need to check the parity of the corresponding ut.

Conclusion. If u, = 0 (mod 2) (1 < / < AQ, that is, all
elements are in a left-sweep mode, then the serial

numbers of the permutations in the unrestricted case—
the naive PEP scheme (Table 1), and in the PEP
algorithm (Tables 2 and 3) are the same (e.g. permutations
0-5 and 12-17).

Algorithm C for obtaining the serial number of a
permutation II generated by the PEP algorithm

Let n be a given permutation, generated by the PEP
algorithm, and denote by a, the position of element / in
II (1 < i < N). The serial number of U is calculated as
follows.

(1) Initialization
(a) /<-maxa.*,j0 =;,;>; (0, i.e. / is the largest element

that is moved in IT from its original position in the
identity permutation.

(b) d,*-1 — fl(, i.e. the number of positions / is moved.
(c) S«-4(/-l)!-
(d) Delete all elements j > I from II and renumber II

(i.e. evaluate ax,..., a(_ i).
(2) For i = 1 - 1 to 2 by - 1 do

If i > s then t«- di+1 (mod 2)
, U — at i f j < j o r f = 0
1 \at — 1 otherwise (/ > s and t = 1)

S<-S + dAi - l)\
Delete i from FI and renumber FI
end
Finally S contains the serial number of II.

Example. 1 1 = 4 2 1 3 5 6 7
(1) (a)/^4

(b) dt«- 3
(c) S < - 3 x 3! = 18
(d) II = 2 1 3

a, = 2 , a2 = l ,a3 = 3.
(2) s = 2

i = 3 (f > s)
t <- rf4 (mod 2) = 1
dz <- «3 - 1 = 2

ax = 2, a2 = 1

d2 <- 2 — a2 = 1
S^S + d2l\ =

n = i

d3 <- 3 - a3 = 0
S<-S + d32\ = 18

n = 2 1
a, = 2, a2 = 1

d2 <- 2 — a2 = 1
S^S + d2\\ = 19

FI=1.

Therefore the serial number of n is 23 if s = 2
(compare with Table 2) or 19 if j = 3 (compare with
Table 3).

4 2 6 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/423/366370 by guest on 10 April 2024

PERMUTATION GENERATION ON VECTOR PROCESSORS

Remark. In the unrestricted case (the naive PEP-algo-
rithm) always i< s, 1 < i < N, and therefore Step 2 can
be simplified accordingly.

Correctness proof of Algorithm C. An element i,2 <i< N is
moved in the naive PEP scheme and in the PEP
algorithm if and only if all elements 1 < k < i have
completed all their possible (i - 1)! permutations. Hence
if 4(2 < i < N), denotes the number of positions element
i was moved to obtain the permutation n, then the serial
number of n is obviously Xft2 ^i(' - !)!•

In order to obtain the values of d{: For 2 < i < s or
i = N, element i is moved only leftward, hence the
position a, of element i in II determines dt = i — at.

For s <i < N — 1: Every time element i + 1 is moved
by one position, element i has completed a leftward or
rightward sweep, and changed the direction of its
movement. Hence the direction of the movement of
element / can be determined by the parity of dt + ,.

If 4+1 is even, element i is in a leftsweep mode and
therefore dt = i - at (as 2 < / < s or i = N). If 4+1 is odd,
then element i is in a rightsweep mode, therefore
4 = ^ -1 .

A variation of the well-known Johnson-Trotter per-
mutation generation algorithm,11'12 as described by
Even (Ref. 13, p. 3), is a special case of the PEP
algorithm. If s = 1! = 1, that is only a single processor is
available, the sequence of permutations generated by the
PEP algorithm is shown in Table 4. This special case is
not the same as the Johnson-Trotter algorithm since the
smallest rather than the largest element is always moved,
and therefore non-adjacent exchanges are also performed.
On the other hand, this algorithm has the above
mentioned properties which do not exist in the Johnson-
Trotter algorithm. Especially important is the property
of generating the kth subset of permutations before
moving the (k + l)th element. This enables one to start
with the same permutation sequence for any number of
elements, and to continue the process if more permuta-
tions are needed.

Table 4.

1
2
2
1
3

iC
O

tco
tco

1CM

1
3

iC
O

1
2
2
1

IC
O

IC
O

1
2
2
1
4
4

Generating
ments by 1!

4
4
4
4
4
4
1
2

1
2
2
1
1
2
2
1

all
= 1

tco
tco

1
2
4
4
4
4

permutations
processor

4
4
4
4
2
1
3
3

2
1

tco
tco

iC
O

iC
O

1
2

of

3
3
4
4
4
4
4
4

four

4
4

tco
tco

1
2
2
1

1
2
2
1

tco
tco

1
2

ele-

2
1
1
2
2
1

tco
tco

4. LIMITED NUMBER OF PROCESSORS

In the previous section, the number of processors used
for the generation of permutations was t = s\ for some
s < N. This restriction can be removed at the price of
additional initializing of the processors and/or not using
a few of them. (In the above described algorithm, where
the number of processors is s\, every processor is
initialized only once.)

In order to achieve this, the following method can be
used: For any t processors, if there is no integer s such
that t = s\, then the smallest r < t should be found such
that t divides r\. Now execute the above described
algorithm as if r! processors were available, except that
since only t processors are available, the algorithm must
be repeated d = r\/t times, that is, each processor must
be initialized d times.

Example

If the number of available processors is t = 3, then there
is no integer s such that t = s!. In this case the smallest
integer r < t such that t divides r\ is r = 3. Hence the
PEP algorithm can be applied as if r! = 6 processors are
available but the algorithm must be repeated r\/t = 2
times, i.e. every processor must be initialized twice. This
is illustrated by Table 3, where the six processors can be
substituted by three processors initialized twice.

In the example r = t, but for t = 10, r = 5, so r < t.

Proposition 1

For any two integers r and t, write t = n?= i <??' where the
qt are the distinct prime factors of t and otj > 1 are their
multiplicity. Then t\r\ if and only if 1 <L o^ < JJOO
(1 < i < n).

Proposition 2

For any positive integer t, let r denote the smallest
positive integer such that t\r\. Then r <, t and equality
holds if and only if t is prime or t = 1 or t = 4.

Conclusion. For any composite integer t > l,t = n?= i <£'•,
the smallest integer r such that t\r\ can be determined as
follows: Choose the smallest r^ such that <xmi ^ YJOO

ki/9m,J. where m, is determined by amiqmi = maxj=, „
{«($}. If r, > ajqj, j = 1, . . . , n, }±mx then r = rx.
Otherwise repeat the process for {ot^} - {a^m,}. to
o b t a i n r2 e t c . u n t i l r, > a.flr 2 <, i < n , j j t m i t . . . , m L . , ,
and set r = max {r,, r 2 , . . . , r,}.

The proofs are based on simple arguments from
number theory. They are omitted here but can be found
in Ref. 14.

For all practical r, say for r < 20 (21! > 264 > 20!) a
table of r! can be constructed, and then after at most 20
steps the smallest r such that t\r! can be found. Another
practical way, suggested by the referee, is to express 20!
in terms of its prime decomposition: 20! = 218-38-54-
72 • 11 -13 -17 -19, and to compare this with the prime
decomposition of t. Simple inspection will indicate
immediately whether or not 1120!. Then divisions by 20,
19, 18, 17 , . . . will reveal the minimum r such that t\r\.

If / is not a prime number or a multiple of large primes,
r « t. In actual SIMD-machines t is usually a power of 2
(or of small prime factors), and never a large prime.
Therefore usually a small r as requested can be found.

An obvious extension is the following: given any
t ^ s!, let T e [t — A, t] be the actual number of processors

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 2 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/423/366370 by guest on 10 April 2024

M. MOR AND A. S. FRAENKEL

used such that r is small, where A is a small integer. For
example, for t = 50, r = 10, for t = 49, r = 14 but for
/ = 48, r = 6. The reason for this is clearly because 48 has
only small prime factors. Therefore by ignoring two

processors, the active processors must be initialized only
6 !/48 = 15 times instead of 10 !/50 = 72576 times (but in
every step only 48 instead of 50 permutations are
generated).

REFERENCES

1. R. Sedgewick, Permutation generation methods. Computing
SurveysS, 137-164 (1977).

2. M. K. Roy, Evaluation of permutation algorithms. The Computer
Journal21, 296-301 (1978).

3. M. J. Flynn, Some computer organizations and their effective-
ness. IEEE Transactions on Computers C-21, 948-960 (1972).

4. H. T. Kung, The structure of parallel algorithms, in Advances in
Computers, Vol. 19, ed. by M. C. Yovits, pp. 65-112. Academic
Press, New York (1980).

5. R. M. Russel, The CRAY-1 computer system. Communications
of the ACM 21 , 63-72 (1978).

6. E. W. Kozdrowicki and D. J . Theis, Second generation of vector
supercomputers. Computer 13 (11), 71-83 (1980).

7. R. J . Ord-Smith, Generation of permutation sequences, part 2.
The Computer Journal 14, 136-139 (1971).

8. M. B. Wells, Elements of Combinatorial Computing, Pergamon
Press, New York (1971).

9. J. K. Lenstra, Recursive algorithms for enumerating subsets,
lattice points, combinations and permutations. Report BW
28/73, Matematisch Centrum, Amsterdam.

10. D. E. Lehmer, The machine tools of combinatorics, in Applied
Combinatorial Mathematics, ed. by E. F. Beckenbach, pp. 5-31.
Wiley, New York (1964).

11. S. M. Johnson, Generation of permutations by adjacent
transpositions. Mathematics of Computation 17, 282-285
(1963).

12. H. F. Trotter, Algorithm 115. Communications of the ACM 5,
434-435(1962).

13. S. Even, Algorithmic Combinatorics, MacMillan Company, New
York (1973).

14. M. Mor and A. S. Fraenkel, Permutation generation on vector
processors, Technical Report CS81 -70,TheWeizmann Institute
of Science, Rehovot (June 1981).

15. F. M. Ives, Permutation enumeration, Communications of the
ACM 19, 68-72(1976).

16. D. J. Kuck, A survey of parallel machine organization and
programming. Computing Surveys 9, 29-59 (1977).

Received June 1981

428 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/423/366370 by guest on 10 April 2024

