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One of the limiting factors in the development of real-time Computer Generated Image systems for displaying
perspective colour scenes is finding a suitable solution to the hidden surface problem. This paper presents a solution to
this problem, whereby spatial properties of a three-dimensional ‘model’ held in the Computer Generated Image system
database are utilized in order to minimize hidden surface computations for producing moving perspective scenes. This
solution is particularly acceptable to situations involving a fixed model and moving eye point. Often Computer
Generated Image systems resort to processing individual surfaces from objects in the model to obtain display priority
levels; the solution presented is based upon the use of preprocessed relative priority levels which only require complete
objects to be given priority levels thus reducing real-time computation. Once an absolute display priority level for an
object is found it will be shown that all surfaces forming that object have known display priority levels. Techniques used
to obtain object display priority levels are discussed, together with background information concerning the hidden

surface problem.

INTRODUCTION

All Computer Generated Image (CGI) systems designed
for the purpose of producing daylight three-dimensional
scenes, make use of information specifying surfaces that
represent some form of model. The display end of the
CGI system necessitates for two-dimensional surfaces to
be generated from the three-dimensional surfaces in the
model. The calculations to perform the three- to two-
dimensional transformation are well understood and
enable a viewer to see a two-dimensional picture with
perspective depth qualities, thus appearing as a three-
dimensional scene. However, the two- to three-dimen-
sional transformations entail depth information to be lost
and so extra processing must be performed to remove
whole, or part of, two-dimensional surfaces that are
hidden behind other surfaces within the scene displayed.
The problem of removing these unwanted surfaces is
called ‘the hidden surface problem’.

This is one of the most challenging problems in
computer graphics and has been, and still is, a major
obstacle in the development of computer graphic systems
for displaying realistic three-dimensional scenes.

For real-time applications the necessary high speed of
removal of occulted surfaces makes the hidden surface
problem difficult to overcome.

REVIEW OF PAST SOLUTIONS

Foraline drawing three-dimensional scene of any general
layout, the number of computer calculations required to
perform hidden line removal grows exponentially with
the scene complexity. If the scene is restricted to being
composed from concave surfaces then, as shown in two
papers by Sutherland,’'? the number of computer
calculations to remove hidden lines is reduced to the
square of the number of surfaces within the scene.

One of the first solutions to the hidden surface problem
was published by Jones.® The method described by Jones

is to examine all the points along a given line of sight.
The line of sight is terminated when it ‘hits’ an opaque
surface. Thus, surfaces represent areas upon the display
screen which ‘mask’ further projection of the line of sight.
Since many lines of sight need to be examined to produce
a complete display screen, this process is very slow.
Jones’ algorithm assumes that there are ever-present
outer surfaces which restrict a line of sight from being
infinitely extended, and the algorithm is best utilized for
a scene consisting of large surfaces near to the viewer.

Many solutions to the hidden surface problem have
been based upon comparing each surface plane within
the model with every other. These comparisons are based
on a measurement of distance from the viewer. However,
this type of solution requires massive computing power
and is not suitable for real-time applications.

The first solution to the hidden surface problem, which
enabled a real-time solution to be thought possible, was
presented by Warnock.* Essentially, Warnock solves the
hidden surface problem by dividing the picture up into
four sub-pictures. Each sub-picture is examined in turn
to find display contentions. If the sub-picture contains no
display anomalies, then the contents of the sub-picture
are placed in a display file, otherwise it is divided up into
four more sub-pictures. Division of a sub-picture contin-
ues until the size of the resultant sub-pictures are smaller
than the picture resolution, in which case the display file
contains a reference to the nearest of the surfaces in
contention. The Warnock algorithm proved to be a
milestone in the development of an ideal solution to the
hidden surface problem and was capable of processing a
picture consisting of 1000 lines in less than one minute.

In 1969, in addition to Warnock’s paper, another
paper from the University of Utah was published, by
Romney, Watkins and Evans.’ This paper was directly
aimed at the advocation of a real-time solution to the
hidden surface problem. The hidden line algorithm
devised by Romney et al. placed the restriction that the
displayed scene must consist of triangular planar surfaces.
The algorithm is based upon the inspection of an
imaginary scan line which traverses horizontally across
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the display window. Along this scan line the transition
points, from one triangle to another, are found. If two or
more triangles are found to be on the same scan line
point, then a depth sort technique is used to establish
which one should ‘enter’ the scan line list. The scan line
list holds the order of the transition points and their x-
begin and x-end values.

The prominent feature of the algorithm is that the
order of one scan line transition points are used to
determine the next scan line transition points. The order
of transition points for each scan line remain the same
unless a triangle enters or exits from the displayed scene.
For each new scan line, new x-begin and x-end values are
calculated. Storing the order of the scan line transition
points greatly speeds up the cycle time of the algorithm.
The exact speed of the algorithm depends on the number
of times the order of the scan line transition points are
changed but typically the algorithm can remove the
hidden lines from a scene consisting of 100 triangles in
about five seconds. Since the algorithm is scan line based,
it was implemented by Romney et al., on a computer
graphics system which had a colour raster scan display
device. Since 1968 there have been a number of papers
published which present various solutions to the hidden
surface problem. A paper by Sutherland, Sproull and

(a)

Schumaker® characterized the many different approaches
taken to solve the hidden surface problem. This charac-
terization is an authoritative and highly regarded piece
of work and has resulted in a better understanding of the
hidden surface problem. Consequently, new and im-
proved algorithms have been developed.

Sutherland et al. show that there are three basic classes
of approach taken to solve the hidden surface problem.
The first class utilizes the three-dimensional co-ordinate
data used to represent the model or object. The second
class of solution acts upon the two-dimensional display
data, and the third class uses data from each co-ordinate
system. By studying the algorithms within each class, the
authors conclude that there are four techniques which
would be of assistance in designing an algorithm to solve
the hidden surface problem.

Since a hidden surface algorithm will probably require
a sort process, the first technique would be to utilize a
sort function with an execution time that is linearly
proportioned to the scene complexity. Secondly, the
algorithm should perform display calculations to a limited
accuracy, as the display scene is generated upon the
display screen to a limited resolution. A third technique
1s to utilize coherence within the picture produced. For
example, the algorithm by Romney et al. utilizes line-to-

(b) Display screen
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Figure 1. (a) An example of a surface; (b) the use of priority values; and (c) an object.
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line coherence by the use of a list to store the order of the
transition points along a scan line. The fourth technique
which Sutherland et al. found to be useful is to capitalize
on the layout of the model or object to be displayed.

The solution to the hidden surface problem adopted in
the CGI system at the University of Sussex, uses the
latter two techniques to enable a real-time algorithm to
be implemented.

TECHNIQUES USED IN THE SUSSEX REAL-
TIME SOLUTION

This section presents a novel solution to the hidden
surface problem. The solution is designed for real-time
removal of hidden surfaces and, therefore, caters for
moving scenes which have a display rate of 25 times per
second. In the ‘Sussex Solution’ emphasis is placed upon
as much pre-processing of the model as possible before
the real-time running of the system. The pre-processing
enables hidden surface removal functions required during
a simulation run to be minimized.

Before the Sussex Solution can be described it is
necessary to define the following three terms:

(1) Surface. A quadrilateral plane in three-dimensional
space. Each surface has a colour and is one-sided.
The front face of a surface is defined by the direction
of a perpendicular vector.

(2) Priority value. A value associated with each surface
to denote the display order of the surface on the
screen. A surface with a higher priority value will be
displayed on the screen in preference to a surface
with a lower priority value.

(3) Object. One surface or a group of two or more
surfaces which are usually joined together. Each
surface is joined to another surface by its edge.

Figure 1 shows an example of a surface, the use of priority
values and an object. The above definitions restrict a
model to be formed from planar quadrilateral surfaces.

The purpose of the pre-processing of the model is to
enable absolute priority values to be assigned to surfaces
being displayed in real-time. If objects within the model
are ‘well-spaced’, then it is possible to use distance,
between any point within an object to the viewer, as an
unambiguous measure of absolute priority. Thus if two
objects, A and B, are well-spaced then, for any given
viewpoint, if 4 obscures B then every point within A4 is
nearer the viewer than any point within B. Hence a
measure of distance can be used to give unambiguous
priority values as shown in Fig. 2.

Willis has shown that restricting objects to be well-
spaced severely limits the layout of the model.” However,
since objects are formed from surfaces, then it is adequate
to ensure that surfaces are well-spaced, providing that
the absolute priority value for each surface is based upon
a measure of distance between any point on the surface
and the viewer. Forcing surfaces to be well-spaced does
not restrict the layout of a model so much as forcing
objects to be well-spaced.

Willis has proved that a test of well-spaced surfaces in
a model can be performed by considering what is called
surface boundary limits.” Briefly, each surface of an
object has a surface boundary which is calculated
mathematically using proximity techniques. A surface

Surface direction

A/

@ \ \p//
14
VA< VCbut VB> VC

B

(b) \

All points on AB > points on CD
Object AB has lower priority than object CD

Figure 2. (a) Distance as an ambiguous measure of priority
(closely-spaced objects); (b) distance as an unambiguous measure
of priority (well-spaced objects).

boundary represents a volume around a surface which, if
it contains another surface, then a viewing position exists
that causes ambiguous priority assignment. During the
pre-processing of the model, if a surface boundary
contains a surface from another object, then the surface
associated with the boundary is divided into two surfaces
which reduces the volume of the boundary. Testing of
surface boundaries continues until all the surfaces within
the model are well-spaced.

However, this technique does not take account of
related surfaces within the model, that is, the surfaces
used to form objects. These surfaces are closely-spaced so
they cannot be assigned a priority value based upon a
measure of distance, but by careful examination of
various properties of objects, this problem can be
overcome.

For scenes representing terrain surfaces, there are two
categories of surfaces or objects. The first class contains
all the surfaces which have a fixed priority regardless of
viewing position. For example, the ground plane of a
model will always have the lowest priority, similarly
surfaces laying directly on top of the ground plane will
have the next higher priority level, and so on.

" For the second class of surfaces no such fixed priority
values can be assigned, as the surfaces form objects that
represent buildings (or more generally, three-dimensional
objects). A simple technique is now presented whereby
surfaces forming an object can be assigned relative
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priority values, which can be used in real-time to generate
absolute priority levels.

ASSIGNING RELATIVE PRIORITY VALUE

If a group of surfaces that form an object can be given
relative priority values then all the other surfaces can be
assigned absolute priority values, once the absolute
priority value from any one surface of the group is
known, by consideration of their relative priority values.
These relative priority values hold only within the object
and the assignment holds for any number of surface
groups (objects), providing that they are well-spaced.
Hence, a scheme is required to test the structure of an
object to ensure that the surfaces can be given a relative
priority value. Cases exist where surfaces are positioned
such that relative priority values cannot be found, as will
be shown.

A paper by Schumacker et al. considers the problem of
ambiguous priority assignment.® In the paper it is stated
that it is possible to assign priority values to a group of
surfaces providing that, for a chosen viewpoint, a ‘cyclic
obscuration’ does not exist. An example of a cyclic
obscuration is given in Fig. 3, and is where surface 4
obscures surface B, surface B obscures surface C and
surface C obscures surface A. The conclusion reached by
the paper proves that cyclic obscuration does not exist if
the surfaces in the model can be separated by two planes
or by a star configuration of three planes. This conclusion
can be condensed by saying that every subset of three
surfaces must be separable by a star configuration. If a
set of surfaces fail the star configuration test then there
exists a viewpoint such that the view seen contains a
cyclic obscuration. '

(a)

A obscures B

B obscures A4

—Resolve by all surfaces quadrilateral with no concavities (i.e.
External angles of edges 180°)

©

Surface 4 obscures surface B

Surface B obscures surface C

Surface C obscures surface D

Surface D obscures surface 4

—Resolve by considering subsets of three surfaces. (This example
fails because of ACD not being divisible by star configuration.)

This is interesting but, in order to give relative priority
values to a group of surfaces, it is required that a test is
devised to check that for any viewpoint the priority values
of the surfaces within the group remain fixed. This is a
different and very much more difficult task. The test
developed by the author uses what is termed a Priority
Matrix.

The rules for creating a Priority Matrix are defined as
follows:

Let 8i, (i=1 to n) be the surface within an object
which is constructed from 7 surfaces.

The algorithm to construct the Priority Matrix is:

Fori=1ton,
Forj=1ton
Ifi=jthen Eij =0
else if Si > Sjthen Eij =1
else Eij =0;
end;
end;

Where Ejj is the entry in the Priority Matrix for column
i, row j and > denotes ‘obscures’ (i.e. Si> §j means
surface 7 obscures surface j).

‘For such Priority Matrix, it is possible to observe that
the rows and columns identify the following. (1) The
entries in a column identify the surfaces that obscure the
surface represented by that column. (2) The entries in a
row identify the surfaces obscured by the surface for that
row.

These two observations enable two important proper-
ties of the matrix to be found: (1) A column of zeros
denotes ‘nothing obscures the surface for that column’.
(2) A row of zeros denotes ‘the surface for that row
obscures nothing’.

A A

Wi g
- /_

Surface 4 obscures surface B
Surface B obscures surface C
Surface C obscures surface A
—Resolve by star configuration test

(b)

VI,

LI,
\§

4

(d

(D

Figure 3. (a) Cyclic obscuration for two surfaces; (b) cyclic obscuration for three surfaces; (c) cyclic
obscuration for four surfaces; and (d) star configuration to test for cyclic obscuration between three objects.
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For example, these properties exist in the group of
surfaces below:

Plan view of Priority matrix

surfaces in matrix Nothing obacures o

Y o

N4

Before continuing, the term ‘circuit’ is defined as a
collection of surfaces that cannot have priority values
which are independent of viewpoint. Thus, for the
surfaces forming a circuit, it is not possible to assign
relative priority values since the priority values are
dependent on viewpoint. Figure 4 contains three surfaces
that form a circuit. If an object does contain a circuit,
then the collection of surfaces involved in the circuit
cannot be given relative priority values and, the object
will require some form of adjustment.

It is possible to check for circuits during the production
of a priority order from the Priority Matrix. The priority
order is a list of the surfaces, with the surface given the
highest priority at the head of the list and the surface

Surface d obscures nothing

Surface group ‘passes’ star configuration

D

(a) (@

a

\ / o ih)

b3
(ii)

a obscures b, b obscures c, ¢ obscures a

given the lowest priority at the tail of the list. This
represents a partial ordering problem and an algorithm
to obtain a priority list from a Priority Matrix is given in
Fig. 5.

The operation of the algorithm is to construct an
ordered list of surfaces by considering the two properties
of the matrix described earlier. Columns that contain all
zeros denote that the associated surface for that column
is not obscured by anything. Hence the highest priority
value can be assigned to such a surface. Since one surface
has now been given a priority value and been placed in
the priority list, the surface is removed from the matrix
by the action of deleting an appropriate row and column.
The priority values for the surfaces remaining is,
therefore, dependent on a reduced matrix which does not
consider the obscuring effects of the surface within the
priority list. The formation of the priority list continues
until no surfaces are left in the matrix. This algorithm
first assembles the priority list in head first order, which
is a result of initially searching for columns with zeros,
but the algorithm works equally well if the priority list is
first assembled in tail first order, in which case rows full
of zeros are initially searched for.

If the matrix is not empty but a column of zeros cannot
be found, then this means that no surface can be placed

Priority matrix for surface group

> a b c
a 0 1 o
b 0 0 1(ii)
c 1(iii) 0 0

If there is no row or column with zeros then a circuit
exists. Therefore the surfaces cannot be assigned
relative priority values.

(ii)

Q)

Note: this is nor antisymmetric (because of
excess 1) then circuit of 2 surfaces exists.

Figure 4. (a) Three surfaces and (b) two surfaces forming a circuit.
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Let n = size of Priority Matrix

HP = highest priority number (lowest number)
LP = lowest priority number-(highest number)

(1) letHP =1
(2) letlP=n
—~ 3)

is there a column with all zeros? (search left and right)

To assemble yes, column /

the priority (4) priority of Si = HP

list in head (5) HP = HP+1

first order (6) delete ith column of matrix
(7) delete ith row of matrix
@8 n=n~-1
9) n=0?

no OBJECT.
—(10) goto(3)
—(11) comment—a circuit exists.

no, goto(l1)

;—l——> yes, all priority values have been assigned, ACCEPT

Is there a row with all zeros? (search top to bottom)

To assemble
the priority
list in tail first

yes, row I

(12) priorityof Si = LP

order (to.
obuinthe | (13 1p= LP—1
L?r\:z)lli‘tl)ed M3 1 (14) delete ith column of matrix

(15) delete ith row of matrix

L—-(16) goto(l1)

no, there is a circuit

existing within the surfaces

left in the matrix.

REJECT OBJECT

(output object for inspection and
amendment)

Check every pair of surfaces, if their
planes cut a surface then divide
the surface into two portions.
Amend matrix to cater for the new
matrix, go to (3).

Figure 5. Matrix reduction algorithm.

in the head of the list. Thus a circuit of some kind must
exist. A circuit can be more closely identified by
constructing the priority list in a tail first order, as in the
second half of the algorithm. Once the matrix is reduced
to a stage where it contains no columns or rows filled
with zeros, then the circuit is identified. However, it is
only possible to state that at least one circuit exists
between the surfaces left in the matrix. The exact nature
of the circuit(s) present can only be determined by
consideration of the elements left in the matrix.

An example where a circuit exists

Figure 6 shows a plan view of a group of five surfaces.
Normally, the surfaces will collectively form an object,
but this group of surfaces is for demonstration purposes
only. The Priority Matrix is shown for this surface group.

The first stage of the algorithm is to look for columns
with zeros. The column found proves that nothing
obscures surface E. Thus surface E is placed at the head
of the priority list. The row and column for surface F are
deleted which results in a reduced matrix where no
columns of zeros are found. At this stage it can be
concluded that a circuit exists but the circuit does not
include surface E.

The next stage of the algorithm looks for rows of zeros.
The row for surface 4 contains zeros which is interpreted
as meaning that surface A obscures nothing. Therefore,
surface A4 is placed at the tail of the priority list. The
empty elements in the list, between E and A, must equal
in number the surfaces left in the matrix. The row and
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column for surface A4 are deleted. The matrix remaining
contains no row or column with zeros and no decision
can be reached as to the priority order of the surfaces left
in the matrix. The surfaces left in the matrix, therefore,
form a circuit.

The matrix remaining has certain properties. If the
matrix is anti-symmetric then this implies that there are
no circuits consisting of only two surfaces. An example
of a circuit of two surfaces was given in Fig. 4 and
because the two surfaces obscure each other, the matrix
cannot be anti-symmetric. Due to the obscuration of the
surfaces causing a ‘1’ to be entered in the matrix, it can
be generally stated that a circuit of two surfaces exists if
the matrix is not anti-symmetric because of an extra ‘1.
The converse is also true, if the matrix is not anti-
symmetric because of an extra ‘0, then no circuit of two
surfaces exists, but then, no circuit, or a circuit of three
or more surfaces, may exist.

When a circuit is detected, the algorithm terminates.
There are two distinct types of circuits. Identification of
the type of circuit is performed by finding the location of
the intersection line of the planes associated with every
pair of surfaces involved in the circuit. The first type of
circuit is unresolvable and is the case in which no
intersection line falls within an area bounded by a surface
belonging to the circuit. The second type of circuit can be
resolved and is identified by the case in which an
intersection line cuts a surface in the circuit. This type of
circuit is broken by dividing the surface cut by the
intersection line into two separate surfaces. This action
creates an extra surface but allows the algorithm to
continue. An example of surfaces forming a circuit which
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N

7

Priority matrix for surface group

> .A B (o] D E
A 0 0 0 0 0
B 1 0 1 0 0
Cc 1 0 0 1 0
D 1 1 0 0 0
E 1 0 0 1 0

Priority matrix (stage 2)

> A B c D
A [t‘ O FaY J\);
B 1 0 1 0
c 1 0 0 1
D 1 0 0

Row of zeros = A obscures nothing

¢
I
e

Priority matrix (stage 1)

B 1 0 1 0 0
Cc 1 0 0 1 0
D 1 1 0 0 0
15 + 6 © + —

Column of zeros = nothing obscures E

Priority matrix remaining

> B Cc D
B 0 1 0
o] 0 0 1
0 1 0 0

B obscures C
C obscures D } circuit found
D obscures B

Figure 6. Finding a circuit.

can be broken is shown in Fig. 7(a). In this figure, surface
B is divided into surfaces B, and B, by the plane of
surface A. The plane of surface C also cuts surface B and
so B could have been divided differently. Surface B only
needs to be divided into two portions by the plane of 4 or
the plane of C to enable the circuit involving the three
surfaces to be broken.

Both types of circuits can be resolved by allowing the
surfaces contained within the circuit to have two relative
priority values. Which priority value is chosen depends
upon the location of the viewer. An example of this is
shown in Fig. 7(b). Here the surfaces have two priority
lists. Which list used depends upon which side of surface

B is being viewed. Since the circuit resolving method is
viewpoint dependent, the decision concerning which
relative priority list to use must be made during real-time
processing. It therefore involves extra processing during
asimulation run which isundesirable. Extremely complex
objects, formed from a large number of surfaces, may
contain many circuits and so displaying the object may
necessitate a great deal of decision making. Therefore, it
is proposed not to use this circuit resolving method unless
no other solution can be used. Other solutions preferred
are to use the method which divides a surface into two
portions, generating another surface, or to reconstruct
the object.
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(1) A obscures B
(i) B obscures C
(iii) C obscures A
Circuit exists

(a)

4 I
S ) B,
A
(iii)) z
(ii)
I
S
(i) A obscures B,
(ii) B, obscures C By
C
(iii)) C obscures A "'T_'
No circuit
(b) |
|
~+
D—TA—l
Bl -

4

H V; is in front of B,
Va

then A obscures B

Vi

B obscures C
else C obscures 4

Figure 7. Resolving a situation where a circuit exists. (a) Method 1. Surface B is divided into two surfaces

B, and B,. The cut line x is the line of intersection of the planes of surfaces A and B. Priority list = 8,, C. A,

B, (b) Method 2: Priority list is dependent on viewpoint, i.e. priority listfor V, = C, A, Bor C, B, A, for V, =
A B C.

An example where a circuit does not exist

Figure 8 shows an object which is constructed from 14
surfaces. This is typical of the type of object the three-
dimensional model will contain. The top of the object is
formed from four separate surfaces but since the four
surfaces are in the same plane which, in this example, is
not cut by any other surface, the four surfaces could be
treated as one.

The completed matrix, before being processed by the
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algorithm, contains a number of columns, all full with
zeros. The algorithm in its present form searches for a
single column full of zeros. The example given in Fig. 8
assumes that the algorithm searches from left to right
across the columns of the matrix. The first column of
zeros found, therefore, corresponds to surface 4. Surface
A is then placed at the head of the priority list and the
row and column for surface 4 deleted from the matrix.
Searching for a column of zeros in the reduced matrix is
then performed, again on a left to right basis.
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Processing of the matrix by the algorithm continues as
shown in the figure and the complete priority list is
formed. The object is, therefore, accepted by the
algorithm. A perspective picture of the object with
assigned priority values is given in Fig. 8. From this
picture it can be seen that for every possible viewpoint,
the priority values assigned to the surfaces are always
correct.

The complete priority list in Fig. 8 requires that
there are at least 14 priority values available. The priority
value of some of the surfaces in the object, relative to
other surfaces, does not matter if the surfaces are not
involved in an obscuration. For example, the surface A

A4
T T T B
L L .
J ] I ‘C
-1 K M | D
Gt _| —
r;
b VE

Priority matrix (stage 1 and 2)

>A#CDEFGHIJKLMN
A{3)

—B 0—4+—6—6—6—+—0—6—0-—000—
c 000000O0O0OOOO
D 000011000000
E 10001100000TG0
F 1000000O0O0O0O00O
G 1000000O0O0OOO0O0
H 000000O0O0COGO0OOQO
| 1001 1000O0GO0GO0O
J 100110000000
K 100110000000
L 100101000000
M 100011000000
N 010001000000

Stage 1: priority list = A
Stage 2: priority list = A, B

does not obscure surface M, and surface M does
not obscure surface 4, they can have the same priority
value.

This can be incorporated into the algorithm by
searching for all columns full of zeros before reducing the
matrix. The surfaces associated with the columns found
can be assigned the same priority value because each
surface, by definition of a column full of zeros, is obscured
by nothing. An example of this method of searching for
columns of zeros is shown in Fig. 9. The initial matrix
contains columns full with zeros for surfaces, A, B, E, I,
J, K, L, M and N. All these surfaces are assigned the
highest priority value. The rows and columns for these

Priority matrix (stage 2, 3, 4, 5 and 6)
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Stage 3: priority list =

A,BE
Stage 4: prioritylist = A, B, E,
A,B,E
A,B,E

1

Stage 5: priority list =
Stage 6: priority list =

s Dy

s Dy

Figure 8. Assigning surface priorities.
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Priority matrix (stage 7, 8, 9 and 10) Priority matrix (stage 11, 12, 13, 14)
> c % F G H ', *4 }4 > c } ‘1L ,}4
c|o o 0 o cl o
B——8 o—t+—1 —_ ] 5
F 1 1 0 o o 6——+
G 1 0o 0 O H——0
H|o 1 0 o e
] Stage 11: priority list=A,B,E, I, J, K,LLM,N,D, G
Stage 12: priority list = A, B,E,ILJ,K,L,M,N,D,G, H
Stage 13: priority list = A,B,E,ILJ,K,L,M,N,D,G,H, F
—M—— 40—+ Stage 14: priority list = A, B,E,1,J,K,L,M,N,D,G,H,F, C
]
Stage 7: priority list=A,B,E, I, , K, L
Stage 8: prioritylist=A,B,E,I,J,K,L,M
Stage 9: prioritylist=A,B,E,LJ,K,L,M,N
Stage 10: prioritylist=A,B,E,1LJ,K,L,M,N,D
Complete prioritylist = A, B, E, I, J, K, L, M, N, D, G, H, F, C
[ e O A I N S S T |
Priority value =12 3 4 5 6 7 8 9 1011 1213 14
Al
¥ T I
: L : | N9 B2
J| Kk Vv Toy Cl4
5 6 8
1
sl D10 “\
1213 7 7 pil
/ E ;Lo ’ N9
4 3 J K 7 /M B2
5 6 G 8 C14
H| 1 D
12 10
1 E
4 3
F13
surfaces are deleted from the matrix which results in a values required to display a scene consisting of many
very much reduced matrix containing five surfaces. This objects is achieved.
time, surfaces D and F have associated columns full of A second example of finding relative priority values
zeros. Surfaces D and F are, therefore, assigned the same for the surfaces forming an object is given in Fig. 10.
priority value and the matrix reduced by deleting the This figure shows an object which contains surfaces
rows and columns of these surfaces. placed on top of other surfaces to represent doors and
The algorithm continues and the completed priority windows. This is the type of object that is best suited to
list, together with a picture of the object is given in Fig. be used with the developed algorithm. The technique of
9. The resultant priority list performs the same task as placing surfaces on top of other surfaces enables objects
thelist in Fig. 8, but only four priority values are required. to look realistic and so improves the appearance of the
Thus, a significant saving in the number of priority complete model.
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AN AID TO HIDDEN SURFACE REMOVAL IN

Priority matrix (stage 1)

REAL TIME CGI SYSTEMS
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Stage 1: priority list = A, B, E, I, J, K, L, M, N//

Priority matrix (stage 2)
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Priority matrix (stage 3)
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Figure 9. Compressing the number of priority values.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 439

$202 14dy 60 U0 1s8nb Aq £/£99€/621/7/GZ/2191Me/|ullod/wo dno-olwepeoe//:sdiy woij papeojumoq



440

D. J. TOMLINSON

Surface number
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Relative priority number
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Figure 10. Another example of finding relative priority values for the surfaces forming an object.

THE COMPUTER JOURNAL, VOL. 25, NO. 4, 1982

2 3

4

5

$202 14dy 60 U0 1s8nb Aq £/£99€/621/7/GZ/2191Me/|ullod/wo dno-olwepeoe//:sdiy woij papeojumoq



AN AID TO HIDDEN SURFACE REMOVAL IN REAL TIME CGI SYSTEMS

SUMMARY

A simple technique has been described which enables
relative priority values of surfaces within objects to be
generated. This technique is designed to be used off-line,
so that during real-time only the priority of complete
objects need be computed. From the priority values for
complete objects, the absolute priority values for the
individual surfaces are easily found.

Many different techniques can be used to find the
priority values for complete objects; the excellent
proximity techniques devised by Willis are to be used in
the Sussex CGI System.” In fact any technique which

produces object priority values in real-time can be used
with the techniques described in this paper.

Another approach for finding the object priority values
is to use the separating planes concept as detailed by
Schumacker et al.® The separating planes technique
simply divides the model into ‘areas’ which are separated
by a separating plane. The location of objects within the
model are thus held in a binary tree structure. Traversal
of this tree in real-time according to viewing position
yields the ordering of each area enclosed by separating
planes as a function of distance, and hence the ordering
directly reflects priority values of the areas. Providing
only one object is held within one bounded area, then
object priority values are the area priority values.
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