
A 'Database' Subsystem for BCPL

R. A. Brooker
Computer Science Department, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

This paper describes a system of functions and routines for use with BCPL (or similar language) for organizing a
'database'. More precisely they enable the user to define a framework of tables, records, lists and functions within
which to store, retrieve and manipulate certain primitive types of data. The system is oriented to 'structural' rather
than tabular (relational) models of data. The paper is mainly concerned with the properties of the data structures, and
their elementary constituents, and with illustrations of their use.

1. INTRODUCTION

This paper describes a system of functions and routines
for use with BCPL1 (or similar language) for organizing
a 'database'. More precisely they enable the user to define
a framework of tables, records, lists and functions within
which to store, retrieve and manipulate certain primitive
types of data. The data structures can be used to represent
entities and (1-many) relationships, but are oriented to
overtly 'structural' rather than 'relational' models of data:
the connection with the latter is briefly discussed in
Section 9. This paper is purely concerned with the
properties of the chosen data structures, their functional
specification, and with illustrations of their use. The
special features of the system are as follows.

Dynamic data structuring

Every value in the database carries an explicit type
identifier. Although in some respects this is grossly
uneconomic, the system is free from the kind of
restrictions imposed by the alternative approach of
specifying the type, and possibly size, of all data at
compile time, i.e. when the database is first set up. For
example, lists may consist of heterogeneously typed
components (including sublists); records, which are
otherwise uniformly structured, can be given individual
formats in special cases; names of fields, types and record
subtypes are processable as strings (and thus constitute
data dictionaries); and functions can be written which
accept any type of value as argument. This last facility
avoids the necessity of introducing separate versions of
the same function for each type of argument. For
example, a single output routine (OUTV) can be used to
display any item of data, or data structure, in a style
which will depend on the type of the data item.

Perhaps the most important advantage of dynamically
structured data is that it can be restructured dynamically,
i.e. by program means, without recourse to recompilation
and recreation of the data. Such changes can be individual
or systematic but they must preserve the internal
consistency of the data.

Hierarchical record types

Each item of data is said to be an instance of the type
referred to in its type identifier. Each type has a descriptor

which is either primitive or another item of data (and
hence an instance of some further type, and so on). This
type 'hierarchy' is equivalent to (indeed motivated by)
the record class hierarchy of SIMULA, with the
additional feature that record class descriptors are
processable objects. Linked to the concept of descriptor
is the 'undefined value' which denotes an undefined
instance of a particular type.

Functional (procedural) data

Names of functions and routines constitute one of the
primitive types of data, i.e. procedural data can be
included in the database. This is also a feature of
SIMULA, and of LISP (where functions and data have
the same internal and external representation).

LISP could be considered as a basis for the proposed
system, but although it features dynamic data structures
(i.e. S-expressions) these are inadequate by themselves.
One also needs records accessed by field name, and tables
(both in the working store and backing store) accessed by
alphanumeric key. LISP lists are intended for scanning
by 'cdr loop', and not for random access. Nor are they
intended as backing store constructs (except incidentally
via virtual memory). No doubt the necessary structures
could be built up within LISP, but it would amount to
using an interpreter to build an interpreter: the resulting
loss of efficiency would be unacceptable. Instead, it was
deemed better to use a system programming language
(BCPL) as the basis of the data interpretive functions.

It is the author's view that the methods proposed here
are suitable for databases which exhibit diverse structural
forms, a multiplicity of special cases, and which to some
degree are knowledge representation systems. Such
systems will be capable of some degree of'introspection',
i.e. able to answer questions not only about their contents
but about their form. For a system built from (say) Pascal
structures, such questions could only be answered by the
compiler—unless of course the relevant information is
duplicated in the run time system.

A note on BCPL

This is a high level language control-wise and a word
level language data-wise. It has no formal data types;
instead a range of operators and functions is provided for
combining words on the understanding that they repre-

CCC-flO 10-4620/82/0025-0448 $08.50
4 4 8 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 © Wiley Heyden Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A 'DATABASE' SUBSYSTEM FOR BCPL

sent compatible types of value. Since there is no
possibility of checking such assumptions (without losing
the advantage of being 'close' to the underlying machine)
such languages are generally considered to be dangerous
to use, particularly for beginners. The only data structures
provided are simple vectors: a local vector (size specified
at compile time) and a free storage vector (size specified
at run time). It is the user's responsibility to ensure that
vector subscripts are within range. Certainly this is a
likely source of error—far more likely, for instance, than
trying to combine incompatible types of value.

Control features are: conditional expressions, implicit
declaration of 'for' loop control variables, a range of
iterative statements ('while', 'until', 'repeatwhile', 're-
peatuntiF, 'repeat'), case statements and 'escapers'
('return', 'resultis', 'loop', 'break', 'endcase'). A particu-
larly useful feature for this application is that functions
and routines can be called with a variable number of
parameters (up to some limit specified in the declaration).

BCPL also has a very practical feature: it permits a
program to be compiled in separate sections. The
importance of this for large program development cannot
be overstated.

By choosing BCPL as a host language the author is
asserting that, given a suitable library of functions and
routines, it can also serve as an applications language. A
database application program will largely consist of
control and assignment statements interspersed with
calls for library functions.

2. GENERAL ORGANIZATION OF THE
DATABASE

The database is organized as a set of Tables each
consisting of an ordered set of key/Record pairs (or

key/List pairs) (see Fig. 1). Henceforth we use TAB,
REC and LIST to denote Table, Record and List. The
majority of the TABs are held in the disc store: only the
most frequently accessed are held in the working store.
One such is the TYPE TAB and is common to all
applications. It holds the type descriptors (which except
for the primitive types are user denned) and the
COMMAND RECs. These latter are the formal means
of referring to the various query and transaction functions
which constitute the end user interface. The data
functions are those described in the body of this paper.
They are utilized by the query and transaction functions.

The keyboard monitor module represents the outer-
most level of control. This interprets user messages of the
form # {COMMAND key} or :{key}. In the former
case the associated parameters are prompted for, checked
and the COMMAND function executed. (This may
entail further input/output activity at VDU/keyboard
but it will be under the control of the function concerned.)
In the latter case the key can be any key: the associated
REC (or LIST) is displayed. ERRORS (at any level)
which cannot be corrected by a keyboard dialogue cause
control to revert to the keyboard monitor (which prompts
the user for another message). In these situations it is
essential to preserve the internal consistency of the data.

The diagram shows how the database is configured
between the disc and working store when operational.
(Details of how the database is first set up are given at the
end of the paper.) That part of the database proper which
resides in the WS is mostly invariant under user
transactions, i.e. it is 'constant' to the application (the
exceptional material is preserved on the disc between
operational sessions). On the other hand, it is liable to be
changed by the database administrator, for example the
'functional parts' may be modified or added to. This kind
of activity should not affect the integrity of the database.
It does mean, however, that this material has to be

Data funotions —

BCPL WS

VDU

Keyboard

Keyboard

BCPL

monitor

WS

Functional parts

of type descriptor

RECords

: BCPL ws

Functional parts

of COMMAND

RECords

BCPL WS

TYPETABle

(holds type

descriptor and

COMMAND

RECords)

Other TABles

DATA WS |

E

Majority of

TABles constituting

the database

)ATA DIS<

DATABASE

Figure 1. General organization of the database.

WS = Working Store

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 4 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

recompiled and the WS TABs regenerated at the start of
each operational session. Thus the 'functional parts'
modules are in fact active program modules which after
recreating the working store TABs, can then be over-
written to leave only the passive functional parts which
are referred to in the RECs of the TYPE TAB.

3. DATA TYPES AND DATA FUNCTIONS

The following types of value can be represented in the
database.

(1) Five scalar types: INT, STR, BOOL, REAL, DATE.
(2) Four structured types: LIST, REC, TAB, SET

(TAB = TABle, REC = RECord).
(3) Keys: the means of referencing values held in TABs.

The type of a key is the TAB it refers to.
(4) Two function types: FN and FNX (the distinction is

explained later).
(5) User defined types.

TABs can be either small or large (disc-based) structures.
In the latter role they are the 'files' of the database. LISTs,
RECs and SETs are essentially small scale structures
(although as pointed out in the conclusion there is a need
for a disc-based LIST). LISTs and RECs are normally
held in TABs. Except for the central TYPE TAB (see
below) TABs do not hold other TABs.

The type hierarchy and the TYPE TAB

The primitive types give rise to a limited hierarchy of
special types, principally a system of user defined REC
types and subtypes similar to the prefix record classes of
SIMULA.

Also however, individual TABs (which are instances
of TAB) are treated as formal subtypes, each serving as
the 'type' of its own keys.

There are no subtypes of LIST or SET, although LIST
values name a 'base' type (the type of its components),
and SET values refer to a 'base' TAB (whose keys serve
as the base SET). The hierarchy of types can be pictured
as in Fig. 2.

A central TAB, known as the TYPE TAB, holds all
the type descriptors ('templates'). These are referred to by
their keys. The templates for the primitive types are
undefined, the relevant information being embodied in
the system's data functions. The TYPE TAB also holds
all the TABs in the system, including itself (i.e. it contains
a pointer to itself). Each TAB serves as the type template
for its own keys. The formal type NULL is included to

top the type hierarchy: it is not to be confused with
TYPE which is the type of the keys to the entries in the
TYPE TAB.

We shall see later how RECs can serve as templates
for further subtypes of REC. A feature of these templates
is that they contain undefined values of some primitive
types. An undefined value can be regarded as a regular
value in which a flag (1 bit) is set to indicate that only the
type component is meaningful. Their presence in (a field
of) a REC template indicates that they should be replaced
by a regular value of the same type. An undefined value
of a given type is not to be confused with the key to that
type. The latter is a defined value of type TYPE.

A note on the representation of data at word level

A value in the database is represented by one or more
words (word = unit of storage). If more than one word is
necessary the primary word contains a pointer to the
remaining words which are held in the free storage. This
will be the case for all the structured values and certain
scalar values (e.g. strings). In the system described here
the primary word also holds the type of the value, i.e. it
takes the form (type + value) or (type + pointer). By
assigning the primary word to a variable, a BCPL
program can, knowing the representation, access the
entire structure. In particular the type tag can be isolated
and inspected at run time for any validating or discrim-
inating purpose. The primary word also contains the
'undefined' bit.

Some scalar types of value in the database have a
standard representation (H) in the host programming
system. This is quite different from the database
representation (V). Facilities are provided for converting
H -»V and V-+H. There is no such correspondence for
structured values.

We shall sometimes need to compute the internal
address of a Value. Such quantities are introduced
temporarily for the purposes of assignment: they have a
one-word representation in the host system (distinguish-
able from primary words), but no representation in the
database. Cross-referencing in the database is done by
TAB keys.

Terminology

V denotes the representation of any database value, and
Vint, Vstr, Vbool, Vreal, Vdate, Vlist, Vrec, Vtab, Vset
the particular types of value. H denotes a standard BCPL
representation, of which there are only four: Hint, Hstr,

TYPE

of

INT STR BOOL REAL DATE

Value Scalar-types

NULL

LIST REC

I Base Prefix

type hierarchy
of

components

I
Lists Records

Figure 2. The hierarchy of types.

TAB SET
FN/
FNX

TYPE FIELDS TAB1 TAB2

Keys

Baseset

Subsets
Function

bodies

4 5 0 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A DATABASE" SUBSYSTEM FOR BCPL

Hbool, Hreal. (Hdate = Hint). Keys are denoted by K,
and keys of the TYPE TAB by Ktype (or Ktab if they
refer to a TAB). Different instances of values will be
distinguished by numerical supplements, e.g. VI, V2,
.., Vintl, Vint2, .., Kl, K2. Internal addresses are
denoted by AV, qualified if necessary, e.g. AVlist.

The database functions

The BCPL package contains the following functions
(and routines).

M: Ktype, H,. . . -* Vtype is a function which converts
appropriate H values into a
V of the specified type

VTOH:V-»H is a function which converts
a V value into the corre-
sponding H representation
(if there is one)
returns the key to the type of
V (i.e. to the type template)

(3) Not all types of function call are relevant, e.g. no
meaning can be attached to S(Vset,. . .).

TYPEOF:V-> Ktype

General functions
f : V l , V 2 , . . . - > V

Host predicates
p: VI, V2, . . . -> Hbool

PROMPT: Ktype

PROMPTREC: Ktype

OUTV:V
STRFORM:V-+Vstr

FREEVrV
COPY:V->V

take Vs as arguments and
return a V

take Vs as arguments and
return an Hbool as a result.
These are intended for use in
BCPL control constructs,
prompt the VDU for a type
ofV
prompt the VDU for a type
ofREC
displays V on the VDU
returns a string representa-
tion of V
) storage
) control

Structure functions
These functions apply to a structured value specified in
the first parameter. The subsequent parameters (, . . .)
depend on the type of the first parameter. Details are
given later in Table l(ii).

S:V, VI

A:V,. .

E:AV,.

D:AV,

AVI

H

selects from V a component VI speci-
fied by the remaining parameters
as S, but returns the internal address of
VI
extends V (at AV) with a component
specified by the remaining parameters
deletes the specified component from
V
returns a selector, with respect to V, of
the specified component

Notes
(1) E and D are update operations, assignments in
disguise. Purely functional forms could have been written
but are less suitable for the expected style of program-
ming, where the user has responsibility for storage
control.
(2) A key can be (and generally is) used as the first
parameter in the above functions: it is coerced to yield
the associated Value (if a V is expected) or its address (if
an AV is expected).

Assignment

FREEV(V); !AV=V1

AS:AV,V

If V is the Value at AV, these
BCPL statements first free (the
extension of) V, then replace it
by the primary word of V1. The
same result can be achieved by
the call AS(AV, VI)

Unfortunately the internal address of a REC field refers
to a byte within a word and in this case !AV is inadequate
as the left part of an assignment ('selectors' are involved).
For this reason it is more or less essential to use the
formal AS operation when assigning to fields of records,
and because this is a fairly common operation a special
three parameter form AS(Krec, Hstr, V) = AS(A(Krec,
Hstr), V) is available for this purpose: it assigns V to the
field Hstr of the REC whose key is Krec.

A complete list of the functions available (not all are
mentioned here) and their specifications is given in Table
1.

4. PROPERTIES AND CONCEPTUAL
REPRESENTATION OF DATA TYPES

Scalar types (and DATE)

Database values of these types can be created within the
host system by means of the function 'M\ for example
M(INT, 15) is a Vint. Alternatively, such values can be
created at the VDU via the PROMPT facility. Values
can be manipulated within the formal subsystem by using
such monadic, diadic, and predicate functions as are
available, but it is more likely that the host language will
offer a greater range of facilities and for this reason a
V -> H conversion function is provided. Results can be
converted back using the M function (which is the H ->
V facility).

The type DATE is treated as primitive because it is a
commonly occurring component of commercial records.
A DATE value, for example 1 April 1981, is created by
M(DATE, 810401). (An alternative would have been to
introduce special functions to interpret an INT or a
REAL as a date. However a DATE can be packed into
a 16 bit word whereas an INT such as 810401 cannot.)

A DATE value can be manipulated by the functions
ADDDATE, SUBDATE and UNITAGE. The first two
are of the form Vdate, Vdate -»Vdate, and are a
composition of the separate operations of advancing (or
retarding) the date by an integral number of days,
months, and years. For example if VI = 000001, V2 =
000100, V3 = 010000 and V4 = 810331, V5 = 800229
then ADDDATE(V4, VI) = 810401, ADDDATE(V4,
V2) is undefined, ADDDATE(V4, V3) = 820331,
SUBDATE(V5,V1) = 800228, SUBDATE(V5,V2) =
800129,SUBDATE(V5, V3) is undefined.

The function UNITAGE:Vdate 1, Vdate2, Vdate3
returns a Vint, namely the largest multiple of Vdate3
which can be added to Vdate2 so that the sum < Vdate 1.
For example UNITAGE(81O930,210922,O10O0O) = 60.

THE COMPUTER JOURNAL. VOL. 25, NO. 4,1982 4 5 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

TABs (and the TYPE TAB)

TABs are the principal data structures: they are the 'files'
of the database. They consist of pairs (key, value) which
are ordered alphanumerically on, and accessed via, the
key. A key has an external string form (e.g. "BLOGGS,
J") and an internal form based on the physical address of
the associated value and denoted by the unquoted string
name (e.g. BLOGGS,J). The TAB itself records the
string forms for I/O purposes but for reasons of efficiency
it is the internal form (which also names the TAB being

referred to) which is used for all internal references in the
database. Internal keys (K) are thus a datatype in their
right, the 'type' being the TAB referred to. The function,
S(K), returns the value associated with K.

All type names, both primitive and user-defined, are
held in a central TAB called TYPE. Because TAB names
are also type names, the TYPE TAB has to contain its
own name as a key. This is achieved by making the
corresponding value (primary word) point to itself, i.e.
the value S(TYPE) is the TYPE TAB itself. [Note: TAB
and "TAB" denote the internal and external forms of the

CENTRAL TYPE TABle USER DEFINED TABle

/ = indexer

n = number of entries

"NULL"

"INT"

"STR"

"BOOL"

"REAL"

"DATE"

"LIST"

"REC"

"TAB"

"SET"

"FN"

"FNX"

"TYPE"

"FIELDS"

"PERSONS"

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

UNULL

TAB —

T A P ,_ .

up to max no of entries

FIELDS
TABle

OTHER
»- USER-DEFINED

types (and TABs)

/ = indexer

n = number of entries

keystrl

keystr2

keystr3

keystr4

keystr n

VI

V2

V3

V4

Vn

up to max no of entries

Note: max no of entries can only be

estimated by the system routines

(it depends on the keystrings)

Figure 3 . The central role of the TYPE TAB.

4 5 2 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A 'DATABASE' SUBSYSTEM FOR BCPL

key to the 'TAB' type itself within the TYPE TAB.] The
TYPE TAB has to be large enough to contain all the
user-defined types, which may run to several hundred.
The values held in the TYPE TAB consist of TABs, base
SETs and REC 'templates'.

In addition to the TYPE TAB there is one other
predefined TAB: FIELDS. This serves as a 'dictionary'
holding the external string forms of all field names used
within RECs. The corresponding internal keys are
employed within the RECs themselves.

The TYPE and FIELDS TABs are held in the working
store. The central role of the TYPE TAB is pictured in
Fig. 3.

This is a conceptual picture only. The physical
representation will depend heavily on its location—core
or disc or some hybrid scheme. The internal key must be
able to locate the associated Value with minimal
computation; hence it will be a physical address of some
kind, an offset in a core area or a disc block number.
Once allocated it remains unchanged throughout the
lifetime of the keystring. In the TYPE TAB above the
system entries are listed in order of entry.

Tables are created by the function M(TAB, Hint, Hstr,
Hbool), the last two parameters being optional. If the
TAB is to be located in the working store then only the
first parameter is needed: this is the approximate number
of keys for which provision has to be made. (Approximate
because the total storage space needed for the keystrings
can only be estimated.) If adding keys to the TAB causes
it to exceed capacity at some stage then it will
automatically be relocated (such an event would be
monitored on the VDU). If the TAB is to be located on
disc (and most TABs will be) then the second parameter
(Hstr) specifies the O/S name of the file which is to serve
as the TAB. The third parameter (Hbool) says whether
it is a new file or is to be updated. In all cases M(TAB,
. . .) returns a Vtab, i.e. its primary word. This must be
entered (see below) in the TYPE TAB, with the table
name as key.

Once a TAB is created entries are made using E(Ktab,
Hstr, V) which enters the pair Hstr, V and returns the
corresponding internal key. If the keystring is already
present the existing V is freed and then replaced by the
new V. The function M(Ktab, Hstr) generates the
internal key corresponding to a keystring assumed to be
present; if it is not present an UNDEFined key is
returned. This will signal an ERROR if used with the S
function. Finally the function D(K) deletes the key K
from the TAB it refers to, after first freeing the associated
value.

Note: a call of the form E(Ktab, Hstr, M(Ktype,. . .))
can be abbreviated to EM(Ktab, Hstr, Ktype,...).

Thus to enter a new TAB in the TYPE TAB we call
EM(TYPE, Hstr, TAB, .. .) where . . . denotes the
individual table parameters, and Hstr is the name of the
TAB. For example, the BCPL declaration LET PER-
SONS = EM(TYPE, "PERSONS", TAB, 500) creates a
TAB called "PERSONS" with provision for approxi-
mately 500 entries. The internal key (with respect to the
TYPE TAB) is assigned to a variable 'PERSONS'.

Small TABs with a specific list of keys (and undefined
values) can be created thus M(TAB, L(Hstrl, Hstr2,
. . .)). This is a most useful facility for defining base sets
(see later SETs).

Provision is made for scanning the entries in a TAB:
the functions RESET, MOREIN, NEXTIN are used for
this purpose.

Denoting keys

The denotations of the internal keys of the 14 entries in
the TYPE TAB, namely, NULL, INT, STR, BOOL,
REAL, DATE, LIST, REC, TAB, SET, FN, FNX,
TYPE, FIELDS are also the names of BCPL constants
preset to the values of these internal keys.

Those data functions which expect a Ktype as a
parameter will be assumed to accept the equivalent
keystring as an alternative, so that for example M(INT,
15) = M("INT", 15). This relies on the system being able
to distinguish an Hstr from a Key by their internal
representation. Otherwise it would be necessary to write,
in this case, M(M(TYPE, "INT"), 15).

LISTs

These are intended to take advantage of machine
indexing operations. A list is represented by a free store
node of consecutively addressed words; the primary
words of the items in the list. When a list is set up it is
given some space to grow, and relocated (again with
space to grow) if this should be exceeded. The primary
word is changed accordingly, and the original node freed.
The function LEN(Vlist) gives the number of items,
which is needed for a 'FOR' loop scan.

There is provision for specifying the type of the
components (known as the base type). A heterogeneous
LIST would have base type NULL. The base type can be
recovered by the function BASE(Vlist).

A primitive LIST value is created by L(V1, V2, . . . ,
Vn), an empty LIST by L(). These values have base type
NULL. The 'L' function is supplementary to the 'M'
which must be used to create more general LISTs. (The

type
tag

ptr
VI V2 • • * Vn Vm

No of items Base type Component items Up to max (/n)

Figure 4. Conceptual picture of LIST.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 453

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

'L' function—and 'R' in the next section—limits the
number of parameters which 'M'—a very general
function—has to take.) We have

M(LIST, NULL, L(. . .))
M(LIST, Ktype, L(. ..))

M(LIST, Ktype, L())

M(LIST)

is a LIST with base Ktype
('M'has replaced NULL with
Ktype)
is an empty LIST (of Ktype
components)
is an undefined LIST

Note: a call M(LIST, Ktype) is treated as M(LIST,
Ktype, L()). There is no provision for undefined LISTs
with defined base type.

In the call M(LIST, Ktype, L(...)) the Ktype param-
eter could be used to check the type of the components in
L(. . .). However L(. . .) is taken as correct and instead
Ktype is used constructively in the function XL defined
thus.

XL(Ktype, HI, H2,. ..) = M(LIST, Ktype, L(M(Ktype,
HI), M(Ktype, H2), . . .))
XL(Ktype) = M(LIST, Ktype, L())

For example XL(COMP.OPR.SCALES, "DP.ASST",
"SEN. DP. ASST", "CHIEF. DP. ASST") creates a LIST
of internal keys (corresponding to the listed keystrings)
to the TAB named COMP.OPR.SCALES.

Once a LIST has been created items can be entered,
deleted, selected and searched for by standard functions,
as listed in Table l(ii). Further functions and routines
can easily be written by the user. LISTs are scanned by
a BCPL 'FOR' loop in the conventional way (see Section
7).

Note: the 'L' function (and the same applies to 'R' in
the next section) as implemented is permissive about the
representation of its arguments. In addition to formal Vs,
i.e. M(Ktype, . . .) constructs, it allows Hint and Hstr
arguments which are converted to Vs as follows

Hint - M(INT, Hint)
Hstr -• M(TYPE, Hstr) if Hstr is a keystring of

TYPE TAB
if Hstr is a keystring of
FIELDS TAB
otherwise.

Hstr - M(FIELDS, HSTR)

Hstr -+ M(STR, Hstr)

This makes specific LISTs easier both to write and read,
but again relies on the system being able to distinguish the
parameters by their internal representations.

RECords

These are represented by a list of explicit pairs (field,
value), fields being represented not by their string names

but by the (one word) keys of the strings in the FIELDS
TABle. (Indeed only the essential information in a key
needs to be represented, it being understood that this
refers to the FIELDS TAB.) As with LISTs provision is
made for adding new fields before the structure has to be
relocated.

All RECs are 'typed' either by a template REC in the
TYPE TAB (which may be typed by further templates),
or by the primitive type 'REC'. The immediate type of a
REC is also known as its prefix type, and the hierarchy
of templates from which it has been derived is known as
the prefix hierarchy.

Prefixing a REC means that it is associated with all the
fields of the prefix REC type. Any one of those fields can
be given a new meaning by redefining it in the new REC,
along with the new fields introduced at this new (subtype)
level. The value of a given field is found by searching
(directly or, if the pairs are ordered by key, binarily) for
the field in the pairs of the specified REC. If not found it
is looked for in the prefix REC, and so on up the
hierarchy until the prefix 'REC is encountered, in which
case the field is treated as invalid.

'Individual' records, i.e. instances of a REC type are
normally held in separate disc based TABs because they
form the bulk of the data in the database. Otherwise the
only difference in the representation of a template type
REC and an instance of that type is that the former (if it
has more than member) will contain 'undefined' values.

Each f is an internal key to the FIELDS TABle, in
which the corresponding keystring is the name of the
field and the associated value is undefined: the TAB
serves only as a 'dictionary'.

A REC of type Hstr' is created by M(Hstr', R(Hstrl,
VI, Hstr2, V2, ...)) where Hstr, VI, etc. are the field
names and values to be entered in the REC. The
component R(. ..) is itself a primitive REC, i.e. of type
' R E C If the REC is to serve as a template it is entered
in the TYPE TAB, for example EM(TYPE, "PERSON",
REC,R(.. .))creates a "PERSON" template (see Section
7 for details).

Given this "PERSON" template M("PERSON",
R(. . .)) creates a "PERSON" type REC, and
EM(PERSONS, "BLOGGS, J", "PERSON", R(. . .))
enters it in a TAB 'PERSONS' with key "BLOGGS, J".
Alternatively we can create templates for different
subtypes of "PERSON" as is done in Section 7.

Once a REC has been created it can be accessed by the
function S(Krec, Hstr) which returns the value V
associated with the field Hstr. The call E(Krec, Hstr, V)
adds the field pair Hstr, V to the specified REC. Similarly
D(Krec, Hstr) deletes the field named Hstr from D (first
freeing the associated Value). In the former case the
structure may be relocated if the provisional maximum
number of fields is exceeded.

Type
tag

ptr
fl

VI

f2

V2

fn

Vn

fm

\m

No of fields Component fields

Figure 5. Conceptual picture of RECord.

Up to max (m)

4 5 4 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A DATABASE' SUBSYSTEM FOR BCPL

Both LISTs and RECs can be freed (their storage
reallocated so that they are lost to the system) and copied.

Access to the backing store (disc)

When a REC in a disc-based TAB is referred to it is first
transferred to the working store (if it is not already
present) and unpacked so that it appears as a regular
working store REC. Its presence and location are noted
in a 'transfer' list, associated with the TAB, so that
further references will not invoke unnecessary transfers.
It remains in the working store until (say) N further
RECs from the same TAB have been transferred, at
which point it is packed up and returned to the disc, and
the 'transfer list' updated accordingly. In other words a
simple paging system operates, treating the REC as a
'page'. Naturally if the entire disc store is covered by a
virtual memory system there need be no distinction
between disc-based and working store TABs.

SETs

A SET type can be associated with a TAB. The values of
this SET type are the 2" possible subsets of the (n) keys of
the TAB. The keys of the TAB are known as the base set
(and the TAB as the base TAB). It is similar to the set
type in Pascal.

Given a TAB (Ktab) and a particular subset of its
keys, Hstrl, Hstr2,. . . , the corresponding SET value is
formed by M(SET, XL(Ktab, Hstrl, Hstr2, . . .)). The
empty set is M(SET, XL(Ktab)), and the full set is
MFULL(SET, XL(Ktab)).

The update functions E and D are available to add and
delete particular keys to/from a SET value, and with
these primitives the user can write functions to perform
the standard set operations.

The representation of SET values is compact, essen-
tially one bit for each possible key value. The conceptual
picture is shown in Fig. 6.

The maximum number of entries can be found by
reference to the base TAB. The indexer is used by the
scanning operations RESET, MOREIN, NEXTIN.

A brief linguistic example2 is included here (Section 7
includes another example relevant to the theme of that
section).

EM(TYPE, "NOUN.FEATURES", TAB,
L("MASS", "NOUN", "NPL", "NS", "POSS",

"TIME", "TIM1"))

is the base TAB of possible syntactic features that can be
associated with a noun. The set of features applicable to
"fish" is

M(SET, XL("NOUN.FEATURES",
"NOUN", "MASS", "NS", "NPL")).

Templates and undefined values

The term 'template' was introduced as meaning 'type
descriptor' but it usually refers to a REC which contains
undefined values. A REC template specifies the type and
in some cases the default value of each field. Where a
default value is inappropriate an 'undefined' value (of a
default type) is given. This information is displayed when
prompting (see later: PROMPTREC) the VDU operator
for the actual values of the fields. The operator can
'accept' the default values, but if the undefined values are
not replaced they will signal an ERROR when subse-
quently processed.

A function supplied with an UNDEFined argument
will either yield an ERROR because there is no
alternative (e.g. VTOH), return an UNDEFined value
(e.g. STRFORM yields USTR) or take appropriate
action (e.g. COPY returns a copy of it).

Undefined values yield their type in precisely the same
way as any other value, i.e. via the functions TYPEOF
and CASEOF. They are distinguished internally by a bit
in the primary word (0 = defined, 1 = undefined), and of
course the 'value' part is irrelevant. A predicate UN-
DEF(V) returns T(undefined) or F(defined).

Undefined values are created in the same way as other
values by simply omitting the 'value' arguments.

Thus M(INT) is an undefined INT (similarly for
STR, BOOL, REAL and DATE)
M(LIST) is an undefined LIST
M("PERSON") is an undefined "PERSON"
REC
M(SET) is an undefined SET (there is no
provision for specifying the base TAB)
M(PERSONS) is an undefined key to the
PERSONS TAB

Note: to emphasize the nature of these special calls 'U'
can be used in place of 'M', e.g. U(INT). They can also
be represented by preset, implementation dependant,
constants, UINT, USTR, etc. and we use such constants
in Section 7.

Undefined values enter the system in three ways. They
can be generated in the way described above; they can be
supplied in response to a PROMPT for a scalar value (by
typing <RT»; thirdly, they can arise through incompat-
ible H -• V conversions (an important special case are
undefined keys which result from 'looking up' keystrings
which are not present in the TAB).

Functions

Procedural 'data' is often the most natural and economical
way of describing the properties of certain entities. Thus
there is provision in the system for 'function' types FN
and FNX. Values of these types Vfn, Vfnx are represented

Type
tag

ptr

Base TAB

K

ndexe

i

r No of entries

n

Consecutive words

1 1 1 1 1 1

One bit for each entry

Figure 6. The conceptual picture of SET.

THE COMPUTER JOURNAL, VOL. 25. NO. 4,1982 455

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

by primary words only: a pointer to the code body.
Functions are evaluated by evaluating the expression
f(al, a2, . . .) where f is the Vfn (or Vfnx) and al, a2,
. . . the arguments. Alternatively the expression EVAL(f,
al , a2, . . .) can be used to apply f to its args.

Note: if f is not a fn, then EVAL(f) = COPY(f).
When the OUTV facility (see below) is applied to a

REC, any fields whose value is an FNX function will be
listed as

{field name} FUNCTION(FNX)

i.e. simply stating that it is a function. In some cases
however the function can usefully be evaluated; it must
be parameterless, return a formal Value (i.e. not an H
representation), and make adequate provision for UN-
DEFined values. By 'typing' such functions as FN (rather
than FNX) they will be distinguished by OUTV and
evaluated and listed thus

{field name} {value of the function}

This is the only distinction between FN and FNX. After
evaluation the Value will be freed. For this and allied
reasons it is necessary that 'fn' fields return values (Vor H)
that can safely be freed without affecting the REC of which
they are part. It is the nature of such functions to do so,
but by making it a convention there is then a clear
distinction between evaluated 'fn' fields and 'non-fn'

field Values, i.e. between terms such as EVAL(S(Krec,
Hstr)) and S(Krec, Hstr); the latter return Values which
(if non-primary) are part of the REC.

It can also be useful to invoke routines and functions
directly from the operator's VDU via the command
language interface that would necessarily have to be
implemented for any data management program. To
facilitate this the function (FNX) is embedded in a REC
together with fields specifying the number and type of
the parameters. This REC is used by the command
language interface to prompt for and validate the
parameters prior to invoking the routine or function
itself. An example is given in Section 7.

One further point about functions—and this applies to
some of the system functions—concerns the type of their
results. These can be either formal Values or H
representations. The latter can be used to anticipate a
VTOH conversion. For example predicate functions
intended for use in host language 'IF' statements or
conditional expressions should return Hbool. On the
other hand such functions cannot be evaluated by OUTV.

5. TABLE OF FACILITIES

Tables l(i) and l(ii) present a summary of the functions
and routines available to the system.

Table l(i)
Facility

size in words
Interface with host system3

M:Ktype, H-.V
TYPEOF:V-*Ktype
VTOH:V-.H
Interface with I/O
STRFORM:V-.Vstr
PROMPT:Ktype. INPUT-V
OUTV: V-> OUTPUT
General functions
FREE:V
COPY:V-»V
EVAL:Vfn, ...->V
polyadic:V1,...Vk-.V
variadic:V, V , . . .-»V
Predicate functions
UNDEF:V-»Hbool11

EQUAL:V,V-> Hbool12

LTEQ:V,V-» Hbool13

SCALARS

11

X
X
X

X4

X
X6

X8

X8

X9

X10

X
X
X

KEY

1

X3

X
X

X
X
X6

X
X

X
X
X

FN/FNX

1

X
X
X

X7

X

X

LIST

many

X
X

X
X

X

REC

many

SET TAB

few many

-s- See next table -*•
•«- See next table -»•

5

X

X
X

X

X X7

X
X

X X

1 Except REAL = 2 and STR = 1.
2 M(TYPEOF(V), VTOH(V)) = V; FREEing H does not affect V, and vice versa.
3 M(Ktab, Hstr) yields the internal key corresponding to Hstr if present, else an UNDEF value

of type Ktab.
4 STRFORM(Vstr) = COPY(Vstr).

We can also define KEYSTR(K) = M(STR, VTOH(K)).
5 Use PROMPTREC (described later Input andOutput).
6 =OUTS(VTOH(STRFORM(V))) where OUTS is the BCPL string output fn

OUTV(K) gives [TABname]keystring; OUTS(VTOH(K)) just gives keystring.
7 Outputs TYPEOF(V) only.
8 For primary values (i.e. size = 1W) FREEV is redundant and COPY can be replaced by

assignment.
9 The number of arguments is fixed, e.g. ADD DATE :Vdate, Vdate-»Vdate.

10 The number of arguments is variable, e.g. CONCAT:Vstr, Vstr,.. .-»Vstr
CONCAT concatenates copies of the arguments into a single string, and applies FREEV to
the original arguments.

11 UNDEF simply discriminates on the def/undef bit.
12 Returns FALSE if arguments are different type, ERROR if UNDEFined.
13 Yields an ERROR if arguments are different type, or UNDEFined

Key comparison assumes alphanumeric ordering.

456 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A DATABASE' SUBSYSTEM FOR BCPL

Table l(ii)

Structure functions
function LIST REC

M:

S:
A:
E:
D:
Q:

LIST, Ktype. L(. . .) —Vlist

Vlist, Hint-V
Vlist, Hint-AV
AVIist, Hint, V
AVIist, Hint
Vlist, V-. Hint

Vrec, R (...)-> Vrec
Vrec, Hstr-.V
Vrec, Hstr-.AV
AVrec, Hstr, V
AVrec, Hstr
Vrec, Hstr-.K

SET

SET, Vlist -.Vset

N/A
N/A
AVset, K
AVset, K
Vset, K->Hbool

TAB

TAB, Hint{, Hstr, Hbool)-Vtab
K-.V
K-.AV
AVtab,Hstr,V-.K
K
Ktab, Hstr-.Hbool

In the above functions a key can be used in place of V or AV as first parameter.

BASE:
LEN:
RESET
MOREIN
NEXTIN

Assignment

AS:AV,V

Vlist-K N/A Vset->K
•V-.Hint —

N/A

conventional
FOR' loop
1 TO LEN (Vlist)

as for TAB
but with Vset
as argument

RESET:Krec
MOREIN:Krec-.Hbool
NEXTIN:Krec->K

For REC fields AS(Krec, Hstr, V) = AS(A(Krec, Hstr), V)

Key functions

SUPOF:K-K
CASEOF: Ktype, K-

= TYPEOF(STAB(K))
Hbool if (Ktype = K/ for some /) then TRUE else FALSE where K1 = K and

K(/ + 1) = SUPOF(K/)

The LIST functions satisfy the following relations

After an update E(AVIist, Hint, V) we have
S(Vlisf, Hint') = S(Vlist, Hint' - 1) for Hint' > Hint

= S(Vlist, Hint') for Hint' < Hint
= V for Hint' = Hint

Vlist, Vlist' being the values at AVIist before and after updating.
The operation D(AVIist, Hint) restores the original value.

S(Vlist,Q(Vlist,V)) = V
S(Vlist, Hint) yields ERROR if Hint < 1 or HINT > LEN(Vlist)

Similar relations obtain for the other structure functions.
We can also define special LIST functions, for example

XL(Ktype, H1, H2,. . .) = M(LIST, Ktype, L(M(Ktype, H1), M(Ktype, H2), . . .))
SLAST(Vlist) = S(Vlist, LEN(Vlist))
DLAST(AVIist) = D(AVIist. LEN(lAVIist))
ELAST(AVIist, V) = E(AVIist, LEN(lAVIist) + 1, V)
DQLIST(AVIist, V) = D(AVIist, Q(lAVIist, V))

where ! is the BCPL indirection operator

6. FUNCTIONAL DESCRIPTION

The 'M' function

Examples of its use are:

M(INT, 25)
M(STR, "THIS IS A STRING")
M(STR," ")

M(BOOL, TRUE)
M(BOOL, FALSE)
M(REAL, 3.125)
M(DATE, 801001)

M(TYPE, "PERSONS")

M(PERSONS, "BLOGGS, J")

an INT Value
a STR Value
the empty STR
Value
the two BOOL
Values
a REAL Value
a DATE Value (1
October 1980)
Key to the TAB
PERSONS
Key to an entry in
the PERSONS
TAB

M(FN, SALARY) a FN Value
WHERE SALARY() = {some host language

function for calculating salary}

Examples were given earlier of its use to create a LIST,
a LIST template and a LIST matching the template; and
a base SET and subSET value.

Incompatible parameters (where detectable) result in
undefined values of the given type, for example

M(BOOL, 3.125)
M(INT, 3.125)
M(PERSONS," ")
M(PERSONS, "BLUGGS, J") where "BLUGGS,

J" is not present in
the TAB

The last case is important because it is the means of
determining whether a keystring is present in a TAB: the
resulting 'key' is UNDEFined.

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 5 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

Input and output

PROMPT as its name suggests prompts the VDU
operator for a particular type of value (the type is
displayed). The operator can respond with a value of that
type, or a different type provided that the latter is
preceded by the type tag. For example

{prompt:} {reply}
[DATE]: 801001 <RT>
[INT]:37<RT>
[INT]:[REAL]37.5<RT>
[STR]:B.A<RT>
[STR]:<RT>
[STR]: [EMPTYSTR]<RT>

A reply takes the form '[Ktype]string<RT>' or
'string<RT>'. The string is used to create H in the Value
M(Ktype, H), the Ktype being either the prompted type
or the overruling version. An empty string results in an
UNDEFined value of Ktype. Because of this, special
provision has to be made for an empty STR value: see
the last reply. Afote.<ESC>can be used instead of<RT>,
but the distinction is only significant in PROMPTREC
(see below) where the empty reply <RT> means 'leave
the existing value of the field unchanged', and the empty
reply <ESC> means 'replace it by an undefined value'.

PROMPTREC prompts the operator for the fields of
a REC using the prefix hierarchy as a 'template'. For
each field in turn the existing (default) type and value
(unless UNDEFined) is displayed before PROMPTing
for a replacement. As mentioned above <RT> signifies
'no change'. The operator can also insert new fields if he
wishes. Section 7 illustrates its use.

PROMPTREC has two parameters. The first is the
key of the REC concerned. The second is optional: it is
a LIST of fieldnames to be PROMPTed. If omitted all
fields are PROMPTed.

OUTV simply outputs its argument in as reasonably
compact a form as possible. If the style is not acceptable
the user must write his own customized version.

Select function: S

The result of a select function is the primary word of a
component value: the extension if any is not copied. It is
the user's responsibility to COPY it if necessary. See
section on Storage Control.

In the case of a TAB the component is selected by key
(which as explained earlier includes a reference to the
TAB in question).

In the case of a LIST the component is selected by
giving its index.

In the case of a REC the component is selected by
giving the field name (as an Hstr). The scope of the field
selector is all the RECs in the prefix hierarchy starting
with the specified REC and moving upwards. The first
field encountered with the given name is selected: it takes
precedence over any fields of the same name higher up
(i.e. defined earlier) in the hierarchy. Calls of the form
S(Krec, . . .) (where Krec is coerced to yield the Vrec)
make a copy of Krec in a global 'currency' variable
'THIS'. This enables a functional field in a prefix REC to
access fields in the prefixed REC.

In all cases S will signal an ERROR if the selector is

invalid, that is if a TAB key is undefined, a LIST index
is out of range or the field of a REC is not present at any
level in the hierarchy.

The extend function: E

This adds a new component to a structure. This may
result in physical relocation of the structure if there is no
immediate room for expansion. In this case the original
node is freed. This is why the function takes the form of
an update.

In the case of a TAB the Hstr, V parameters specify a
keystring and associated value. If the keystring is already
present it is updated, the old value being freed. (In the
case of a disc TAB however an ERROR is signalled.)
Otherwise the TAB is extended and the internal value of
the new key returned as the result of the fn.

In the case of a LIST a new V is inserted at position I
(= HINT), the existing Vs at I, I + 1, . . . being moved
up one position. An ERROR is signalled if I is outside
the range 1,LEN() + 1.

In the case of a REC the Hstr, V parameters specify a
new field, value pair. If the field name is already present
it is updated and the old value freed. The fn only applies
to the specified REC, not to any REC in its prefix
hierarchy.

In the case of a SET a new Key is added. An ERROR
is signalled if it is not one of the base SET.

The delete function: D

This function also takes the form of an update although
deleting a component does not necessarily entail reloca-
tion. Again ERROR is signalled if the selector is in some
way invalid.

In the case of a TAB only a single parameter need be
given: the Key to be deleted. The associated value is
freed. In the case of a LIST the Ith component is deleted,
those at I + 1,1 + 2, . . . being moved down to close the
gap. In the case of a REC the named field Hstr is deleted
and the associated value freed (like the 'E' function it
does not apply to the prefix hierarchy). Finally, in the
case of a SET the specified K is deleted.

The invert function: Q

There are only three cases of interest: LIST (the result,
Hint, is the lowest position number of V in Vlist—0 if not
present); REC (the result, K, is the type of the lowest
record in the hierarchy, of Vrec, which contains the field
Hstr—if present in Vrec it is the type of Vrec; if not
present at any level the result is NULL); and SET (the
result, Hbool, is the truth value of 'the specified K is
present in the SET'—again ERROR if K is not in the
base SET). In the TAB case: Q(Ktab, Hstr) is equivalent
to /UNDEF(M(Ktab, Hstr)).

The scanning functions: RESET, MOREIN, NEXTIN

As their names suggest these are intended for scanning
the values in a TAB or SET. The EXAMPLES below
illustrates their use. Note that it is MOREIN which

4 5 8 THE COMPUTER JOURNAL, VOL. 25. NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A DATABASE' SUBSYSTEM FOR BCPL

actually advances the scanner: NEXTIN merely returns
the scanned value (and subsequent calls of NEXTIN
return the same value). Scanning of LISTs is performed
by conventional BCPL 'FOR' loops using the LEN
function to set the upper limit.

Storage control: FREEV and COPY

Although responsibility for garbage collection is in the
hands of the user, these operations are needed much less
frequently than might be supposed. We have already
explained that OUTV automatically frees any value
resulting from the evaluation of a FN field. Similarly
CONCAT frees its arguments before returning the result.
In this case however care must be taken to supply
arguments that can be freed. The function NAME.ETC
(in Section 7) illustrates the point: the argument
D(=S(K, "DEGREES")) has to be supplied as
COPY(D).

In the case of assignments the value replaced must, if
necessary, be freed by the user if the space is not to be
'lost'. Thus if a BCPL variable X holds a non-primary
value, we must write FREEV(X) before reassigning to it
with X = V. Alternatively we can call AS(@X, V) which
does it automatically. In most cases however values
consisting only of a primary word are involved, and the
FREEV operation is unnecessary.

Similarly the update functions E and D free the
original structure if it has to be physically relocated.

Derived update functions, such as ELAST, should take
the same general form. See the function MERGE-
VALUE, and its use in SEL.POSTS, in Section 7.

7. EXAMPLES

These are based on a small extract from a possible
database of university appointments. This covers ap-
pointments of persons to posts (including secondary posts
such as Dean of School, Student Union Officers,
professional consultants), appointment to committees,
and the allocation of posts to depts, sections, etc. This
particular fragment defines three subclasses of PERSON,
namely EMPLOYEES, STUDENTS, and ASSOCIATES
(persons who are not regular employees but who are
associated with the University in some way). The fields
of the PERSON REC are those attributes which are
common to all persons, e.g. birth.date, sex, etc. In this
case they include "CAP.POSTS", "SECOND. APPTS",
"CMMTT.APPTS", because all types of persons can,
theoretically, be appointed to committees and secondary
posts. The field "CAP.POSTS" is a LIST of the keys to
appointments (current and pending) held in another
TAB (called POSTS). The next two fields are functions,
which when evaluated yield LISTs of current SECOND
and CMMTT appointments derived from the
"CAP.POSTS" lists by selection using the function
SEL.POSTS (which is also reproduced). An EM-
PLOYEE has a prime appointment which is also found
from the same LIST by the field function PRIME. APPT.

EMPLOYEES also have, in general, a TEL. NO and a
ROOM.NO which are associated with the post they

hold, and therefore given by S(PRIME.APPT(),
"TEL.NO") (and similarly for ROOM.NO). The modi-
fied version used below provides for the possibility that
these functions may be evaluated before the appointment
REC is actually created—in which case PRIME. APPT()
would return an UNDEF key, which as explained earlier
would signal an ERROR (and abort whatever transaction
was in progress). (An example of the difficulties which
can arise in a database with incomplete information.) In
the case of a STUDENT one is referred to the
STUDENTS.UNION and in the case of an ASSOCI-
ATE one gets the general enquiries number "0". In these
two cases the ROOM.NO field is left undefined. Note
that telephone and room numbers are held as strings in
separate TABs, namely TEL.NOS and ROOM.NOS.

Only one field remains to be mentioned: that is
NI.NO. This refers to an EMPLOYEE'S national
insurance number.

The functions PRIME. APPT and SEL.POSTS should
be self-explanatory: they are typical examples of the use
of LIST scanning operations. They also illustrate the
CASEOF predicate.

In some cases the S function is called with the currency
parameter 'THIS'. Particular care is needed with this
feature: it is reset on every call of the form S(Krec, . ..),
such calls being easily overlooked.

EM(TYPE, "PERSON", REC, R(
"OTHER.NAMES", USTR,
"STYLE", USTR,
"ADDRESS", USTR,
"DEGREES", USTR,
"SEX", USTR,
"BIRTH. DATE", UDATE,
"NATIONALITY", USTR,
"CAP. POSTS", ULIST,
"SECOND. APPTS", M(FN,

SECOND. APPTS),
"CMMTT.APPTS", M(FN,

CMMTT. POSTS)))

WHERE SECOND.APPTSO = SEL.POSTS(S(THIS,
"CAP.POSTS"), M(TYPE, "SECOND.POST"))
AND CMMTT. APPTSO = SEL.POSTS(S(THIS,
"CAP.POSTS"), M(TYPE, "CMMTT.POST"))

EM(TYPE, "EMPLOYEE", "PERSON", R(
"TEL.NO", M(FN, TEL.NO),
"ROOM.NO", M(FN, ROOM.NO),
"NI.NO", USTR,
"PRIME.APPT", M(FN, PRIME.APPT)))

WHERE TEL. NO() =
VALOF $(LET PA = PRIME. APPT()

RESULTIS
UNDEF(PA)-»M(TEL.NOS), S(PA,
"TEL.NO")

$)
AND ROOM.NO() =

VALOF $(LET PA = PRIME. APPT()
RESULTIS

UNDEF(PA)-M(ROOM.NOS), S(PA,
"ROOM. NO")

$)

THE COMPUTER JOURNAL. VOL. 25, NO. 4,1982 4 5 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

AND PRIME.APPT() = VALOF
$(LET L = S(THIS, "CAP.POSTS")
FOR I = 1 TO LEN(L) DO
$(LET KEY = S(L, I)
IF CASEOFC'PRIME.POST", KEY) AND

S(KEY, "CURRENT") RESULTIS KEY
$)
RESULTIS M(POSTS)
$)
EM(TYPE, "STUDENT", "PERSON", R(
"TEL.NO", M(FN, TEL.NO),
"ROOM. NO", M(ROOM.NOS)))

WHERE TEL.NO() = S(M(TYPE, "STU-
DENTS. UNION"), "TEL.NO")

EM(TYPE, "ASSOCIATE", "PERSON", R(
"TEL. NO", M(TEL. NOS, "0"),
"ROOM. NO", M(ROOM.NOS)))

. AND SEL.POSTS(P, PREFIX) = VALOF
$(LET NL = L()
FOR I = 1 TO LEN(P) DO
$(LET POST = S(P, I)
IF CASEOF(PREFIX, POST) THEN MER-

GEVALUE(@NL, POST)
$) RESULTIS NL
$)

. AND MERGEVALUE(AL, V) = VALOF
$(FOR I = 1 TO LEN(!AL) DO
IF S(!AL, I) = V RETURN
// the use of' = ' rather than 'EQUAL' means
// that V is restricted to primary values
RESULTIS ELAST(AL, V)
$)

Creating REC instances

RECs for individual persons can be created from the
above 'templates'. These will be held in a TAB called
PERSONS. RECs can be created within the program in
the same way as the templates, thus for example:

EM(PERSONS, "BLOGGS, J", "EMPLOYEE", R(
"OTHER.NAMES", M(STR, "JOE"),
"STYLE", M(STR, "MR"),
"ADDRESS", M(STR, "1 MAIN STREET,

NEWTOWN,
WIGSHIRE"),

"DEGREES", M(STR, "B.A"),
"SEX", M(STR, "MALE"),
"NATIONALITY", M(STR, "BRITISH")))

This would leave "BIRTH.DATE" and "NI.NO"
undefined. Also because the "CAP.POSTS" field has not
been included with the above, the default value is ULIST,
i.e. an undefined list. However an actual list, initially
empty, must exist at the particular PERSON level for the
purpose of updating with appointment keys. This could
be done in the appointment procedure(s) but it would be
making a special case of the first appointment and so
arrangements are made to include the pair

"CAP.POSTS", XL(POSTS),

whenever a particular PERSON REC is created. In

practice PERSON (and other) RECs are created via the
facilities of a command language interface which enables
the VDU operator to invoke various data management
operations. One such facility is the COMMAND
"NEW.PERSONS" which creates an empty REC for
each person named in a PROMPT cycle. The field
"CAP. POSTS" in each REC is initialized to
XL(POSTS). Fields created in this way can be completed
using the PROMPTREC facility, via another COM-
MAND "AMEND.PERSON". To create the above
REC for "BLOGGS, J" at the VDU involves the
following dialogue of prompts and replies

{prompt}: {reply}
- # NEW.PERSONS<RT>
[PERSON] :EMPLOYEE<RT>
[STR]: BLOGGS, J<RT>
[STR]:<RT>
- # AMEND.PERSON<RT>
OTHER. N AMES[STR]: JOE<RT>
STYLE[STR]: MR<RT>
ADDRESS[STR]:1 MAIN ST., NEWTOWN,

WIGSHIRE<RT>
DEGREES[STR]: B. A<RT>
SEX[STR]:MALE<RT>
BIRTH. DATE[DATE]<RT>
NATIONALITY[STR]: BRITISH<RT>
NI.NO[STR]:<RT>

DO YOU WISH TO ADD ANY FURTHER
FIELDS? Y/N:N

Note the empty replies for BIRTH.DATE and NI.NO
which leave these particular fields as they were, namely
UNDEF. If the reply to the last prompt is 'Y' the
operator is invited to type in field-value pairs (terminated
by an empty field), for example

PREV.UNIVS [LIST](LONDON,
MANCHESTER)<RT>

LANGS [LIST](FRENCH)<RT>
<RT>

These fields are only associated with this particular
employee REC: they can be regarded as 'afterthoughts'.
If it is desired to include such fields in all records then
they be added (in the same fashion) to the relevant
template REC. This can be done without affecting any
particular employee RECs. Thereafter PROMPTREC
will prompt for these fields automatically.

Redefinition of fields in REC subtypes

When creating a subtype of a REC type or when creating
an individual REC (which is essentially a subtype with
one member) a field can be redefined.

When PROMPTREC prompts for the value of a field
this can refer either to an existing field in the REC which
is the subject of the PROMPTREC, or to a 'default' field
of the same name in the prefix hierarchy of the REC. In
the latter case the field name and new value is included
as a pair in the subject REC. In either case the type as
well as the value itself can be changed (see example given
earlier under PROMPT). One can also replace a function
definition (FN or FNX), which may be applicable to
most cases, by a specified value applicable to an

4 6 0 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A DATABASE' SUBSYSTEM FOR BCPL

exceptional case. (One cannot however supply new
function definitions via the PROMPT—or PROMPT
REC—mechanism.)

Redefinition of a field at the lowest level is useful when
dealing with anomalies in an otherwise orderly structure.
For example all employees are paid on salary scales
which are periodically renegotiated and 'restructured'.
This process sometimes leaves individuals on personal
protected salaries. There is no "SALARY" field in the
PERSON REC because it is an attribute of a (prime)
appointment, details of which are held in the RECs of
the POSTs to which they refer. All (prime) POST RECs
share a default definition of "SALARY". This is a
function which takes "SALARY.SCALE", "GRADE"
and "SALARY.POINT" (three other fields) and looks
up the actual salary in a TABle. In any appointments
where this routine does not apply, the "SALARY" field
is simply redefined to take specified values, and the
"SALARY.POINT" field is left undefined.

An illustration of the SET type

Specifying the valid grades of an appointment utilizes
the economical representation of the SET type. Consider
first a "CLERICAL. RELATED" post. The relevant
fields are

"SALARY.SCALE", CLERICAL.SCALES,
"VALID.GRADES", MFULL(SET,

XL(CLERIC AL. SCALES)),
"GRADE", M(CLERICAL.SCALES),

The field "VALID.GRADES" is used by the appoint-
ment routine to check the value of the prompted
"GRADE", i.e. its value is (in general) a subset of the
keys (grades) of the salary scale TAB which applies to
the post. A salary scale TAB contains a separate scale for
each grade. In this case 'CLERICAL.SCALES' has 4
grades, namely " 1 " , "2", "3", "4", and all are valid, so
that the value of "VALID.GRADES" is the full set of
keys of CLERICAL.SCALES.

In the case of computer operator staff("COMP.OPR")
the relevant salary scale (COMP.OPR.SCALES) also
includes grades and salary scales for data processing
staff, and so only a subset of these are applicable. We
have

"SALARY.SCALE", COMP.OPR.SCALES,
"VALID.GRADES", M(SET,

XL(COMP.OPR.SCALES,
"TRAINEE", "OPR",
"SEN.OPR",
"SHIFT.LEADER.A",
"SHIFT.LEADER.B",
"CHIEF.OPR"))

"GRADE", M(COMP. OPR. SCALES),

the other grades being "DP.ASST", "SEN.DP.ASST",
"CHIEF.DP.ASST".

An illustration of TAB scanning and output

An illustration of TAB scanning and output is the
following fragment of BCPL which (based on the above)

lists the names and birth dates of all employees whose
60th birthday is on or before 30th Sept 1980.

RESET(PERSONS)
WHILE MOREIN(PERSONS) DO
$ (LET P = NEXTIN(PERSONS)
UNLESS CASEOF("EMPLOYEE", P) LOOP
IF S(P, "BIRTH.DATE") <M(DATE, 211001)

$(NEWLINE()
OUTS(VTOH(P))
SPACE()
OUTV(S(P, "BIRTH.DATE"))
$)

$)

Sorting (in the working store)

Consider the following bubble sort routine, where AL is
the address of a LIST of V's to be sorted, and P an order
relation on (adjacent) V's.

LET SORT(AL, P) BE
$(LET L = !AL AND N = LEN(!AL) AND

B = NIL
$ (B = T R U E : N = N - 1
FOR I = 1 TO N DO
IF P(S(L, I), S(L, I + 1))

THEN $(LET X = S(L, I)
!A(L,D:=S(L,I + D; 'A(L, 1 +
D:=x
B = FALSE
$)

$) REPEATUNTIL B
//I.E., NO MORE ITERATIONS

$)
Where the V's are (sub)LISTS the interchanges are
performed on their primary words so that the process
amounts to 'sorting with detached keys'.

The same applies if the V's are RECs. For example by
changing the IF statement in the previous example to

IF S(P, "BIRTH.DATE") < M(DATE, 211001)
THEN ELAST(AL, COPY(S(P)))

(where AL is the address of some initially empty LIST),
copies of the relevant RECs are accumulated in !AL.
This can then be sorted on BIRTH.DATE by calling
SORT(AL, P) where P is defined by

LETP(V1,V2) =
LEQ(S(V 1 ,"BIRTH.DATE"), S(V2,"BIRTH.DATE"))

Sorting operations are confined to the working store
because only LISTs can be sorted, and LISTs are working
store constructs. TABs cannot be sorted because their
contents are already ordered {by keystring). What is
currently lacking in the system is a disc based LIST
construct, which can be ordered, or reordered, on some
attribute of the component values.

An example of 'string handling'

This arises when combining a person's name and

THE COMPUTER JOURNAL, VOL. 25. NO. 4,1982 4 6 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

qualification letters in a manner suitable for the Univer-
sity calendar. For example given

NAME DEGREES FORMAT

"BLOGGS, J" "B.A"
"SOAP, J" USTR

'J. BLOGGS, B.A"
'J. SOAP, UNDEF"

The following function will produce this format

AND NAME.ETC(K) = VALOF
$(LET D = S(K, "DEGREES") AND N =

INITS.NAME(K)
RESULTIS UNDEF(D) OR EQUAL(D, M(STR,

" ")) - N, CONCAT(N, M(STR, ", "), COPY(D))
$)

where CONCAT is the variadic function of STRs listed
earlier (note that it frees its arguments), and
INITS.NAME reverses the order of name and initials.
The possibility that D has been left UNDEFined (if the
person has no degrees it should be set to the empty string)
has to be examined because EQUAL could yield an
ERROR. The details of INITS.NAME are given here
simply to illustrate the flavour of the host language.

AND INITS.NAME(K) = VALOF
$(LET KS = KEYSTR(K) AND V, W = VEC 20,

VEC 20 AND LEN = NIL AND I = NIL
UNPACKSTRING(KS, V); LEN = V!0
I = 2; WHILE V(I) / = ',' DO I + = 1
FOR J = 1 TO I - 1 DO W!(J + LEN - I + 1)

= V!J
FORJ = I + 1 T O L E N D O W ! (J - 1) = V!J
W!(LEN + 1 - I) = ' . ' ; W!0:=LEN
RESULTIS(M(STR, PACKSTRING(W, NEW-

VEC(L/5))))
$)

An example of a "COMMAND" REC

This enables a function to be invoked via the VDU
command interface. Consider the "NEW.PERSONS"
function referred to earlier. It enables the user to create
"PERSON" RECs (subtype given by the parameter) in
the PERSONS TAB, in response to PROMPTed keys,
the process being terminated by an empty key. It also
detects if the key is already in the PERSONS TAB. An
essential feature of the operation (as explained earlier) is
that their ULIST fields are initialized to empty lists.

EM(TYPE, "NEW. PERSONS", "COMMAND", R(
"BODY", M(FNX, NEW.PERSONS),
"PARAMS", L("PERSON")))

WHERE NEW.PERSONS(PREFIX)BE
$(LET NAME = PROMPT(STR, "NAME")
IF UNDEF(NAME) RETURN
TEST UNDEF(M(PERSONS, NAME))
THEN
EM(PERSONS, NAME, VTOH(PREFIX),
R("CAP. POSTS", XL(POSTS)))
OR OUTS("NAME ALREADY PRESENT«C*L")
$) REPEAT

A keyname in the "PARAMS" LIST is interpreted as
follows.

keyname of actual parameter is

TYPE a value of this TYPE
TABle a keyname to this TABle
REC type a keyname to a subtype

Thus the actual parameter corresponding to "PERSON"
must be one of "EMPLOYEE", "STUDENT", or
"ASSOCIATE".

8. THE STRUCTURE OF A DATABASE
PROGRAM

A BCPL program consists (in general) of a number of
separately compiled text files. One such file holds all the
manifest and external declarations; the remaining files
contain the functions and routines which make up the
program. (The breakdown into separate files is deter-
mined by considerations of recompiling to correct
programming errors.) The general layout of a database
program will be as follows

MANIFEST and
EXTERNAL
declarations

STATIC declarations
START routine

Database functions

ANDCMD.RECSQBE
$(make Transaction and
Query functions
$)
ANDTYPE.RECS()BE
$(make REC type
definitions and associated
functions
$)
ANDWS.DATAOBE
$(initialize any working
store data and the contents
of any working store TABs
$)
ANDDISC.DATAOBE
$(initialize the contents of
any disc based TABs
$)

augmented by user

augmented by user

as specified in Table 1

defined by user (e.g.
"NEW. PERSON")

defined by user (e.g.
"PERSON")

defined by user (can
be overlayed after
use)

defined by user (can
be overlayed after
use)

(Note: 'functions' in the above means 'functions and
routines').

The program is entered at the START() routine which
also contains the main VDU command cycle. The
structure of START is described in the next section.

The START routine (and MANIFEST and STATIC
declarations)

MANIFEST
$(NULL = ?; INT = ?; STR = ?; BOOL = ?

REAL = ?; DATE = ?

4 6 2 THE COMPUTER JOURNAL, VOL. 25. NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

A 'DATABASE1 SUBSYSTEM FOR BCPL

LIST = ?; REC = ?; TAB = ?; SET = ?
FN = ?; FNX = ?
TYPE = ?; FIELDS = ?

// these identifiers are preset to the
// (implementation dependant) values of the
// internal keys corresponding to the first 14 entries
// of the type TAB. There is a corresponding set of
// values, UNULL, UINT, . . . , UFIELDS
// representing the UNDEFined values of these
// types.
$)

STATIC
$(VTYPE = NIL; MODE = NIL; THIS =NIL

// In addition to these SYSTEM variables, a
// further variable must be declared for each
// application specific TAB introduced by the user.
// This variable will hold the key of the TAB entry
// within the TYPE TAB, for example
// PERSONS = NIL anticipates a PERSONS =
// E(TYPE, "PERSONS",...) statement in the
// START routine.
$)

LET START() BE
$(INPUT = FINDTTYO; OUTPUT = INPUT

// i/o medium is VDU
VTYPE = M(TAB, 50) //createsTAB
VTYPE! ? = VTYPE // inserts self-reference

// (implementation dependant)
E(TYPE, "TYPE", VTYPE)
E(TYPE, "NULL", UNULL)
E(TYPE, "INT", UNULL)
E(TYPE, "STR", UNULL)
E(TYPE, "BOOL", UNULL)
E(TYPE, "REAL", UNULL)
E(TYPE, "DATE", UNULL)
E(TYPE, "LIST", UNULL)
E(TYPE, "REC", UNULL)
E(TYPE, "TAB", UNULL)
E(TYPE, "SET", UNULL)
E(TYPE, "FN", UNULL)
E(TYPE, "FNX", UNULL)
E(TYPE, "FIELDS", M(TAB, 100))
// The above are system entries.
MODE = PROMPT(BOOL, "TYPE 'TRUE'

(UPDATE MODE) OR 'FALSE' (INITIAL
MODE)")

// Next come the application specific entries, for
// example PERSONS = E(TYPE, "PERSONS",
// M(TAB, 1000, "PERSONS", MODE)) declares
// an O/S file "PERSONS" to serve as a disc based
// TAB of the same name.

TYPE.RECS(); CMD.RECSQ; WS.DATAQ

// All working store data is (re)generated by the
// program at the start of each run. This is
// particularly necessary for the TYPE and CMD
// RECs in order that any procedural components,
// whose location may vary from one run to another
// if the program has been altered in any way (for
// example, by correcting mistakes), may be
// correctly referenced. WS.DATA refers to all
// other working store data.

UNLESS MODE THEN $(DISC.DATA();
MODE= M(BOOL, TRUE) $)

// If MODE is FALSE (i.e. 'INITIAL') then
// invoke DISC.DATA to initialize the disc-based
// TABs.

// The description of the next part, the
// COMMAND cycle, is informal.

ESCAPE'
$(LET STRING = PROMPT(STR)
IF STRING = "EXIT" BREAK
IF STRING = "ESCAPE" LOOP
IF STRING is § key of a "COMMAND" REC
invoke the associated function, first prompting for
and checking the types of the actual parameters.
The function may itself prompt for further
information. If the function is a transaction it will
update one or more files and issue an
acknowledgement on the VDU; if the function is a
query the result will be displayed on the VDU.
IF STRING is :key to any other type (or instance)
of REC the REC is displayed on the VDU (using
OUTV), including any default values specified in
the prefix hierarchy.
$) REPEAT

EXIT: CLOSE.TABS()

// This routine scans the TAB entries in the TYPE
// TAB. For each disc-based TAB the working
// store component (the primary index) is restored
// to its allocated disc blocks. Finally a tableau
// giving the maximum size and actual size of all
// TABs is displayed.

$) // END OF START

The only significant omission from the above account is
the possible need for a working store TAB of miscella-
neous and frequently referred to data (e.g. the current
date) which is user updateable, like the disc TABs.

9. CONCLUSION

A package of BCPL functions and routines has been
specified which enables an applications programmer to
build an 'experimental' database for use by a relatively
small group of users. The package provides some of the
benefits of LISP and SIMULA within the framework of
a systems programming language. A similar system may
be applicable to ' C . It should lend itself to what has been
called 'structure intensive' information systems, where
the programmer prefers to see the structure manifest in
the representation of the data, rather than work with a
'flat' relational model.3

As regards entities and relationships, TABs hold
anything that can be accessed by a single key: an entity
with attributes or a (1-many) relationship with attributes.
This puts the emphasis on functional dependencies (on
the key) rather than general relationships. To support a
general relational algebra would entail a disc based
structure capable of holding an unordered and arbitrarily
large set of tuples of uniform type (fixed when the relation
is created) with facilities for retrieving tuples via
alternative and compound keys. Such an extension is
planned. Nevertheless the TAB structure seems the

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 6 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

R. A. BROOKER

appropriate mechanism for representing entities, the
internal key serving as a surrogate for use in relationships
where it would be uneconomical to store the full external
keystring. Moreover the REC type hierarchy (derived
from SIMULA) captures precisely the notion which
Smith & Smith4 refer to as generalization (although they
associate the notion with Hoare's discriminated union
type, and PASCAL'S variant records, which is a very
different syntactic mechanism to the same end).

The reader may have noticed that no examples were
given of records being used as components of other records
(or lists), only as prefix types. Such structures can only be
built by program means at present. The PROMPTREC
mechanism would have to invoke itself recursively to
deal with such structures, i.e. to prompt for the fields of
the (sub)record, the type of which is specified in the
(main)record template. This type may have subtypes,
any (value) of which may be a valid component. If
necessary the PROMPTREC mechanism should be able
to remind the user of the permissible subtypes and their
formats. The user must indicate which of these he is
inputting. At the time of writing however this facility is

not available. Another facility which is not available is
the SET datatype. The examples given of its use were in
fact simulated by LISTs in the application referred to
below.

A pilot version of the package described here has been
prepared for the DEC system 10 by the author. It is not
portable because the internal representation of the data
depends on the word structure of this machine. However
the package amounts to less than 1000 BCPL statements
so it should not be difficult to redesign it for another
machine. Using this package the author was able to
implement the structural part of the information system
referred to in the text (it contains grading structures,
salary tables, committee structures, etc., but no personnel
records). Details of this system will be the subject of a
separate report.

Acknowledgements

It is a pleasure to acknowledge helpful conversations with Jim Doran,
Ken Moody, Peter Stocker and Bernard Sufrin who all read an earlier
version of this paper, and also with Surendra Mayaramani.

REFERENCES

1. M. Richards and C. Whitby-Strevens, BCPL, The Language and
its Compiler. Cambridge University Press (1979).

2. T. Winograd, Understanding Natural Language, p. 67. Edinburgh
University Press (1972).

3. E. F. Codd, A relational model of data for large shared data banks.
Communications of the AC M"\3 (No. 6), 377-387 (June 1970).

4. J. M. Smith and D. C. P. Smith, Database abstractions:
Aggregation and generalisation, ACM Transactions on Database
Systems 2 (No. 2), 105-133 (1977).

Received November 1981

Books Reviewed in this Issue

Data Structures 492
Digital Control Using Microprocessors 496
FORTRAN for Business Students: A Programmed
Instruction Approach 492
Invitation to PASCAL 496
Operating System Elements—A User Perspective 422
Programming Language Translation 492

Protocols and Techniques for Data Communication
Networks 494
Quantitative Methods for Business Decisions 494
Real-Time Programming—Neglected Topics 494
Systems Analysis and Design for Computer Applications 422
Telemaric Society 422

4 6 4 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/448/366381 by guest on 10 April 2024

