
Key Space Compression and Hashing in PRECI

D. A. Bell
School of Computer Science, Ulster Polytechnic, Shore Road, Newtownabbey, Co. Antrim BT37 OQB, UK

S. M. Deen
Department of Computing Science, University of Aberdeen, Aberdeen AB9 2UB, UK

The hash trees method is classified as an external hashing scheme and its features are compared with those of other
members of this class. Attention is focused on the key space compression algorithms which are an essential component
of hash trees. Results of experiments to assess the performance of the algorithms on three relations needed in actual
applications are given. The performance is found to depend upon the distribution of the keys. The storage utilization
and sequential and direct access performance obtained make this technique a useful addition to the database designer's
tool-kit.

1. INTRODUCTION

Methods of storing data on secondary storage devices so
as to facilitate subsequent access in order to service
queries are fundamental components of any database
system. Recently several important contributions have
been made in this area, e.g. Refs 1-5, all of which claim
advantages for some mode of access or some particular
distribution of primary keys. We refer to this class of
methods as external hashing schemes and describe it in
more detail in Section 2.

In a study of several more traditional storage and
access methods, Lum et al.6 showed that although one
well-known hashing algorithm—the division method—
was a good 'safe' choice in all cases considered, it was not
always the best choice for a given application. Their
conclusion was that 'horses for courses' should be the
rule; the selector of a hashing method should take pains
to exploit the structure of the key space and the
distribution of the key occurrences within it when opting
for a strategy, in order to optimize performance indices
such as response time, storage utilization or throughput.

It is likely that a similar conclusion would be drawn
from an analogous comparison between external hashing
schemes, so there is unlikely to exist such a scheme which
is the best choice irrespective of application or key
distribution. This observation supplies the motivation
for seeking novel techniques for the storage and access of
data, and for investigating their performance for different
applications and different key distributions, in order to
determine their places in the taxonomy of such schemes.
The purpose of this paper is to examine the performance
of the hash trees external hashing method.1

The PRECI (Prototype of a Relational Canonical
Model with local Interfaces) project was set up primarily
as a research vehicle to carry out studies such as this and
now has collaborators throughout the UK. PRECI is a
generalized database system based on a canonical data
model capable of providing interfaces to other major
models through local schemas and host languages or a
query language. The relational interface has been
implemented and the Codasyl interface is expected this
year. The structure of PRECI is modular and flexible
with an open-ended approach that allows easy incorpo-
ration of variations and upgrades.

A major feature of the model is run-time efficiency and
the novel external hashing method, hash trees, was
designed to support this. While providing direct access
to tuples it enhances sequential access and access on
secondary keys and non-key attributes by storing the data
in fixed data locations each indicated by a surrogate. An
important step in this hashing procedure is to compress
the key space so that sparse key spaces do not cause
excessive degradation of storage utilization, while pre-
serving the key sequence of stored tuples, at the time of
loading at least.

In this paper one approach to compressing the key
space is described and the results of experiments carried
out using relations obtained from collaborating establish-
ments are presented. As expected these empirical results
show that the advantages of this method depend on the
applications and key distributions.

In the next section we survey some notable contribu-
tions to the collection of available external hashing
methods and in Section 3 the hash trees method is
outlined. Section 4 presents the key compression algo-
rithms and in Section 5 the experimental results are
given. The conclusions appear in Section 6.

2. EXTERNAL HASHING METHODS

A hashing function is defined as a transformation which
maps an identifier attribute (key) to an address location
for storage and retrieval of the key and its associated
data (tuple). We refer throughout this paper to a general
model for data storage and retrieval systems, described
in Fig. 1 and by constraints 1 to 4 below.

In Fig. 1 the key space of a relation is a collection of
elements where each element represents a possible key of
the relation. The initial key space is the subset of the key
space representing the range of key values existing in the
relation as it stands at database load time. These terms
are considered synonymous for the purpose of this paper.
The collection of available secondary storage locations'
addresses in which the tuples are to be physically stored
constitutes the address space of a relation.

A scatter-table or directory is generally inserted
between these two spaces, to provide a level of indirection
and facilitate access. So when a logical slot number is
indicated after hashing the key, the address space

CCC-0010-4620/82/0025-0486 $03.50

4 8 6 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 I Wiley Heyden Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

KEY SPACE COMPRESSION AND HASHING IN PRECI

Key space

Hashing function F

Directory

Pointers P

Address space

Figure 1. General model of external hashing schemes.

location is found by searching the directory, whose size
dynamically reflects the address space size. Once this
address is known only 1 access is needed to obtain the
stored tuple's data.

In general existing external hashing methods are
restricted by the following four constraints:

Constraint 1

The hashing function, F, in Fig. 1 has the negative effect
of breaking down the natural sequence of the keys Kt in
order to give a uniform distribution of tuples over the
directory thus incurring performance penalties in se-
quential access. That is, they do not satisfy the condition:

(0

Constraint 2

The pointers, P, by which the directory slots D, are
associated with address space slots (leaf slots) breaks
down the sequence of the directory slots, thus compound-
ing the disadvantage due to constraint 1 for sequential
access. That is, they do not satisfy the condition:

Z), <D2 i <P(D2) (2)

Constraint 3

Many synonyms occur under F, and when the number of
synonyms reaches a threshold, co, the corresponding
address space slot will not be large enough to hold all the
tuples assigned to it, so an overflowing strategy must be
invoked with associated access performance degradation.
Normally this means that the tuple with key K is
associated with a directory slot D where the following
condition does not hold

Constraint 4

If access to the relation is required via a non-key or
secondary key attribute NK, this is normally facilitated
using a secondary index (NKt, At) showing for the
attribute NKt its storage address space location, At. If
this index is held in attribute sequence, sequential access
to the tuples by the attribute is also expedited.

However, if the address of the tuple is changed for
some reason, then an additional problem of secondary
index maintenance is encountered. That is, if the new
address of NK{ is A\ the corresponding index entry

Ai) does not satisfy the condition

A} = A, (4)

F(K) = D (3)

External hashing schemes should aim to eliminate, or at
least minimize the effect of, these constraints.

If we restrict our attention to the support of single-
relation queries, the above general model is sufficient.
However for multi-relation queries an extra dimension is
encountered necessitating that the priority of the access-
ing functions and other load specification parameters
must be included in the model. PRECI does provide
facilities for this, but these are beyond the scope of this
paper.

The external hashing methods described in this section
all remove constraint 3 by using a splitting technique and
dynamically altering the hashing function to avoid
rehashing or drastic reorganization. However none of
these methods remove constraint 4 because splitting
involves reallocation of tuples to new addresses which
implies secondary index reorganization. The directory in
Fig. 1 allows the hashing function to remain unchanged.
In general they are also constrained by conditions 1 and
2 in that they are not order-preserving, although there
are some (partial) exceptions to this rule.

Dynamic hashing4 allows graceful expansion and
contraction as the number of stored tuples increases or
decreases, thus eliminating overflow problems. Data can
be retrieved in one access if the 'forest of trees' of the
directory is held in primary storage. The storage
utilization claimed for this method is poor at 69%. When
a data set overflows the directory leaf slot pointing to it
becomes an internal node pointing to two directory leaf
slots. The right one points to a new data slot which is
allocated some of the tuples, the left one pointing to the
original slot in which the rest of the tuples remain.
Shrinkage is catered for analogously. Scholl3 has applied
a method of deferred splitting to this basic method,
thereby providing a smaller directory and higher storage
utilization without too great a penalty in access time.

Extendible hashing7 also accommodates overflows by
splitting. The directory is collapsed into a single level,
and is implemented using a 'buddy system' partition. For
an address space of up to T - 1 slots, a directory of 2*
entries, not necessarily distinct, is required. When the
depth x of the partition increases (i.e. a 2*th data slot is
required) the directory doubles in size. The x most
significant bits of F(K) give the directory slot's address.
When a data slot overflows, its occupancy is halved and
a new slot is assigned. Conversely if it underflows it is
absorbed by its buddy if there is accommodation
available. When the data slots are pages this method is
attractive. Constraint 2 is removed and this method

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 8 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

D. A. BELL AND S. M. DEEN

allows 'weak sequential access' in that updates may be
applied efficiently in pseudo-key order.

Virtual hashing5 does not use a directory and the
hashing function changes dynamically for synonyms.
Splits are implemented in a similar manner to that above.
The sequence of keys is rather badly broken down and
storage utilization is poor, but only 1 access is ever
needed to get a tuple when its key is known.

3. THE HASH TREES METHOD

This method does not use a directory to provide a level of
indirection between the key space and the address space,
but it does use a compact directory, the Surrogate
Directory (SD),7 to keep track of available storage
locations in data slots, and an index, PINDEX, to give
access to tuples in primary key sequence. Other indices
allow direct access to tuples by secondary keys or non-
key attributes in an unusually efficient manner.

The method centres around the allocation to each tuple
of a surrogate, composed of a relation number and an
effective key which remains fixed for the lifetime of the
tuple, or until reorganization. The effective key is
determined by hashing and consultation of SD. The
hashing function H allocates tuples to data slots of width
co, in a manner which ensures that all tuples in a data slot
D1 which has a lower address than slot Z)11 have a key
value which is less than that of any tuple in D11. The
placement of tuples within the slot is carried out after
consulting SD to locate the first empty position in the
slot—so that on initial loading the keys are in sequence.
Overflow slots of reduced width, usually to/2, are allocated
dynamically and exclusively, either in local overflow slots
(on the same data page) or in global overflow slots.

To minimize the spread of the address space the
primary key space is compressed during the hashing
procedure, and the primary aim of this paper is to show
how this compression is effected and measure its success.

If a surrogate is not allocated or is deleted the
corresponding position remains empty until another
tuple is assigned to it via H and SD, but this is only
allowed after a suitable integrity check.

The Surrogate Directory, SD, assumed here to be held
in compact form in primary storage (as described in Ref.
7) contains an entry for every hash slot showing the
current number of tuples C in the slot and a pointer to its
overflow slot.

To insert a tuple the associated data slot is determined
using H and SD is searched. If C < co, for this slot, the
first empty tuple position in the home slot is allocated to
this tuple. This happens even if there is an overflow
chain associated with this slot, so that the sequence of
keys is partially broken. If C = co and there were no
previous overflows, an overflow is assigned and the tuple
is assigned to its first position. If there is an overflow slot
already the first available position is allocated to the
tuple.

Access in primary key sequence is effected by using
PINDEX, a tree showing the surrogate for each primary
key and maintained in primary key sequence. Direct and
sequential access to secondary keys can also be supported
by additional indices. Because the surrogate is fixed for
a tuple's life time, no periodic reorganization of secondary

indices is required (unlike other schemes where migration
via splitting is allowed).

The initial loading of a relation is in primary key
sequence and if it is possible to determine the likely tuple
insertions at load time surrogates can be allocated for
these. An important feature of the hash trees method is
to ensure the sequentiality of the initial load, and this is
the subject of later sections.

Table 1 indicates how this method compares with the
other external hashing schemes.

Table 1. Taxonomy of external hashing schemes

Method

Extendible

Virtual
Dynamic

Hash trees

Condition Condition
1 2

x J
(weak)

X X

X X

y

Condition
3

y

y
y

y

Condition
4

X

X

X

y
(weak)

4. THE PRECI KEY SPACE COLLAPSING
METHOD

The PRECI hashing function, H, which provides fast
direct access but preserves natural sequence, is based on
an extremely simple principle. In the traditional division
hashing algorithm the key sequence is broken down in
the address space because the remainder is used as F{K)
rather than the quotient. Hash trees uses the quotient as
H(K), thus ensuring that the key sequence is preserved in
that consecutive groups of keys will be assigned to
consecutive address slots, so that condition 1 and
condition 2 of the general model are satisfied.

However, although this division hashing function
(using quotient as H(K) has always been recognized as
useful for high density key distributions, it is clearly not
suitable for sparse key distributions owing to the large
amounts of wasted, expensive address space locations.

The obvious solution to this problem is to use a
collapsing technique to remove the empty (and possibly
the underfilled) slots, in order to concertina the key space
and/or address space. To keep track of these removed
empty slots a storage overhead in the form of a table, T,
is incurred to support the hashing function.

Each entry in T shows, for a particular value of H(K)
the cumulative number of empty slots, ei7 which precede
it (see Fig. 2). Clearly not all values otH(K) need have an
entry in T; only those corresponding to occupied slots
which follow a gap (a series of empty slots) need to be
included. The true slot, Z, for a key K is found by seeking
H(K) in Tand subtracting the total number of empty slots
et preceding it. In this way a key-distribution such as that
in Fig. 3(a) is altered to that of Fig. 3(b).

Because the hash divisor (h) may be much greater than
co (see step 3 below), some slots will be allocated more
than co tuples, i.e. H(K) will give a particular value f{
more than co times. Table T indicates the depth d, of such
overflow, and this allows the allocated tuples to be spread
over the d{ + 1 slots starting at the true slot, Z. The value

4 8 8 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

KEY SPACE COMPRESSION AND HASHING IN PRECI

'Notation

Meaning
of entry

Example
entries

-

Hashed
slot
number
H(K)

53
59
62

Table T Entries

d,

Number of
additional
slots needed
to hold all
tuples hashed
to this slot

0
2
0

-
e,

Cumulative
number of
empty slots
with
addresses
less than f,

25
30
30

z
Addresses
of slots
actually
holding
tuples
assigned
to/,

28
29,30,31

32

Note: the example entries show two sparse areas in the primary key
distribution (namely, slots 54-58, and 60-61 which had zero
occupancy), and a dense area (2 additional slots, or 3 slots
altogether, were needed to accommodate all tuples hashing to slot
59).

Figure 2. Composition of table T.

dt must be subtracted from the e-value of the next T
entry. In this way the distribution of Fig. 3(b) is altered
to that of Fig. 3(c).

In this section the method is described, mainly in
narrative form, and in the next section empirical results
are presented to assess the performance of H on some
typical relations encountered in collaborating establish-
ments. The key space compression method is described
as a number of steps, which may run in parallel to some
extent, carried out as the 'initial relation', R, cardinality
c, is loaded into physical storage.

Stepl

(a) Find all contenders for each character position of the
key (length / characters). This results in a table
{K,} i = 1,. . . ,l;j = 1,. . . ,M where M is maximum
number of contenders for any i.

I
A

Key space

3

V

(b)

Key space

(c)

Key space

Figure 3. Reducing variation in a key distribution.

(b) Allocate to each character in {Kt} an integer
{At} corresponding to the ranking of the {Kt} in the
computer's character order, for each i.

Note. Often (a) is given information. The DBA is often
aware of the possibilities for each character position
within the key at data analysis time. Otherwise a simple
algorithm may be implemented to examine Q (the
initially loaded relation) to determine {K^. {A^ is very
readily obtained from {K,•,}.

Step 2

Convert each key to a decimal number Xk. For k=\,
. . ., c and i = 1 , . . . , / (c is cardinality of relation)

(i) determine the integer value from {A(} j = 1, . . . ,
M

(ii) convert this to a decimal number 6, by changing
the radix of each character position il, i1 > i

(iii) add it to A .̂

At the end of this procedure Xk is the decimal equivalent
of key. When all keys are in decimal the key space will
already be partially collapsed—especially if it was
originally very sparse.

Step 3

Determine h, the hash divisor for H. Assume that the
database designer can state a data slot size, <o tuples per
slot. Let r be the range of the Xk, k = 1, . . . , c values
determined in step 2. i.e. r = Xc — Xi + 1, then h =
\(r/c)co]. E.g. consider a relation with 500 tuples in the
range 00001 -• 10000. Assume slot size = 20, then r =
10000, c = 500, co = 20. Therefore h = 1.

Get a first estimate, / , of each tuple's directory slot.
This is taken to be the quotient obtained when Xk is
divided by h

Xk

' - IT

Step 4

Scan the key space to model the distribution of empty or
'overflowing' slots in table T.

This step involves producing a table with elements
{fi, diy e j , to indicate the cumulative number of empty
slots e, preceding slots with addresses greater than or
equal to f{, and the number of slots dt needed to
accommodate the tuples assigned to./- (see Fig. 2).

Jis expected to be small enough to be held permanently
in primary storage. This is supported by the empirical
evidence in Table 2.

If the value as calculated obeys the condition ft </<,
fi+! in Tthen subtract et from/ to get the slot address for
/

By including the d% column in T its size is reduced. If
co is much smaller than h, many slots may be allocated
more than co entries in step 4. These 'overflowing' slots
are indicated by the d{ value in each T entry. The tuples
assigned to/'s slot, say slot V, are actually accommodated
consecutively, in sequence initially, in data slots V,

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 8 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

D. A. BELL AND S. M. DEEN

V + 1,. . . , V + d{. If d{ is greater than 0 the resolution of
this access technique is not sufficient to provide the
address of the single slot to which a tuple belongs, but
indicates a (dt + 1) slot area to which it belongs. A further
sequence-preserving hashing algorithm must then be
invoked to get a single slot address.

At the present stage of development this secondary
hashing algorithm is a simple statistical hashing method,
and for the purposes of this study a uniform distribution
of keys assigned to the (dt +1) slot area is assumed, as
this was justified by sampling the observed distributions.
This allows the displacement of the tuple's home slot
within the slot range to be easily calculated. If there are
occasional breaks in the uniformity of the distribution of
keys these can be simply incorporated in an extended
version of T.

The main contribution of this paper comes from an
empirical study of the effect of H upon the primary
performance indices, response time and storage utiliza-
tion. In the next section we present the results of an
experiment measuring the size of Tand the success of the
compression algorithm.

5. RESULTS

An experiment was set up to study the characteristics
and performance of this collapsing technique on three
relations obtained from databases used in collaborating
establishments. The relations described the following
entities:

Relation 1 (Cardinality 24848, density (no. of keys/key
range) 1/4, key length 6). PARTS used in a
manufacturing company.

Relation 2 (Cardinality 20209, density 1/48408, key
length 9). BOOKS stored in a university
library.

Relation 3 (Cardinality 7390, density 1/250, key length
7). STUDENTS enrolled in a Polytechnic.

All the primary keys—part number, ISBN number (less
check digit) and student number—were numeric. In fact
all were decimal, which simplified the hashing method as
steps 1 and 2, which are straightforward and of little
interest in this study, were eliminated.

Since the initial assignment of tuples to slots clearly
preserves the key sequence, the primary characteristics

Table 2.

Relation

1

2

3

Experimental results

Slot size
(tuples)

5
10
20

5
10
20

5
10
20

% Waste
in home
slots

17.1
20.4
23.3

4.9
7.4
9.6

6.6
8.6

11.6

7 size

Entries

1806
920
570

376
186
137

165
92
47

Bytes

5.5K
2.5K
1.5K

1K
550
411

495
286
141

Max. d,
in T

CO

C
O

 C
O

CO

C
O

C

O

to
 t

o
 t

o
to

 t
o
 t

o

Average
d,in T

1.27
1.05
0.98

15.60
11.36
9.17

8.74
7.63
6.52

of interest in the experiment were the effect on storage
utilization and on the response time.

We ran the hashing and table-generation algorithms,
which are implemented on ICL 1900 and VAX systems,
for three values of the slot size a>, namely 5, 10 and 20
tuples. The percentage of wasted space in the secondary
storage devices was calculated for each relation for each
slot size, by determining relationships of the total space
required to store the tuples with the number of tuple
positions actually occupied in each case (=C). The
variation in slot size can be viewed as a reflection of
variations in either the tuple or page sizes, thus assuming
that the length of the tuples is fixed, or that the stored
tuple size, the slot and page sizes remain fixed.

5.1 Storage utilization

To apply the simple (division-quotient) hashing algo-
rithm H of this method appears at first sight to invoke a
penalty of poor storage utilization because of wasted
space corresponding to sparse areas of the key space. The
results of storage utilization measurement are encourag-
ing as can be seen in column 3 of Table 2. They show that
the hashing function H is successful in compressing the
key space while maintaining the sequence of the primary
keys. The most striking result here is the remarkable
performance on the extremely sparse ISBN relation,
Relation 2. The maximum waste percentage is 9.6 which
must be considered excellent for a key space in which
only 1 in 48408 keys are actually used. If the division
algorithm, using the quotient upon division by QJ as the
slot address to preserve the sequence, were used, without
using Table T and the associated spreading of clusters
and elimination of unused slots, the percentage waste for
this relation would be about 500000!

The performance of H on Relation 3 was also very
impressive. This key space was characterized by a small
number of fairly sizeable gaps in the key distribution
occurring, for example, between the last student number
in one faculty and the first number in the next. The
wasted space here was extremely low for a distribution
which is not so sparse as Relation 2, but presents a
challenge when attempting to randomize it uniformly
and also maintain the key sequence. The wasted space in
Relation 1 was higher than expected for a relation whose
key space was originally more densely and uniformly
occupied than either of the other two relations. The gaps
in the key sequence were shorter and more frequent than
in the other cases. However, after compression there was
a much greater assignment of tuples to their home slots
than in either of the other cases, so there were many
more partially full home slots in this relation.

The proportion of non-full slots in the three relations
was approximately

Relation 1: Relation 2: Relation 3:: 3:13:8

The implication is that dramatically non-uniform key
distributions, characterized by large gaps and very dense
clusters, give rise to better storage utilization under H
than less dramatically non-uniform distributions.

5.2 Time and space overhead due to table T

The cost of the good compression of the key space is that
an image of the initial key distribution must be stored in

4 9 0 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

mmtm

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

KEY SPACE COMPRESSION AND HASHING IN PRECI

T. Therefore it is of interest to determine the size of T for
each slot size and each relation so as to gain insights into
this overhead, both in terms of space requirements and
degradation of response time. The results of these
measurements are presented in columns 4 and 5 of Table
2.

The entries in T can be compressed in order to
minimize its negative impact on performance. With
minimal packing of entries we found that in the worst
cases the maximum space required to hold T was about
5iK bytes for Relation 1, IK bytes for Relation 2 and
reduced to about 141 bytes for Relation 3.

The results indicate that large slots are best for
response time given realistic buffer page sizes. This bears
out the results found by simulation in Ref. 7. If Tcan be
accommodated in primary storage on a fairly permanent
basis which is possible and justified in some enquiry
systems, then access time will not be affected, as the table
look-up using up to 11 comparisons in a binary search
procedure, will cause little degradation. However, it is
likely that, in a multi-relation, multi-user database
environment, T would have to be stored externally so
that an extra probe would be required. If the page size of
the system were less than required to hold T, even more
probing would be needed with corresponding access
degradation. However, the effectiveness of this method
for the relations considered in this study, although
dependent on the record and page sizes, was not adversely
affected by T size.

5.3 Allocation of tuples to hash slots

Another measure is important in assessing the usefulness
of H, namely the depth of overflows, dt in T. If this is
large frequently, then the response time may be adversely
affected. As may be seen from the last two columns of
Table 2 a worst-case depth of 183 was encountered for
relation 2. This value is a measure of the clustering of
values in the key space and means that enough tuples to
fill 184 slots are assigned by H to a single slot. This would
be a very alarming result if it meant that up to 184 slots
would have to be scanned to find a particular tuple's
address—a totally unacceptable searching exercise. How-
ever the algorithm for H takes this into account. As
indicated in Section 4, a secondary hashing function Hl

is invoked in these circumstances to find the unique home
slot for the tuple (for example from the 184 slots storing
tuples with one H(k) value). The hashing function Hl

must give a dense sequential distribution and so the list
of contenders is short. The data used in this study was
fortuitously very uniformly distributed across the as-
signed slots, and only a very simple displacement function
was required to locate a tuple's home slot or at worst its
immediate neighbour. Exceptions were detected in
Relation 2 where the uniform distribution was found to
be interspersed with some large gaps. These were dealt
with efficiently by incorporating the descriptions in table
T, which increased Tfor Relation 2 by about 20%.

It is interesting to evaluate these results briefly against
the familiar tree-based access methods. In the indexed-
sequential access methodology for example the tuples
stored in each bucket are indicated by an entry in an
index, and higher levels of index such as a seek area
index are used to enhance efficiency. The results for the

hash trees method as given above show improvements in
access times (e.g. for retrieval of a stored tuple by key) of
several slot (or bucket) accesses, because hashing followed
by look-up of the small table T is used rather than
navigation through a tree. In addition the size of T taken
along with the Surrogate Directory and PINDEX
overheads is much less than for the best of the familiar
tree-based packages available.

This improvement is at the cost of embedded waste in
the address space, which is usually (at least partially)
absorbed eventually, and of more complex algorithms for
searching and update.

6. CONCLUSIONS

It is clear from the results that, as in the case of the
traditional hashing methods described by Lum et al.,6

the hash trees external hashing method gives performance
which varies depending on the initial key distribution. It
is suitable for applications requiring sequential access
for report generation or updating operations. The address
space utilization of the algorithm was pleasingly high in
the test cases, the tuples are dispersed in a uniform
manner over the address space, and if Table T can be
accommodated in primary storage, direct access to a
tuple's data slot, or in a small minority of cases, an
immediately neighbouring slot, in 1 access.

However, T was found to be of non-trivial size for
some key distributions, notably one with a slot occupancy
distribution which alternates rapidly between empty and
fairly mildly overflowing levels. To use a small slot width
in such circumstances incurs a moderate penalty in terms
of secondary storage device space but a heavy penalty in
access time if the page size is much smaller than is needed
to accommodate T. There is however a negative corre-
lation between T size and storage wastage, so that care
must be taken in selecting the hash width co, as both
measures vary considerably with co. For the relations
considered it is clear that if direct access is of greater
importance than storage utilization then slot widths
should be kept high in order to limit overflow depth.

This method is therefore a useful addition to the tool-
kit of the database designer who must deal with a variety
of access profiles and key distributions. It is particularly
suitable for distributions which are predominantly
uniform but have a significant number of substantial
gaps. Such distributions are commonly encountered in
practice. For example, if a range of employee numbers
are allocated to each department, as these are normally
allocated to employees on a serial basis there are generally
sizeable gaps between the last employee number allocated
to one department and the first employee number
allocated to the next. Another example of such a
distribution is where a range of part numbers is allocated
to each project, and some of each range remains unused.

Extensions and improvements of the method are being
researched in several areas. The size of T, and hence the
access time can be reduced by considering underflowing
slots, for example, those with occupancy less than 20% of
co, to be empty and allocating tuples assigned to such a
slot to its immediate predecessor. Candidates for the
secondary hashing function are being investigated, so
that dense, sequence-maintaining allocations can be

THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982 4 9 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

D. A. BELL AND S. M. DEEN

ensured for non-uniform distributions irrespective of the
distribution of the key over the group of slots. Finally the
applicability of H as the preliminary hashing function F
in other external hashing methods, in particular exten-
dible hashing, is being investigated.

Acknowledgements

The authors wish to thank Professor P. Stacker of the University of
East Anglia for useful suggestions and comments on this study, which
was partially funded by the Science and Engineering Research Council.

REFERENCES

1. S. M. Deen, D. Nikodem and A. Vashista, The design of a
canonical database (PRECI). Computer Journal 24, 200-209
(1981).

2. P. A. Larson, Dynamic hashing. BIT 18, 184-201 (1978).
3. M. Scholl, New file organisations based on dynamic hashing.

ACMT0DS6. 194-211 (1981).
4. R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, Extendible

hashing—a fast access method for dynamic files. ACM TODS 4,
315-344(1979).

5. W. Litwin, Virtual hashing—a dynamically changing hashing.
Proceedings of the VLDB Conference, Berlin, 517-573 (1978).

6. V. Y. Lum, P. S. T. Yuen and M. Dodd. Key to address transform
techniques. Communications of the ACM 14, 228-239 (1971).

7. S. M. Deen, An implementation of impure surrogates. Proceed-
ings of 1982 Conference on VLDB, Mexico (1982).

Received May 1982

Book Reviews
Continued from p. 494

E. W. MARTIN AND W. C. PERKINS
FORTRAN for Business Students: A Pro-
grammed Instruction Approach
Wiley, Chichester, 1981. 811 pp. £12.15.

This book suffers from serious defects both in
the material presented and in the manner of
presentation.

The pedagogic approach is very stultifying.
The book is not a programmed instruction
text, despite the title. Instead, a sequence of
small frames is presented, each containing
some text and a question to be answered.
However, if a wrong answer is given, the
student is not directed to remedial material,
but merely reconsiders why he gave that
answer (and by now, of course, he has been
shown the correct one). The level of the
questions is of such utter triviality that the
student is defended from boredom only by a
mounting indignation against the insult to his
intelligence.

The subject matter itself is not convincing.
Leaving aside any consideration of the merits
of ANSI FORTRAN IV in general, there is
little case for its use as a first language for
business students. The authors' discussion of
files is, in consequence of their use of FOR-
TRAN, inadequate and long deferred, central
though the topic is to commercial data
processing.

The technology described is out of date,
both hardware and software (perhaps because
such a massive tome took a decade to write!).
It is assumed that the usual computing envi-
ronment consists of access via punched cards
to a batch-processing mainframe, which rather
undermines the authors' claim that the book
will serve as a text for any student with access
to FORTRAN (further subverted by the
occasional non-standardness of the FOR-
TRAN they use). There is no attempt to
encourage the student to think in terms of the
constructs of structured programming, and
that most valuable of structural tools, the
subprogram, is not introduced until p. 535,
where it is allocated only 35 pages.

In summary, this monumental volume is a
poor realization of a misguided project.

C. D. F. MILLER
Leeds

R. E. BERRY
Programming Language Translation
Ellis Horwood, Chichester, 1982. 175 pp.
£15.00, £6.50 paper.

This is a pleasant little book, which I enjoyed
reading. Its title might mislead people into
thinking that it is about translating from one
high-level language to another, but in fact it is
about translating from high-level to low-level,
i.e. compiling.

The first six chapters (lexical analysis,
syntax definition and syntax analysis, symbol
tables—structure and access, the run time
environment, semantic processing, run time
support) are concerned mainly with the high-
level side of the fence; the next three (assem-
blers, macros, loaders) more with the low-level
side. The final two (Pascal S compiler, Pascal
S interpreter) are the real meat of the book,
describing a compiler in detail with a complete
listing of it, written in Pascal (but not in the
Pascal S subset which it compiles).

Considerable prior knowledge of both com-
puting in general, and Pascal in particular, are
taken for granted, and detailed knowledge of
the Pascal S compiler is also assumed before
you reach it, particularly in the exercises at the
end of each of the first eight chapters. For this
reason it is rather a difficult book to read, as
the King of Hearts' algorithm ('Begin at the
beginning, and go on till you come to the end:
then stop') certainly will not do, but no other
order is suggested. Probably the only answer
is to read it several times.

The Pascal S syntax is given in diagram-
matic form, but with too many errors in the
diagrams. Other misprints are not too bad:
('relativized is a nasty enough word without
misprinting it 'relavitizer' though). The print-
ing is unfortunate in that the typefaces of both
the main text and the Pascal listings have
virtually identical renderings of letter I and
figure 1. In some places, I was actually misled
by this and it is nasty even where not
misleading.

Although there are references throughout
the text to a bibliography, I came to the
conclusion during my reading that the bibli-
ography itself has been accidentally omitted.
I finally came across it, nestling at the end of

Chapter 9, but there is no indication anywhere
else of where or how to find it.

Why is it that Pacal books so often give
reserved words underlining, as here, or bold-
face, as if it were Algol? There are those,
including myself, who believe that a language
ought to distinguish such words from identi-
fiers, and those who believe it to be disadvan-
tageous. Whoever is right about this, the fact
is that Pascal does not do it, and it is misleading
(or unfair to Pascal) to pretend that it has this
advantage (or disadvantage) when it does not.

I. D. HILL
Harrow

MICHAEL SHAVE
Data Structures
McGraw-Hill, New York, 1981.

This book serves as a useful self-teaching text
introducing a range of concepts. The range
brings in on the one hand techniques which
may be unfamiliar to a computer scientist and
conversely some explanations are approached
from the point of view of a computer scientist
and may therefore present a somewhat differ-
ent but interesting aspect of the work to those
who are working in a professional computer
applications role.

The author sets out the theory underlying a
number of algorithms to cover functions. From
these functions the choice would have to be
made in order to set up a system to handle
data, data structure or conventional files. In
principle the data may be numerical or text or
mixed.

The author covers storage structures includ-
ing sequential, linked, binary trees, also allo-
cation of space to linked structures, dynamic
block allocation, methods of garbage collection
and operations on tree structures.

A companion text which leads on to an
assessment of the deployment of such algo-
rithms with the various strands of database
technology or alternative application systems
would be both useful and interesting.

M. M. BARRITT
Edinburgh

Continued on p. 422

4 9 2 THE COMPUTER JOURNAL, VOL. 25, NO. 4,1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/486/366402 by guest on 13 M
arch 2024

