
Correspondence

Dear Sir,

Decomposition of Flowchart Schemata

We are writing with reference to the paper
'Decomposition of flowchart schemata' by
Prather and Giulieri.8

(1) Their paper offers:
(1.1) a survey of earlier publications on

the subject of structured program-
ming;

(1.2) a model of program flowcharts in
two forms.
(a) a list of 'elementary operations'
and program decisions;
(b) a dominance tree;

(1.3) a method of decomposing flow-
charts.

(2) We wish to summarize criticism, detailed
in Ref. 9, of these aspects of the paper, as
follows:
(2.1) the survey is incomplete: since Ur-

schler's paper,10 a number of other
relevant papers have appeared, in-
cluding those by Williams in 1977"
(not 1974 as stated in Ref. 8 and
consequently not in Urschler's 'com-
prehensive summary') and 1978'2

(with Ossher, criticized by Kaposi,
Gillies and Cowell in Ref. 5), by
Paige,67 by Elgot3 and, following
these, by Cowell, Gillies and Ka-
posi12 and Gillies, Cowell and Ka-
posi.4 In view of this insufficiency,
such phrases as 'in almost every
instance' (section 1) and 'most flow-
chart restructuring algorithms' (sec-
tion 5) are meaningless and the need,
established by the authors, for their
method, becomes questionable;

(2.2) the model is not optimally concise
because:
(a) P & G's dominance tree cannot
entirely replace the flowchart. This
makes the model unwieldy in decom-
position. In Ref. 9, we have given a
simpler algorithm using only the
flowchart list of 1.2(a);

(b) a 'flowgraph'2 containing only
the program decisions of 1.2(a) can
be used, with no information loss, if
relationships between elementary
operations and decisions are stored
in a 'transition table. CGK2 use this
model, by which Fig. l(b) of Ref. 8
reduces to a graph of only six nodes;
consists of recursively removing
subflowcharts entered (maybe more
than once) at exactly one point and
with a single exit. Prather and Giu-
lieri's aim is 'a more thorough pre-
processing', giving 'a canonical
form, where a program's independ-
ent processes are most clearly delin-
eated' and an advantage over 'most
existing restructuring algorithms' by
reducing the size of subflowcharts to
be restructured. These aims are more
adequately met simply by addition-
ally unfolding subflowcharts with
entries at many points to give copies
of identical subflowcharts, each with
a single entry point. This was dem-
onstrated in 1978.'-4 Used in con-
junction with the matching proposed
by Prather and Giulieri in section 5
of Ref. 8, preprocessing to irreduci-
bility under strong equivalence
achieved the best possible decom-
position under preservation of the
formal language describing the flow-
chart. This is far more precise,
conceptually, than the 'preservation
of topology' which Prather and Giu-
lieri seek to clarify.

Yours faithfully,
A. SHAFIBEGLY-GRAY
R. W. WHITTY
Department of Electrical and Electronic
Engineering,
Polytechnic of the South Bank,
Borough Road,
London SE1 OAA,
UK
April 1982

References

1. Cowell, Gillies and Kaposi, Introduction
to flowgraph schemas. Proc. CISS.
March 78, John Hopkins University,
Baltimore, USA (1978).

2. Cowell, Gillies and Kaposi, Synthesis
and structural analysis of abstract pro-
grams. Computer Journal 23 (No. 3),
(1980).

3. Elgot, Structured With and Without
GOTO statements. IEEE. SE-2, No. 1
(1979).

4. Gillies, Cowell and Kaposi, Theory of
flowgraph schemas, in Ref. 1 (1978).

5. Kaposi, Gillies and Cowell, Letter to the
editor. Computer Journal 22 (No. 3)
(1979).

6. Paige, Program graphs, an algebra and
their implications for programming.
IEEE.SE-1, No. 3(1975).

7. Paige, On partitioning program graphs.
IEEE.SE-3. No. 6(1977).

8. Prather and Giulieri, Decomposition of
flowchart schemata. Computer Journal
24 (No. 3) (1981).

9. Shafibegly-Gray and Whitty, Reviewof
recent publications on program restruc-
turing and decomposition. Internal Re-
port, Department of Electrical and Elec-
tronic Engineering, Polytechnic of the
South Bank, London (1981).

10. Urschler, Automatic restructuring of
programs. IBMJ. Res. Dev. 19 (No. 2)
(1975).

11. Williams, Generating structured flow
diagrams—the nature of unstructured-
ness. Computer Journal 20 (No. 1)
(1977).

12. Williams and Ossher, Conversion of
unstructured flow diagrams to struc-
tured form. Computer Journal 21 (No.
2) (1978).

Dear Sir,

Jumping to Some Purpose

The continuing correspondence under the
above heading takes as its starting-point a
problem posed by Knuth,1 who in the same
paper recommends, on efficiency grounds, the
'sentinel' solution now reiterated by Missala
and Rudnicki.2 It can be important to tune
critical parts of a program to gain efficiency in
execution (usually at the expense of introduc-
ing complexity), but the issue being addressed
in this correspondence is the more generally
important one of comprehensibility.

While attacking Robinson's program for its
failure to handle the case where array A is
initially empty, Missala and Rudnicki ignore
the implications of their own program in the
case where A is initially full. If the array is of

fixed length and is full, there is no 'first free
element'; their program ceases to be usable as
soon as the array is full, rather than (as on any
reasonable assumption) at the next attempt to
insert a new item. Thus, unless we adopt the
unsatisfactory convention that an array of size
o can accommodate a maximum of a— 1 items,
we are able to insert an item for which we
cannot later search.

Reference to Wirth notwithstanding, gra-
tuitous introduction of complexity is not a
feature of good programming style. Missala
and Rudnicki describe Hill's program as 'not
very subtle'; we should therefore not be
surprised that, of the three programs under
consideration, Hill's is the only one which
correctly searches both an empty array and a
full array.

Yours faithfully,
JIM INGLIS
Birkbeck College,
University of London,
Malet Street,
London WCIE 7HX,
UK
June 1982

References

1. D. E. Knuth, Structured programming
with GOTO statements, Stanford Uni-
versity Computer Science Department
Memo No. STAN-CS-74-416 (1974).

2. M. Missala and P. Rudnicki, Jumping to
some purpose (letter). Computer Journal
25 (No. 2), 286 (1982).

© Wiley Heyden Ltd, 1982 THE COMPUTER JOURNAL. VOL. 25, NO. 4,1982 495

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/4/495/366453 by guest on 10 April 2024


