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The analyses of earlier papers are extended to cover general distributions of reservation sizes. Equations are derived
for the equilibrium distributions of clusters of reservations and of free fragments, and numerical methods of solution
are described. The model is applied in three simple experiments to investigate the influence of key parameters.

1. SUMMARY

This paper corrects and extends a model of the statistical
mechanics of dynamic storage allocation that was
reported in two previous papers.':? The opportunity is
taken to give here a fairly complete review of the model,
indicating any significant amendments. Though slightly
repetitious, this is felt to be preferable to the alternative
of a catalogue of nit-picking cross references.

The review is contained in section 2. It is convenient
to discuss first the aggregation of reserved blocks into
contiguous groups. The size of a cluster is the number of
reservations in it and should not be confused with the
amount of store that it occupies. The outcome from this
analysis is the set of equations controlling the equilibrium
distribution of cluster sizes for various store loadings.
Being concerned with block counts rather than block
sizes, the equations do not depend upon the size
distribution of reservations. The parameters of the
equations are B, the number of reservations, and F, the
number of free fragments.

T;vo important corollaries are: firstly the fifty per cent
rule

p=x 0))

where x = 2F/B and p is the probability that in allocating
space for a reservation, an oversize free block will be
used; secondly the relation

o, =2x/(x + 4) 2)

where g, is the proportion of clusters of unit size. This
latter relation transforms directly into

P2 =x/(x +4) (©)

where p, denotes the proportion of reserved blocks
having two free neighbours, i.e. the proportion of lone
reservations.

It should be noted that the cluster analysis in the
present section 2 is more general than that in Ref. 2 in
that it covers both finite and infinite store sizes.

Equation (3) is important in the analysis of free store
fragmentation which then follows. Here we are concerned
with the distribution of fragments by size and the sizes of
reservations are significant. As with clustering, the
analysis applies to both finite and infinite stores.
Regrettably there was an error in Ref. 2 in the line
labelled (7.6): the denominator should be (F — 1) in place
of F. As a consequence the fifty per cent rule is again

recovered, thus removing the even greater embarrass-
ment of an apparent conflict with the cluster analysis.

A notable feature of the model is the identification of
two distinct regimes characterized by the level of store
utilization. At high utilizations fragmentation is complete
and the store comprises a macroscopically homogeneous
mixture of clusters and free fragments. At low utilizations
the free store comprises one long free block and a range
of fragments. The two regimes merge together at a
critical threshold level of utilization.

In section 3, methods are derived for solving the
various model equations. Attention is concentrated upon
numerical methods of general application. The cluster
equations are straightforward and are solved by direct
substitution in the sequence of recurrence relations. The
fragmentation equations, on the other hand, require
numerical iteration. As presently formulated, the equa-
tions are poorly conditioned and the accuracy achieved
in the solutions is severely limited, particularly in the
interesting threshold region. It may be that better luck or
sounder judgment will yield an improved method of
solution.

Solutions of the cluster equations are discussed in
section 4. It is observed that results are insensitive to
storesize and depend primarily upon the utilization as
characterized by x. At low B or F values, however, the
model breaks down by predicting negative counts for
some cluster sizes. It is suggested that this arises because
the present model requires high cluster counts at each
size in order that mean values may reasonably be treated
asactual values. At the lower count levels a more rigorous
Markov model* is appropriate.

Turning to the fragmentation model, comparisons are
made in section 5 with alternative solution methods in
the special case of unit-length requests. Here a direct
numerical solution is available and, in the special case of
a large store at high utilization, an analytic solution.
These comparisons indicate the general level of corrup-
tion induced by differencing errors in the iterative
calculations. Calculations with a nominal precision of
eleven significant decimal digits can yield results of no
more than three or four reliable digits in a bad case.

With the model duly constructed and validated, the
paper continues in section 6 with an account of its use as
apredictive tool. Three simple experiments are described,
each designed to give fresh insight into the effects of
varying the distribution of request sizes.

The first experiment considers requests whose sizes
are uniformly distributed in the range 1 to R, for various
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R. Of particular interest is the location of the boundary
between the high and low utilization regimes. Knuth’s®
expectation that x approaches unity as the variability of
request sizes increases is verified. The actual utilization
at the threshold, measured by the fraction of the store
that is occupied, is however insensitive to R and remains
at about 45-50%,.

The second experiment was intended to test the
influence of the variance of the request size distribution.
Two sizes were taken, with equal weight and a fixed
mean of 8. As the sizes are moved apart, so the variance
is increased. It is evident that the case of sizes 6 and 10,
say, is the same as for 3 and 5 with a changed unit of
length. The interesting result is that the x threshold
mainly reflects the factoring of sizes and is insensitive to
changes in variance within each factor class. This effect
was unexpected and the third experiment was aimed at
shedding further light on it.

In the final experiment, fixed sizes 3 and 5 were taken
but with variable weights f and 1 — B where 0 < B < 1.
The extreme values correspond to unit-length requests
with suitable scaling of the unit of size. It was of interest
to see whether the solutions vary continuously with g at
the extremes. The evidence obtained suggests that this is
the case.

To conclude, it is clear that the ability to compute, for
the first time, profiles of the fragmentation and clustering
induced by any distribution of request sizes makes a
significant advance in the study of dynamic storage
allocation. There is room for improvement in the
numerical processes which implement the model. There
is wide scope for exploring what are the significant
questions which the model should be used to answer. The
applications described here are simple exercises but they
have shown up the importance of exploiting common
factors in the set of request sizes. The consistent, albeit
fuzzy, location of the 6 threshold gives a second version
of a fifty per cent rule. Formally, the result embodied in
Eqns (2) and (3) is important. That dx/df = 0 at the high
utilization threshold is an interesting conjecture awaiting
proof (see Section 6.1).

Perhaps the major achievement of the model is the
recognition of the two regimes corresponding to high and
low store utilization. It is interesting to note that in
neither regime is the size of the store a significant
parameter. Consider an experiment, starting with an
empty large finite store, in which the rate of reservations
slightly exceeds the rate of releases. The store slowly fills,
maintaining the equilibrium profiles at each stage. We
take up the story when some fifty or more reservations
are in the store so that our model is applicable.

Because the store is taken to be circular, the reserved
blocks and smaller free fragments form a more or less
homogeneous mixture which occupies a contiguous
region. The rest of the store is one long free block. As the
store fills, the long free block is eroded to provide both
space for the added reservations and additional free
fragments. The mix of reservations and fragments
scarcely changes in composition.

Eventually the long free block shrinks so that it can no
longer be distinguished from the other free blocks. One
can make an analogy with liquid—vapour equilibrium in
an enclosed vessel which is heated. The long block is the
liquid and the rest is vapour. We have reached the point
at which all the liquid is vaporized: the dew point. The
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dew point is the threshold where we pass from the low to
the high utilization regime.

As the store continues to fill, space for more reserva-
tions can only be found by reducing the number and size
of free fragments. The character of the distributions thus
changes, though the mixture retains its macroscopic
homogeneity. At some point before the store is full it
becomes impossible to satisfy a request for space from
the depleted stock of fragments. Our model then fails
since we have assumed an unsaturated store. Beyond this
point, in the region having low fragment counts, the
Betteridge approach would seem more suitable.

2. THE ANALYTICAL MODEL

This section reviews the earlier analysis and extends it
where necessary to cover general request-size distribu-
tions. Conditions are obtained for statistical equilibrium
between reservations and releases in a store of N words.
In order to avoid consideration of the effects at the two
ends of a linear store, the store is assumed to be circular.
The store is also assumed to be unsaturated so that each
request for space may be satisfied immediately.

The distribution of request sizes is assumed known: b,
is the probability that a request is for a block of r words.
The size of the largest request is denoted by R. In
equilibrium, reservations and releases take place at the
same mean rate and maintain a store utilization 0, i.e. 0
is the fraction of the store which is reserved. Under the
conditions studied, requests, current reservations and
releases each have the same size distribution.

The model treats the random-fit allocation strategy.
Each block of free store of sufficient size is equally likely
to be used to satisfy a request. The probability that an
oversize free block is selected is denoted by p. In this case
the reservation is made at one end of the free block,
leaving the residue free for subsequent use. Each end of
an oversize block is equally likely to be used.

Similarly with releases: it is assumed that each current
reservation is equally likely to be released next. The space
occupied is immediately freed and any contiguous free
blocks are compacted to form a single larger fragment.

The analysis considers both the clustering of reserva-
tions into contiguous sequences and the fragmentation of
free store into blocks of various sizes. The average
number of reservations is denoted by B and of free blocks
by F. Under the assumption of a circular store, the
number of clusters of reservations is also F. An important
parameter of the system is x where

x=2F|B 4

2.1 The clustering of reservations

Throughout this section it is the counts of blocks that
are significant rather than their sizes. In particular the
results obtained do not depend upon the request-
size distribution.

Clustering is described by the generating function

da)=Y e ©)
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where c,, r > 1, is the number of clusters of r contiguous
reservations. It follows that

)=Yc=F 6)
and ’
¢)=Yrc,=8B )]

The probability that a random cluster is of size r is
denoted by o, where

6, =c,/F (®
The corresponding generating function & defined by
5a)=Y o ©)
satisfies ’
dl)=1 (10)
and
(1) =2/x an

2.1.1 Reservations. Two cases arise. In the case where an
oversize fragment is used to satisfy a request, the cluster
adjacent to the new reservation is extended by one block.
Clustersare randomly distributed and so, with probability
po,foreachr,c,~c,—landc,,, «c,,; + 1.

In the event of an exact fit, the probability that the left
and right adjacent clusters are of sizes r and s is ,, where

F
wrs=_ = ——"70,0 ifr#s

FF-1 F-1

1y .
Frormroie(eg) e @

It follows that, with probability (1 — p)y, for each r and
S,

C,‘—C,—l, cs"'cs_l and cr+s+l(_cr+s+1+1

The expected increment A*Z to ¢ following a single
reservation is thus given by

A*e=pY ol - )

+A=-p XYY@t —a —a) (13)

which simplifies to give
A*¢=a(l —p)a* + (ap+ p — 2)&

+ 2P G a(a) (14)

2.1.2 Releases. Three cases arise corresponding to the
degree of compaction required.

(i) No compaction. Suppose the released block is in
position « in a cluster of length r, r > 2, where 1 < u <
r — 2 and where the two end blocks are regarded as in
positions 0 and r — 1. The effect of the release is to split
the cluster into two, having lengths u and r — u — 1.
Thus, since each reservation is equally likely to be
released, the probability is ¢,/B for each r and u that
¢ —1l,c,~c,+1lande,_, ¢ _,_, + 1.

(ii) Single compaction. Suppose the released block is at
one end of a cluster of length r, r>2. Then with
probability 2¢,/B foreachr,c,«c, — landc,_, «c,_, +

(iii) Double compaction. Suppose the released block
forms a cluster of length 1, i.e. it is a lone block. Then
with probability ¢, /B the effectis ¢, «c¢, — 1.

Combining these results, the expected increment A~¢ to
¢ following a single release is

r—2
A'E=%{Z 6 Y @+a "t —a)

r>2 u=1
+ Y 2c(a! —a’)—cla} (15)
r=2
Naw
r—2

Y @+a —a)=
=1

u=

@—-aH—(r-2a
(16)

l—a

so that, after some manipulation,

X

A= 2(1 —a)

{2(a — &) — a(1 — a)5'} an

2.1.3 Equilibrium. With reservations and releases taking
place at the same mean rate, the equilibrium condition is

A*t+A"E=0 (18)

2.1.4 The fifty per cent rule. Setting a =1 in the above
condition yields

A*F+A F=0 (19)

thus expressing the constancy of the number of free
blocks. On substituting the expressions found for A*¢
and A7¢, it follows readily (see Part 2, section 2.3.1) that

p=x (20)
which is equivalent to the fifty per cent rule.

2.1.5 The cluster equations. Combining the general equilib-
rium condition with the fifty per cent rule to eliminate p
yields the cluster equation

ax(1 — a)é¢’ — 2a(1 — a)(1 — x)&?
+2(2 — 2a + a*x)é — 2ax

_ 2a(1 — a)(1 — x)

71 @*-6@»)=0 (21

This equation is to be regarded as an identity in a. It is
convenient to set out the separate equations correspond-
ing to the different powers of a. Defining S,, the
coefficient of a" in &%(a) by

Sn = Z G 0p—r (22)

and picking out the coefficient of a" in the cluster
equation, it follows that forn > 1,

(nx +4)a, — (n— )x + 4)0,_, + 2x0,_,
F
- 2X(S,,1 - 2(1 - x)<F.—_1> (Sn—l - Sn—Z)

2(1 — x)
+ ﬁ(%.—wz — On-2y2)

=0 (23)
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where ¢ is the Kronecker delta (J; = 1 if i = j, 0 if i # j)
and o; = 0 if i is non-integral.

2.1.6 Lone reservations. The special case n = 1 of the above
equations is of particular significance, leading to the
relation

_
T x+4
It should be noted that this, being independent of F,

extends the analysis of Part 2, which, by taking i, to be
g,0,, effectively assumed F infinite.

(1

2.2 The fragmentation of free store

Both simulation studies and the earlier analyses have
shown a significant difference between the free-store
fragmentation patterns when operating in conditions of
high or low utilization. At high utilizations the proportion
of fragments of given length decreases steadily with

length, whereas at low utilizations the fragments include

one long free block.

Fragmentation is described by the generating function

f@=Yfa ' (25)

where f,, r > 1, is the number of free fragments of size r
words. By convention the long fragment is omitted from
the sum at low utilization so that

f() =Y f.=F, athigh utilization

=F-1,

The probability that a random fragment is of size r is
denoted by ¢, where

at low utilization  (26)

The corresponding generating function ¢ defined by
$@) =3 o (28)
satisfies
#(1) =1, high
=1-1/F, low (29)

and the probability at low utilization that a random
fragment is the long one is 1/F.

The mean fragment size (excluding the long one) is
denoted by 7. At high utilization it is given by

=Y r$, =) (30)

r

Atlow utilizations, because the long fragment is excluded,
] F |
r=err/(F—l)=F—_l¢(l) (31)

2.2.1 Reservations. The probability that a request for size
i will be met from a free fragment of size r, r > i, is
denoted by Q,.. Thus

Qi = &//y: (32
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(29)

" where

Yi= Z ¢ra hlgh

ri

=Y ¢, + 1/F, low (33)

r2i

Equivalently, at both utilizations,
n=1-3 ¢, (34)

Note also that at low utilization, the probability is 1/(Fy,)
that a request for size i is met from the long free block.
The essential feature of the long fragment (really infinite)
is that its length does not alter when it is trimmed or
extended by a finite amount. The low utilization analysis

~ thus implicitly assumes an infinite store finitely loaded.

Two cases arise as with clustering: oversize fit (r > i)
and exact fit (r = i). In the former case, with probability
bQ, foreachiandr,f, « f, — landf,_; «f,_; + 1. In the
latter case, with probability b,Q; for each i, f; « f; — 1.

The expected increment A*f to f following a single
reservation is thus given by

A+j = Z bi{— Qud + Z Qi@ — d’)} (35)

The probability p of an oversize fit is seen to be

p=1-Yb0, (36)

2.2.2 Releases. Each reservation is equally likely to be
released next and the probability is taken to be b; that a
block to be released is of size i. The numbers of
reservations with 0,1,2 free neighbours are denoted by
ny, ny, ny. Evidently
n0+n1+n2=B (37)
and
inn+n,=F (38)

Let po, p;, p, be the probabilities that a reservation has
0,1,2 free neighbours. Then

Po=no/B, py=n/B, p,=n,/B (39)
where
Po+pi+pr=1 (40)
and
pit+2p=x (41)

Furthermore, referring back to the cluster analysis, it is
clear that n, and c, are merely different notations for the
count of lone reservations so that

_m_af
pZ—B_FB—éxal (42)
and therefore, using Eqn (24),
Pa=x*(x+4) (43)

As with clustering, three cases arise.

(i) No compaction. Suppose the released block is an
interior member of a cluster. Then with probability b, p,
foreach i, f, « f, + 1.

(ii) Single compaction. Suppose the released block is an
end member of a cluster, and that the adjacent free
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fragment is of size r. Then with probability b;p,¢, tor
eachiandr,f,—f —landf. ,, «f.; + 1.

In the low utilization case, single compaction involving
the long fragment does not change any of the block
counts.

(iii) Double compaction. Suppose the released block is
a lone block with left and right free neighbours of sizes r
and s. Then with probability b, p,®,, for each i, r and s,
f;‘ ‘—f; - laf; ‘—f; -1 andf;'+s+i ‘—.f;'+s+i +1 where
S K F :
(D = — = —
SEEF—1 Fo1%% ifr#s
_Sf-1_ F 1\ .
“Fr_1 F_1%\ &) ifr=s (44

In the low utilization case there is also the possibility of
a double compaction involving the long fragment and
one of length r. Thus with probability 2b,p,¢,/(F — 1),
frefi— 1L

Combining these results, the expected increment
A~ f to f following a single release may be written down.
First at high utilization,

A f= Z b,-{poai + D Z ¢ @t —a)
+p2 YY) O at i —a — as)} (45)

rs

which reduces to

A f=(po +p1$ + p2dHb — x¢

P2 1 7 i
+ g @ - $lab (46)

Similarly at low utilization,
A f= Z bi{Poai +p ) ¢ @t —a)
+ P2 ZZ ®rs(ar+s+i —d - as)

2
- 205 b} @)
which, making use of the different normalization of ¢
(Eqn (29)), reduces to the same form, Eqn (46), as at high
utilization.

2.2.3 Equilibrium. The equilibrium condition follows the
same pattern as for clustering. Thus

A f+Af=0 (48)

2.2.4 The fifty per cent rule. Setting @ = 1 in the equilibrium
condition recovers Eqn (19) at high utilization and gives

A*F-1)+A (F-1)=0 (49)

at low utilization, in each case expressing the constancy
of F. On substituting into the expressions for A*f and

A~f, the fifty per cent rule, Eqn (20), is recovered at both
utilizations.

2.2.5 Transformation of variables. Using the expressions for
A*f and A~f in the equilibrium condition produces a set
of fragmentation equations which determine the size
distribution ¢. Because of the terms y; in the expression
for A*f, these equations cannot be expressed cleanly in

generating function form. There seems little prospect in
general of deriving analytical solutions and so attention
has been concentrated upon numerical methods.

There are formally an infinite number of equations in
an infinite number of unknowns. Given an arbitrary
small quantity ¢, it is reasonable to truncate the ¢
sequence after ¢,, say, where

Y b <e (50)
r>1
for then the probability is at most ¢ that a fragment
longer than / is neglected. The long fragment at low
utilization is safeguarded since it is kept separate from
the ¢ sequence.
Partly for this reason, and partly because of the
experience of Part 1, it was decided to transform variables
from ¢s to ys where

r>i

The xs form a decreasing sequence of non-negative
elements having limit zero and

Xo =1, at high utilization

=1—1/F, atlow utilization (52)
The truncation condition is now more conveniently
Nn<e (53)

The transformation may be expressed in generating
function form by defining

Ha)= ) xa (54)
r=0
so that
b=xo—-(U-0ai (55)
and
¢r =Xr-1— Xr (56)

2.2.6 The fragmentation equations. Making the transforma-
tion and noting that

Yi= Xi-1, high
=y_, + 1/F, low (57)

it follows, after some algebra, that for each utilization,
. b . y
A7=Z;{—qu+m+ﬂ—@ZLw—d‘%
i rzi
(5%)
and that at high utilization,

A f=b-x—(1-a) [plfa -x+ (%)21225}5(

.( F v 1—ad® o
+ (L —af 77 |PbT + 7 Pbi(@®)  (59)

and at low utilization,

_z - 1 -
A f=<1—%>b—x(l—1—?>+(l—a)(l — b)xy

F\ ., 1-d
+(1-ap ( o l)pzbzz + 5y pabA@®) (60)
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At each utilization level, the results are next collected to
form the equilibrium condition. In the simplification that
follows, the fifty per cent rule x = p is employed, where
in terms of §

p=Ybix/x-1, high
= Y0t + U/ (4=1 + 1/F), low  (61)

This permits a factor (1 — a) to be removed and leads at
high utilization to the form ,
2, ;|
F-1 b} x

+(1—a) (&)le;fz

l+a ._ ,
7 pbaa)

=0 (62)

and at low utilization to

ZlﬁZx,(a’—a"l)+{(l —bx—

i lipzi

+

b (1 ;
—Z;{;(1+a+az+"-+a'_l)

+ 2 1l ‘i—a’)}+%ﬁ

ri

+ (1 =b)xi+(1 —a)<Ff 1>p21322

+a

+ ol pabita)

=0 (63)

where
(1-af=1-5% (64)

so that
B= go Ba (65)

and

B.=> b, (66)

r>i

These forms are now separated into their component
equations by extracting the coefficient of a" for n > 1.
After further manipulation a set of equations common to
the two levels of utilization is obtained:

b;
<x + ) —)Xn =h, + Z bi{CIXn—i = C2X(m-i)2

i<n Yi

+ c3(Un—i—1 - Un—i) + X"+i} (67)

where
h, =0, high
= 1 Y b (l - x>, low (68)
FiZ \
c=x+ sz_zl, high
=x, low (69)
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0= (10)
F

C3 =<———F— 1>P2 (7

U= Xedn-r (72)

and where [ ] denotes the integer part.

3. METHODS OF SOLUTION

The numerical methods used to solve Eqns (23) for
clustering and (67) for fragmentation at the two levels of
utilization are now described.

3.1 The cluster equations

For each n, n > 1, Eqn (23) determines o, in terms of g,
forr < n. The sequence of ¢ values is thus easily generated
in order of increasing subscript. In principle, therefore,
a solution may be generated for any pair (x, F), or
equivalently (B, F). Since p is a probability, the fifty per
cent rule determines that 0 < x < 1. Thus, feasible
parameters must satisfy F < B/2.

3.2 The fragmentation equations

For each n, n > 1, Eqn (67) involves variables y, for r <
n + R where R is the size of the largest request. There
being no evident direct solution, an iterative method was
adopted. The parameters of an equation set, noting the
result (43) for p,, are seen to be x and F.

Suppose that y,, r > 0, is an approximate solution with
Xo satisfying Eqn (52) and with y, =0 for r > /. The
proposed iteration computes an improved approximation
x5, r =0, where x§ = xo and x* = 0 for r > [*. Equation
(67) is modified by substituting starred quantities for y
and y on the left hand side. By working through in order
of increasing n, the nth equation thus permits y* to be
calculated in terms of the existing x values and of already
calculated x¥, r < n.

It is apparent that this will produce a larger set of y*
values. By considering the maximum » for which x* can
receive non-zero contributions, it is seen that y* = 0 for
r>2/+ R+ 1. In practice, subject to space being
available x¥ is computed for n < 2/ + R + 1 and then the
tail is docked to determine /* such that | *| > ¢ for r = I*
and | x¥| < ¢ for r > I* where ¢ is a small quantity.

Iterations are continued until, for each n, |x* — x.| <
¢. Convergence has not been proved but has been
achieved in practice.

3.2.1 Acceleration of convergence. The limiting rate of
convergence was found to decrease as ¢ was reduced and
it was therefore worth introducing an occasional accel-
eration step into the iteration sequence.

Let 7 denote the ith approximation to  and write, for
some g,

Al= oo B
and
32 = 2(i+2q) _ f(i-fq) (74)
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In order to apply an acceleration, A1 and A2 must be
sufficiently parallel. The condition adopted is

(A1:A2)% > 0.99(A1:A1)(A2:A2) (75)
where
(P:0)= Y PO, (76)
rz1

This condition warrants writing, for k = 0,1,2,
7 =4+ 7 (77)

where A is the required limiting value for 7 and H is the
limiting direction of approach to the solution. If m
denotes the subscript value of the dominant component
of A2, the rate factor A may be estimated as

A= A2,/Al, (78)
and it follows that
H=2A2/(A* - 2) (79)
and therefore that
A=+ 4 9A2 (80)
where
o=21(1-2) (81)

Precautions are necessary in applying an acceleration
step. As the solution is approached, the Al and A2
components get smaller and significant figures are lost,
affecting the estimation of A. The parameter g was
introduced with this in mind. By grouping iterations into
bundles of size g, A1l and A2 are smoothed and magnified.
Satisfactory results were obtained with ¢ =5, 6 and 7
though no optimization was attempted.

Furthermore, the slow convergence when ¢ is small
yields values of A only slightly below unity. This causes
o to be both large and imprecise so that A4 is not well
determined. To mitigate these effects, if 4> 0.9, 4 is
replaced by 0.9.

A fuller discussion of this many-variable extension of
the well-known Aitken acceleration technique is given in
Ref. S.

3.2.2 Low utilization. On the basis of the earlier exploratory
work with unit length requests, it was expected that at
high utilizations satisfactory solutions would be found
for sufficiently low x values with each choice of F. At low
utilizations, the physically controllable parameter is B,
the mean number of reservations. It was expected that
for each B, the model would determine both F and x.

On carrying out the iterative solution of the equations
with given B and trial F, and hence determining p from
Eqn (61), it was observed that according as F is chosen
too small or too large, so p is greater than or less than x.
It seemed therefore that a simple binary chop outer
iteration would serve to refine the interval 1 < F < B/2
within which F must be located to satisfy the fifty per
cent rule x = p.

In the y-F plane, the curve y = x is the straight line

= (2/B)F. Near the intersection x = p, the curve y = p
1s also approximately linear, its slope being only a little
less than (2/B). A small error in the determination of the
p curve can, therefore, significantly affect the location of
its intersection with the x line.

Each evaluation of p is subject to appreciable error and

so binary chop is not an appropriate technique. Rather,
it was decided to compute the least squares linear
approximation to the p curve from evaluations of p at a
range of points near where x — p changes sign. By this
means computational errors would be contained rather
than further magnified.

The limiting value of x as B increases should identify
the threshold separating the high and low utilization
regimes.

4. CALCULATIONS OF CLUSTERING

The case x = 1 is special in that Eqn (21) reduces to
all —a)d' +2Q—-2a+a*»5 —2a=0 (82)

which is independent of F. As noted in Part 2, this
equation has the analytic solution

1
6=55(31~afe +22° +3a -3} (83)

leading to
n(n + 3)
(n+ 4)!

Calculations based upon Section 3.1 were carried out for
a range of x and F values, the special case above
providing a simple check. A striking feature of the results
is their insensitivity to F over a wide range. Thus the
validity of the model derived in Part 2 for infinite F is
extended effectively to finite F. In particular the two so-
called geometric approximations

o~ (1 —na/(l —an) (85)

where we may either choose # to match the theoretical
mean sequence length, giving

n=1-x/2 (86)

or, possibly more importantly, to preserve the proportion
of lone reservations, giving

n=1-2x/(x+4) 87)

The calculations also indicate the range of validity of the
present model. At low F values the solution & is
inadmissible since the g, values no longer rise monoton-
ically to 1.0 but overshoot and then execute damped
oscillations about 1.0 as n increases further. The critical
F value drops from about 60 at x = 0.2 to 30 at x = 0.9.
The o, values decay most rapidly with » at high x and so
the observed behaviour is consistent with a need to
maintain some minimum level of the values of the
significant ¢, counts at each x value.

A possible explanation is that the assumption of
perfect mixing at each reservation and release, implicit
for example in the use of Y, in Section 2.1, is suspect. At
low c-counts the behaviour is dependent upon the recent
history. The appropriate model at low occupation
numbers would be a Markov process where different
spatial configurations of clusters and fragments are
explicitly recognized as separate states with individual
transition probabilities.* These considerations apply of
course with equal force to the analysis of fragmentation.

g,=3x2"*!

(84)
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5. VALIDATION USING UNIT LENGTH
REQUESTS

Fragmentation was calculated for unit length requests
using both direct and iterative solution methods. The
primary interest was to assess the accuracy of the iterative
method as a guide for use when applying it to general
request distributions.

Computing was carried out on the ICL 1906S at
Liverpool, with eleven significant decimal digit precision.
Differencing checks indicated that y components were
evaluated in the iteration loop with, typically, an accuracy
of nine decimal places. Withe = 0.5 x 10~° convergence
was prohibitively slow at low utilization without accel-
eration and the noise produced by an acceleration was
comparable to ¢ in magnitude. Thus the solution process
is effectively limited to an accuracy of about five decimal
places in the low utilization region. At high utilization
the tail of y is shorter and greater accuracy is obtained.

5.1 A direct solution

As discussed in Parts 1 and 2, the case of unit length
requests is special in that a direct solution of the
fragmentation equations is possible. Substitution of
b = a into Eqn (67) yields, forn > 1,

(x + Dtn = C12n-1 — C2X{tn-1y21
+c3(Un-2 - Un-1)+Xn+1 (88)

where ¢, ¢, and c; are as defined in Eqns (69)-(71). In
addition, the fifty per cent rule and the known form for
Zo combine to determine y, and x,. Thus at high
utilizations,

o=1, x=x (89)
and at low utilizations
Xo=1—1/F, n=x—1/F (90)

Therefore, forn=1, 2, 3, ... in turn, Eqn (68) enables
Xn+1 to be evaluated in terms of elements already
available.

The estimation of F for each B at low utilization was
discussed in Part 2, section 7.5. The analysis has already
enforced the fifty per cent rule and a criterion based upon
the form of the y sequence is used instead. For given B
and trial F, the generation of the y sequence is terminated
if either y,+, <0 or x,,+; > %, It is observed that these
correspond, respectively, to F being too small or too
large. In order to provide maximum contrast with the
general program, and because of the greater accuracy
expected of a direct calculation, binary chop was judged
suitable as a means of refining F for each B.

The program for the direct calculation was itself
checked over a range of x values at high utilization with
F = oo against the analytical expressions for the x
elements given in Part 1, Eqns (3.37) and (3.39). Listings
were produced with a precision of six decimal places and
complete agreement was observed.

5.2 Numerical results

At high utilization, iterative solutions were obtained for
comparison with direct solutions at various x values and
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at F = oo and F = 128. For each combination, calcula-
tions were made with both four and six decimal places
nominal precision, i.e. £ = 0.00005 and & = 0000005. At
x = 0.1 the agreement was virtually exact. At x = 0.4 the
iterative solution lost a decimal place and at x = 0.5 it
lost two places in terms of the nominal precision. Thus at
x = 0.5 the iterated solution with ¢ =0.0000005 was
accurate to four decimal places in x. As x increases to its
limiting value 0.5151 the performance deteriorates
further. The variation of y with F is negligible at x = 0.1
and rises to about 0.001 at x = 0.5.

At low utilization comparisons were made for various
B values. Calculations were made with both four and five
decimal places nominal precision. At B = 64 the iterated
solution loses about two decimal places in yx, rising to
three at B = 512. Thus at B = 512 the iterated solution
with ¢ = 0.000005 was accurate to two decimal places
only in y. Above B = 512 the performance deteriorates
further. A plot of x against 1/B, however, permits the
limiting value of x as B — oo to be extrapolated—see the
curve R = 1 in Fig. 2.

4.0
Direct solution
[¢) Iterated solution
(¢)
3.0
;
2.0
1.0 ] ] | ] 1
0 0.1 0.2 0.3 0.4 0.5 0.6

X
Figure 1. Validation with unit length requests.

The mean size 7 of the finite fragments is plotted
against x in Fig. 1. The full curve represents results from
the direct method and shows the peak in 7 at x = 0.5151
separating the high and low utilization regions. Also
plotted are individual results from the iterative method,
corresponding to the higher nominal precision in each
region. Clearly the size of the peak in 7 is not well
determined but its location in x is relatively more
accurately established by the iterations at the two levels
of utilization. The steepness of the right hand face
indicates that at low utilizations x is relatively insensitive
to B.

6. THREE SIMPLE EXPERIMENTS

The successful validation of the model enables it to be
employed as a predictive tool. Three simple experiments
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Figure 2. x vs B for uniform requests.

are now described which explore the influence of request-
size distribution upon fragmentation.

6.1 Uniform requests

A sequence of calculations was carried out for the case of
uniformly distributed requests, for which b, = 1/R, 1 <
r<R. The cases R=1, 2, 4, 8, 16 were treated. Of
particular interest was the variation with R of the
threshold x-value separating the high and low utilization
regimes. For each R, low utilization calculations were
made for B = 64, 128, 256, 512. These values lie within
the region of validity of the model.

Table 1. Variation of x with R and B

R

DOOPLN -

8

64

0.555
0.688
0.804
0.887
0.939

128

0.540
0.677
0.797
0.880
0.936

256

0.530
0.668
0.790
0.875
0.933

512

0.5622
0.660
0.786
0.870
0.929

e

0.51
0.65
0.77
0.86
0.92

The computed x-values are shown in Table 1 and are
plotted in Fig. 2 in the x:B~! plane to facilitate
extrapolation to B = oo at each R value. These are the
required x thresholds and form the right-hand column of
the table. Figure 3 shows similarly in the x:R~! plane
the plots for B = 64 and B = oo to permit extrapolation
to R = oo0. The two curves lie close together and the other
B curves, not shown, would lie between them. It is seen
that, for each B, the limiting value of x as R — oo is 1.
This confirms Knuth’s conjecture® when formulating the

\
b
\
\
\
\
\
\
\
\
\
\
\
\
R %
\@\
AN
@\\ \i}
® \
N\
4+ &
\
N
AN
8| o,
N
16| 0.
oo 1 | | ! X
0.5 0.6 0.7 0.8 0.9 1.0
X

Figure 3. x vs R for uniform requests.

fifty per cent rule. The present work adds to that
conjecture an indication of the rate of approach to the
limit as the variability of request sizes increases.

Also of interest is the variation with R of the threshold
value of the utilization, 6. Calculations were made at
high utilization and F = oo for a range of x values.
Computed values of 6 are plotted against x for each R in
Fig. 4. As the threshold is approached, the tail of x
lengthens and the values obtained are less secure. In the
simple case R =1, of unit length requests, the earlier
papers showed that analytic solutions are available for
the x-equations. These locate the threshold at x = 0.5151,
0 = 0.4849 and it is relatively simple to show that, at this
threshold, dx/d6 = 0. For other R values the threshold x
values were obtained from the extrapolations of Fig. 2
and it is tempting to conjecture that here too the tangents
are parallel to the 6 axis. The analysis is more complex
and no formal verification has been obtained.

It will be appreciated that the extrapolated threshold
0 values are subject to numerical uncertainty. This is
deliberately highlighted in Fig. 4 by leaving the loose

1.0

0.9

0.8

0.7

0.6

0.5

0.4 ] ] ] ] ] ] ] ! 1
0o 01 02 03 04 05 06 07 0.8 09 1.0

Figure 4. 0 vs x for uniform requests.
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ends of the curves somewhat ragged. What does emerge
quite clearly however is the relative insensitivity of the
threshold utilization to the request distribution. This is
confirmed by the low utilization results. All estimates of
the critical utilization lie between 45%, and 50%.

6.2 Bipolar requests

The second experiment investigates, for given mean
request size, the effect upon fragmentation of changes in
the variance of the request distribution. For simplicity,
the cases studied have only two different sizes of request,
each occurring with the same probability. Thus, choosing
8 as the mean size and denoting the standard deviation
by o, the request distribution is specified by bg,, =
bg_, = 0.5 with all other elements zero. Calculations
were carried out for0 < o < 7.

With certain request distributions, and on the assump-
tion that the store pattern is consistent with an initial
priming from an empty store, certain fragment sizes will
never arise. For example, if all requests are of even
length, there will be no free fragments of odd length. The
choice of initial configuration when solving the fragmen-
tation equations should bear this in mind since the
iterations will not remove incompatible sizes.

It is readily seen that achievable sizes of fragment are
of the form Y'rn, where the sum is over the values r for
which b, # 0 and where the n, are arbitrary signed
integers. It follows that if the request sizes have a
common factor then all fragment sizes also have this
factor, and that if the request sizes have no common
factor then there is no restriction on fragment size.

In practice it is found that the presence of a common
factor upsets the conditioning of the iterations. It is
desirable, and clearly more efficient, to remove any
common factor by rescaling the unit of length. Thus for
example the case 0 = 4 with R = 12 above is converted
into b; = by = 0.5 with R = 3, where each unit is four of
the original words.

The results reproduced many of the features exempli-
fied in Figs 2 and 4. Thus, at high utilization, the
utilization @ drops from 1.0 at x = 0 to a value close to 0.5
at the threshold x where, as near as can be determined,
the tangent is again parallel to the 6 axis. At low
utilization, as in Fig. 2, x decreases very slowly as B
increases and approaches its threshold value as B — 0.

Table 2 lists the threshold x and 0 for each .  is not

Table 2. Variation of threshold with ¢

c 0 1 2 3 4 5 6 7
X 052 079 0.76 079 0.72 080 0.78 0.80
0 048 052 052 050 045 049 047 048

well determined by the calculations and the variation is
probably not significant. The interesting features of the
x threshold however are that it reflects the factoring of
the request sizes and is largely insensitive to ¢ within
each factor class. The first effect is readily explicable in
terms of the filtering of achievable block sizes consequent
upon a common factor, but the near constancy within
each class is unexpected.
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6.3 Skew requests

In the third experiment, the relative probabilities were
varied for a fixed set of request sizes. A simple example
was chosen, based on the case ¢ =2 of the previous
section. Thus the request distribution is specified by b; =
B,bs =1 — B. Calculations were carried out for a number
of values of f in the range 0 < < 1. Those for = 0.5
reproduce the earlier set with ¢ = 2 and those for # =0
and B =1 are simply rescaled versions of unit length
requests.

The results follow a similar pattern to those of the
earlier experiments with the threshold 6 value remaining
close to 50%,. The x threshold varies only slowly in the
middle of the f range but dips sharply at the extremes.
Figure 5 shows this variation, extrapolated with the low

0.8

0.7

0.6

0.5
0 0.2 0.4 0.6 0.8 1.0
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Figure 5.
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Figure 6. H, vsrfor skew requests at 8 = 256.
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utilization model from calculations as before at B = 64,
128, 256, and 512. The values of x for B = 64 are also
plotted to indicate the relative insensitivity of x to
variations in B at each f. The interesting observation is
that x appears to approach its limiting values continu-
ously at the two ends of the f range.

In all three experiments, location of the utilization
threshold has been given special consideration. This
provides a severe test of the consistency of the models
since the conditioning of the equations is worst near the
threshold. A more general comparison is made in Fig. 6
by plotting the cumulative distribution of fragment sizes
obtained for B = 256 from the low utilization model near

B = 0. This shows quite clearly, at the larger fragment
sizes, how the comparatively smooth curve at = 0.2
evolves into a staircase function at # = 0. The sizes tend
to favour multiples of 5 for each B, with the influence of
3s clearly discernible as f increases.
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