Some File Structure Considerations Pertaining to

Magnetic Bubble Memory

William E. Wright

Department of Computer Science, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA

Several aspects of file structures are considered with respect to magnetic bubble memory architecture. Topics
discussed include record sizes, wrap-around, parallel and serial systems, blocking, tree structured files, indexed
sequential files, and hashed files. Primary attention is given to minimizing access times. Various file structures are
identified for which the nature or extent of utilization is significantly different for magnetic bubble memories than for
rotating disks or drums. Some structures are shown to be suitable or unsuitable for magnetic bubble memories.
Tendencies of structure parameters to be bigger or smaller for magnetic bubble memories are shown.

INTRODUCTION

Magnetic bubble memory (MBM) is an important new
and developing architecture for computer storage.!™3
This technology shows real promise for helping fill the
gap between high speed, low capacity, high cost random
access MOS memory, and low speed, high capacity, low
cost rotating disk memory. Figures 1 and 2 (cf. Ref. 4)
roughly illustrate the place of MBMs in this gap.

10
%g/ Core
1.
Bipolar “ CRT(EBAM) CCD Bubble
B o MOS / 4 / .
£ 10 Fixed head
g Q disk/drum
g 1072
8
£ 107
Moving head disk
1074
10-3 | | 11 1 !
107 107" 1 10 102 10* 10°

Access time (ps)

Figure 1. Price versus access time.

L0 e rrmmr
MOS RAM

0.1

T T T T T

[TTTTh
11l

Removable
moving
head disk

T
o
g
&

Lol

0.01

End-user price (Cents per bit)

[TTTTI
Ll

IR N N1 W N
0.1 1 10 100 1000
Storage capacity ‘Mbit)

Figure 2. Price versus capacity.

A distinguishing feature of MBMs is the speed and
manner in which they store and retrieve information.
Two useful measures of this speed are the time required
to reach the first bit of information (the seek time), and
the time required to transfer the information from or to
the device (the transfer time). Access time can be defined
as the sum of seek time and transfer time. This definition
of seek time is commonly referred to as seek and
rotational delay in rotating disk terminology, rotational
delay in drum terminology, and access time in MBM
terminology.

Table 1 gives typical seek and transfer times for eight

Table 1. Typical access timing

Average seek Transfer time
Device Example time (ms) (us/bit)
MOS RAM 0.0003 0.5
CCD chip TI TMS 3064 0.41 0.2
MBM chip TITIB0103 4.0 20.0
MBM chip TITIB 0303 7.3 10.0
Disk cartridge DEC RL 01 63.0 0.3
Floppy disk DEC RX 01 360.0 6.0
Disk pack IBM 3350 33.0 0.1
Rotating drum IBM 2301 8.6 0.1

devices, MOS, RAM, a CCD chip, two MBM chips, a
moving head cartridge disk, a floppy disk, a large
capacity moving head disk pack, and a rotating drum.
Owing to various considerations of cost, capacity, speed,
volatility, etc., it appears at this time as if MOS (or core)
is indisputably the best technology for high speed random
access main memory, and the moving head disk pack is
the best technology for large on-line secondary storage.

For the next five years and more, the prime application
area for MBMs would seem to be for small auxiliary
storage, either temporary or permanent, especially for
microcomputer and minicomputer systems (cf. Ref. 1,
pp. 346-347, Refs 4-7). This area is now served primarily
by cartridge disks, floppy disks, and cassette tapes.
Unlike CCDs, MBMs are nonvolatile and hence are
suitable for permanent storage, although they would be
quite expensive for off-line storage.

With these roles and performance characteristics in
mind, an important problem to investigate is how to

CCC-0010-4620/83/0026-0043 $04.50

© Wiley Heyden Ltd, 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 43

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

W. E. WRIGHT

construct software for MBMs in order to best exploit the
hardware. In particular, we need to consider ways of
organizing information in MBMs in the most efficient
manner, where efficiency is measured primarily in terms
of access time and space utilization. Accordingly, the
purpose of this paper is to consider several aspects of file
structures as applied to MBM architectures.

CHIP ARCHITECTURE

We shall first need to look at the organization of MBMs,
using as a starting example the major—minor loop design
of the TIB 0103 (a.k.a. TIB 0203) (cf. Fig. 3). During a

oln
DETECTOR
=
228

X =
5 OUT TO DET = 86

68

3 > —o———u (NG o——=—o
N REPLICATE
- GENERATE \aJ0R LOOP 640 - }
g o @——— TRANSFER LN ﬂ
+ ¢ (] [I
~¢——— 157 MINOR LOOPS —
4 641 BUBBLE POSITIONS &1
R LOOP \
® ¢ ¢
¢ o o e ¢

Figure 3. Diagram of TIB 0103 (cf. Ref. 1, pp. 279-281 and Ref.
15).

read operation, the minor loops are shifted in unison to
the proper bit position, and then they simultaneously
transfer one bubble (bit) each to the major loop. The
major loop then shifts the bubbles around to a replicator,
with the replicates going on to a detector and the originals
staying in the major loop. The replicate bubbles in the
detector are decoded into 0 and 1 bits which are placed
in a buffer.

The major loop continues shifting the originals on
around until they are simultaneously returned (trans-
ferred) to the same bit position in the minor loops which
they previously vacated. The major loop (including
transfer connections) is designed to have the same
number of bubble positions as each minor loop, and
hence the same cycle time. Thus the major loop will
reach the proper position for the return transfer just when
the minor loops have cycled around and returned to the
vacated bubble position.

The write operation makes use of a generator compo-
nent instead of a replicator and detector. The generator
places bubbles in the major loop, which shifts them
around to the proper position for transfer to the minor
loops. The beginning of generation and the shifting of
the minor loops must be synchronized so that the major
loop and minor loops arrive simultaneously in the proper
position for transfer.

The TIB 0303 is not exactly a major-minor loop
design, using a ‘block replicator’ line for reading and
generator and swap lines for writing (cf. Fig. 4). During
a read, the block replicator generates replicates of the

44 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

DETECTOR DETECTOR TRACKS
-—
r—.
REPLICATE I H. =

CONDUCTOR REDUNDANCY

REPLICATE

(IGNORES
BAD LOOPS)

la- REDUNDANCY
oo ece Loop

REDUNDANCY
SWAP INPUT
CONDUCTOR & Y Y

_%‘L;‘“—?bﬁ%{

‘ ‘ ~ GENERATOR CONDUCTOR
(TO BUBBLE ANNILILATION)

Figure 4. Diagram of TIB 0303 (cf. Refs 2 and 16).

bubbles in the top position of the minor loops, without
removing the originals from the minor loops. It then
sends the replicates on to the detector, where bits are
generated and the replicates are deleted (annihilated).

During a write operation, a generator places bubbles
into the generator line, which shifts them to the proper
position for transfer into the minor loops. They are then
transferred into the correct minor loop position, at the
same time as the prior contents of that position are
transferred (swapped) out. The swapped out bubbles are
shifted along the swap line to an annihilator.

In the TIB 0103, there are 157 minor loops with 641
bubbles (bits) in each. In the TIB 0303, there are 252
minor loops containing 1137 bits each. Thirteen of the
loops in the TIB 0103 and 28 of the loops in the TIB 0303
are redundant. These unused loops do not affect any of
the general conclusions which follow, so we shall merely
assume that they are used. Bubbles are propagated
(shifted) at the rate of 10 ps/bit (bubble) in both chips.
Owing to spacing constraints, the major loop in the TIB
0103 contains bubbles in only every other position, thus
yielding an effective transfer rate of 20 pus/bit in the major
loop.

Seek times can vary with the operation (read or write)
as well as the chip. Starting with the TIB 0103, the
average random minor loop shift is (641 —1)/2 = 320
bits. Another 1 bit shift in the transfer components and
68 + 86 = 154 bits in the major loop (cf. Fig. 3) yields a
total average shift of 475 bits. At 10 ps/bit, the average
seek time for a read is therefore 4.75 ms. The transfer
time is dictated by the double spacing of the minor loops
(cf. Fig. 3), which causes them to occupy 157 x 2 — 1 =
313 positions in the major loop. The time is therefore 313
positions x 10 ps/position = 3.13 ms. We should remark
that even after seek and transfer a read operation is still
not complete, since the bubbles must be returned to the
minor loops. The time required for this is (228 + 31 —
86) bits x 10 us/bit = 1.73 ms. The total average time for
a read operation is thus 4.75 ms + 3.13 ms + 1.73 ms
= 9.61 ms, or 1.5 cycles.

A write operation requires a shift of (2 x 157 — 1 +
31) bits = 344 bits in the major loop. The minor loops
must shift along with the major loop, and in fact will pass
by the proper bit position if it is less than 344 bits away.
There will thus be required a random minor loop shift
prior to the beginning of the major loop shift, to provide
synchronization. The total average time is therefore

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

SOME FILE STRUCTURE CONSIDERATIONS PERTAINING TO MAGNETIC BUBBLE MEMORY

(344 + 320) bits x 10 ps/bit = 6.64 ms. This figure in-
cludes transfer time for all bits, however, and a better
measure of seek time would probably exclude a transfer
time of 3.13 ms, which is the transfer time for a read.
The average seek time for a write would then be (6.64 —
3.13) ms = 3.51 ms. Note that Table 1 gives a 4 ms
average seek time for the TIB 0103, without distinguish-
ing between read and write.

For the TIB 0303 we shall omit the details and assume
that the ‘overhead’ for both reading and writing is
1.62 ms. Using an average minor loop shift of (1137 —
1)/2 = 568 bits, we then get an average seek time of
1.62ms + 568 bits x 10us/bit = 7.30 ms, the figure given
in Table 1.

The above discussion has served not only to explain
the relevant functioning of the TIB 0103 and the TIB
0303, but also to illustrate both similarities and differ-
ences between the two designs. File structures for MBMs
can be reasonably considered without looking at every
possible architecture. Similarities and differences in the
performance of similar architectures can generally be
inferred from similarities and differences for these two
examples.

There are many other possible designs for MBMs.
Several major-minor loop designs are described in Refs
3 and 5, and lattice designs are described in Ref. 1, pp.
327-328 and Ref. 8. The TIB 0103 and TIB 0303 have
been used as examples because they are commercially
available, relatively well-known, reasonably typical, and
reasonably efficient.

Besides chip architectures, there are many possible
configurations for systems of chips. Except where stated
otherwise, we shall assume a system of eight TIB 0103
chips connected in parallel. Thus, during a transfer
operation, for example, the eight chips will simultane-
ously transfer the eight bits in a byte into or out of a
single data buffer. Hence we can think of each position
in each loop in the memory system as containing a single
byte instead of a single bit.

PRIMARY FILE ORGANIZATION

Standard blocks

Now let us consider some aspects of the primary file
organization for our secondary memory system. The
highest accessing efficiency can be achieved using
physical records of size k bytes where k is the number of
minor loops (e.g. 157). Then one physical record can be
transferred (read) by shifting the minor loops to the
proper bit position, shifting one bit from each of the
minor loops into the major loop, and then shifting the
major loop around through one complete cycle. Writing
is similarly most efficient using k-byte ‘blocks’.

Wrap-around

It is also very efficient to use records which are a multiple
of k bytes long. The TIB 0103 has a special multiple-
block mode for reading and writing such records. In this
mode, multiple blocks can be read or written without
using a complete cycle for each, and in effect the logical

record ‘wraps around’ from the end of one block to the
beginning of the next. The blocks are spaced 322
positions apart on the minor loops, so that the transfer of
a block other than the first one begins exactly 3.22 ms
after the previous block began to be transferred. Allowing
3.13 ms for a block transfer therefore gives a ‘wrap-
around’ delay of just 0.09 ms. This is obviously a major
improvement over the average random seek time of
4.75 ms for read and 3.51 ms for write, as well as the
sequential seek time of 1.56 ms for read and 0.32 ms for
write.

Wrap-around can also be facilitated on the TIB 0303,
without the use of a special multiple-block mode. This
requires defining ‘logically adjacent’ blocks to be d =~
415 positions apart. Then when the system has just
finished one access (1.62 ms + 2.52 ms = 4.14 ms), the
minor loops will be in almost perfect position to begin
the next access. (It is necessary to use a skip of 415
instead of 414 because 414 and 1137 are not relatively
prime.) Thus the wrap-around delay becomes 4.15 ms —
2.52 ms = 1.63 ms.

Nonstandard records

It is logically possible to use record sizes different from k
bytes or a multiple of k bytes, with some degradation in
seek time. The degradation is caused by two likely results
of a ‘nonstandard’ record size: records starting and/or
stopping in the middle of the major loop, and records
wrapping around from the end of one k-byte block to the
beginning of the next. Wrap-around has already been
discussed in the previous section, so we now need to
consider the problem of starting or stopping in the middle
of a block.

As an example, if a block to be read began in position
51 of the major loop, then there would be an additional
latency during the major loop shift cycle while the first 50
bit positions were shifted and ignored. On the TIB 0103,
assuming an average shift of (157 — 1)/2 = 78 positions,
the average additional time would be 78 bits x 20 ps/bit
= 1.56 ms. This would increase the average seek time
from 4.75 ms to 6.31 ms. On the TIB 0303, the increase
in average seek time would be from 7.30 ms to 8.56 ms.

The situation is compounded for writing since there is
no capability for selectively writing a portion of the
minor loops. The entire k-byte block would have to be
read, the proper segment changed, and the entire block
rewritten.

A destructive read could be used on the TIB 0103,
followed by a properly synchronized write. The timing
would in fact be the same as for a complete nondestructive
read operation, with an initial random minor loop shift
followed by a complete cycle shift of the major and minor
loops. The average time would therefore be 3.20 ms +
6.41 ms = 9.61 ms, or 1.5 cycles.

The situation is slightly better (in cycles) for the TIB
0303, since it reads at one end of the minor loops and
writes at the opposite end. After an initial random shift
averaging one-half cycle, reading would require 4.14 ms
and writing another 4.14 ms. The writing would begin
0.5 cycles after the reading began, hence the total time
requirement would be 0.5 cycles + 0.5 cycles +.4.14 ms
= 15.51 ms, or 1.36 cycles. This analysis assumes the
capability of partially overlapping the read and write
operations.

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 45

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

W. E. WRIGHT

It is obvious for both of these cases that nonstandard
writing is somewhat inefficient. Nonstandard reading
could be efficient for some applications, since, although
the average seek time for reading is increased, the
transfer time could be decreased. Nonstandard record
sizes would thus appear to be desirable for applications
dominated by retrievals (reading), with relatively little
updating (writing).

Multiple-chip systems

One aspect in which bubbles differ substantially from
disks is in their modularity. Bubbles are extremely
flexible with regard to their ability to be combined in
series or parallel. For example, we have assumed in much
of this paper that eight bubble chips were combined in
parallel, so as to transmit an entire 8-bit byte in one
bubble shift cycle. It would also be possible to combine
eight chips in series, so that an access operation first
selects a chip and then performs the transfer. Obviously,
any number of chips could conceivably be combined,
either in series or parallel.

There are advantages and disadvantages to both types
of combination. The overwhelming advantage of the
parallel combination is the increase in the transfer rate.
For example, eight TIB 0103 chips in parallel would
have a transfer rate of 50 000 bytes/s = 400000 bits/s, as
compared to 50 000 bits/s for a single chip. Access time
would not necessarily be decreased by a factor of 8
because of seek time. In general, a parallel system will
decrease the transfer time by a factor equal to the number
of chips in parallel, and will decrease access time by a
somewhat smaller factor.

The primary advantage of a serial system is the
potential independence of the different chips. In a
parallel system the chips are shifted simultaneously and
in synchronization, so that they all address the same
logical location. In a serial system it would be possible for
one chip to remain at one location while another chip
was being shifted to a different location. The likely
motivation would be to allow the first chip to remain
optimally positioned for a subsequent ‘sequential’ access.
For example, each chip may correspond to a logical unit
during an external sort. With additional logic, it would
be possible to have the chips shifting, but not transferring,
simultaneously and independently, like independent
seeking of multiple disk drives on a single controller.
With still further logic the chips could shift and transfer
simultaneously and independently. This configuration
would in effect include the parallel combination as a
special case, and hence would be inherently more
powerful (and expensive).

There are several disadvantages of the parallel and
serial combinations that should be identified. The obvious
disadvantage is the cost of the logic needed to implement
the combination, be it parallel or serial. The extra
features suggested for the serial combination would
require even further logic. The advantages of each system
give rise to a comparative disadvantage for the other
system, i.e. slower transfer rate for the serial system and
nonindependence for the parallel system.

The parallel system has two other subtler disadvan-
tages. One is that the increased block size may be
inefficient for applications with smaller logical records.

46 THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983

For example, 64 TIB 0103 chips in parallel would yield
blocks of size 1256 bytes, so that the accessing of smaller
logical records might be accompanied by the inefficien-
cies discussed in this section. It should be noted, however,
that the inefficiencies can probably be avoided or reduced
through the use of blocking on sequential files, bucketing
on hashed files, or high order nodes in tree-structured
files.

The other disadvantage stems from the presence of
redundant loops in the major-minor loop bubble archi-
tecture. These loops are logically masked out during a
read or write operation, but the timing of the operation
is the same as if the loops were used. In a parallel system
the bad loops would generally not be the same in each
chip. The problem is that during any bubble shift cycle
(e.g. 10 ps), each chip may not be able to make its 1-bit
‘contribution’. One solution to the problem would be to
mask out an entire ‘byte’ whenever any of its bits was
faulty. This solution would obviously result in very poor
efficiency as the number of parallel chips grew, unless the
chips could be selected so as to have very high agreement
in the positions of the redundant loops. A second solution
would be to produce chips with 09 redundant loops, but
this would of course result in higher production costs
and/or lower yields.

A third solution would involve the use of extra logic on
each chip to ‘store up’ at the beginning of a read operation
extra bits to be used as replacements for subsequent
faulty bits. These stored bits could then be inserted at
appropriate times to allow for the uninterrupted genera-
tion of complete ‘bytes’ after an initial delay to allow for
the ‘storing up’. The delay might correspond to just
13 positions (260 us) on the TIB 0103 or 28 positions
(280 pus) on the TIB 0303, even if some of these positions
were themselves redundant.

As can be seen, the bubble architecture gives rise to a
number of novel possibilities with regard to ways of
combining chips into systems. Some choice must be
made as to the extent of parallelism to be used. The
proper choice is significantly dependent on the applica-
tion, in obvious ways such as record size, file organization,
blocking, etc. Even the nature of some applications has
implications for parallelism. For example, it can be
shown that an external sort procedure will benefit from
having two independent systems (corresponding to input
and output), with each system being entirely parallel. For
example, if there are 32 chips available, they should be
configured into two 16-chip parallel systems. Any increase
in independence (e.g. eight 4-chip systems), with the
combined transfer rate held constant, will merely incur
additgonal expense without reducing the processing
time.” .

At any rate, the modularity of the bubble architecture
can permit substantial improvements in the performance
of the secondary memory system through the proper
combination of the modules.

SECONDARY ORGANIZATION

Introduction

The specific type of organization for a file in MBM small
auxiliary storage is of course very important. Four types

20z 11dy 0} U0 180NB Aq 611 LGH/EY/L/92/aI01E/|UlWO9/W0d" dno"olWspEdE//:SAY WOI) PSPEOjUMOQ

SOME FILE STRUCTURE CONSIDERATIONS PERTAINING TO MAGNETIC BUBBLE MEMORY

to consider are sequential, random, indexed sequential,
and hashed.'® Some aspects of these file types require
little or no special considerations for the MBM architec-
ture, but several other aspects do merit special attention.

Sequential files

Certainly an important structure for small auxiliary
storage is the sequential file. For the most part, the
structure is relatively independent of the storage medium,
but one way in which it isn’t concerns blocking.

Blocking involves the reading and writing of several
logical records in one physical unit (block). The purpose
of blocking is to reduce seek time and reduce the number
of interblock gaps. Unlike magnetic tapes or disks,
MBMs need no interblock gaps. Hence this motivation
for blocking is eliminated. They do have seek times,
however, and a reduction in seek time is beneficial.

It should be noted, however, that the benefit is not as
great for MBMs as for disks. One reason is that the seek
time is much smaller for MBMs than for disks, by roughly
1 to 2 orders of magnitude. Thus the amount of seek time
saved by blocking is smaller in absolute terms.

A more subtle reason is that the ratio of seek time to
transfer time is much smaller for MBMs. Assuming 1000
bit blocks, for example, we get ratios of 0.2:1 and 0.73:1
for the MBM chips, 210:1 for the cartridge disk, 60: 1 for
the floppy disk, 330:1 for the disk pack, and 86:1 for the
drum. Since seek time is a drastically smaller component
of total access time, the relative benefits of reducing it
through blocking are much less.

An important characteristic of MBMs can make the
seek time even smaller for sequential processing, hence
further reducing the benefit of blocking. The character-
istic is the capability of instantly stopping the movement
of the bubbles. If the bubbles are stopped after completion
of a read, then the next read can begin right where the
minor loops stopped, without necessitating a random
shifting of the minor loops.

For the TIB 0103, we thus get a read seek time of
0.01 ms (transfer) + 1.54 ms (major loop shift) =
1.55 ms. For the TIB 0303, we get simply 1.62 ms for the
seek. Similar results would follow for writing. For both
chips, the net effect of the instant stop is to eliminate
from the seek time the average half-cycle shift of the
minor loops.

The discussion in this section is not intended to imply
that blocking is necessarily undesirable for MBMs. It
does show that blocking is less important than for tapes,
disks, and drums. It also indicates that blocking factors
should be smaller for MBMs, and that there would be
more occasions in which unblocked files, with less
overhead, would be more efficient than blocked files.

Random files

The small auxiliary storage application identified earlier
for MBMs might very well benefit from file structures
providing random access to any element in the file.
Common structures providing this capability, other than
hashing, are index or tree structures. The use of such
structures is very dependent on the nature of the storage
medium, and we now wish to analyze this use on MBMs.

A binary search tree is a very versatile structure for

maintaining a file or table. It has excellent speed for
searching, updating, and sequential processing.'' Al-
though it is not in general the fastest in any one of these
activities, it can be the fastest for many applications
requiring good performance in all three areas.

A generalization of the binary search tree is the
multiway or m-way tree,'? in which each node can
contain up to m sons and m — 1 keys, for some specified
constantm > 2. Figure 5 illustrates a 4-way tree. A binary

Figure 5. A 4-way tree.

search tree is a 2-way tree. A large value of m is generally
optimal for disk storage, because the number of accesses
during a search operation is reduced. For main memory,
m = 2 is optimal. Since MBMs lie between main memory
and disks in terms of seek time, it is not obvious how best
to structure multiway trees for them.

Assuming fixed length nodes, each node in an m-way
tree must contain space for m — 1 keys and m links. The
nodes may contain the entire records corresponding to
the keys, or the records may be stored in special nodes at
the bottom of the tree. It may be desirable to have an
additional field to indicate the number of keys in the
node. We shall suppose each node has the form [L,, L,,
«eo>sLy, Ry, Ry, ..., R,_], where L, is the ith link and
R; is the ith record. We assume that the ith key is
embedded in a known position of R;.

Denote the size of each record by s” and the size of the
links by p. Let s = 5’ + p. Then the size of each node is
s(m — 1) + p. Suppose there are n records in the file, the
average seek time to a node in auxiliary storage is a, and
the transfer rate from auxiliary storage to main memory
is r. Finally suppose that the time to search a node in
main memory (using a binary search) is b log, m + c,
where c is at most several microseconds.

The average time ¢ required to search for a random
record in a balanced tree is then given by:!?

t =log, nla + r(s(m — 1) + p) + blog, m + c]

=~ log,, nla + rs(m — 1) + rp + b log, m]

(c small compared to a)

=Innla/Inm+ rs(m — 1)/Inm + rp/ln m + b/In2] (1)
t is minimized as a function of m when D,(f) = 0. We
have
D,(1) = In n/(ln m)*[— (a + rp)/m

+ rs(lnm — (m — 1)/m))
Setting D,,(7) to 0, we get
Sm=m(lnm—-1)=@+r)/rs)— 1=k ()

Equation (2) involves the transcendental function
Jf(m) =m(In m — 1) and cannot be solved analytically.
However, f'(m) =In m which is positive for m > 1,
therefore f(m) is a monotonically increasing function for

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 47

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

W. E. WRIGHT

m > 1. fis obviously unbounded for m > 1 and f(2) =
2(In2 — 1) ~ —0.614, therefore forany y > —0.614 there
exists a unique x > 2 such that f(x) = y. Equation (2) can
easily be solved numerically for particular values of a, r,
s and p, thus leading to an optimal integer value of m (if
k < —0.614, m = 2 is optimal).

Table 2 gives the optimal tree order (m) for several

Table 2. Optimal order for multiway trees

a r s g9
Device (ms) (us/bit) (bytes) & m (ms)
1. Cartridge disk 63 0.3 8 3281 607 11.6
2. Cartridge disk 63 0.3 80 327 93 17.8
3. Cartridge disk 63 0.3 400 64.6 28 26.7
4. Cartridge disk 25 0.3 8 1302 281 5.4
5. Cartridge disk 25 0.3 80 129 46 8.8
6
7
8
9

. Cartridge disk 25 03 400 250 15 14.2

. Floppy disk 360 6.0 8 937 214 82.4

. Floppy disk 360 6.0 80 93 36 138.0

. Floppy disk 360 6.0 400 178 12 2299
10. Disk pack 33 0.1 8 5156 890 5.7
11. Disk pack 33 0.1 80 515 132 8.5
12. Disk pack 33 0.1 400 102 39 12.3
13. Drum 86 0.1 8 1343 288 1.8
14. Drum 86 0.1 80 133 47 3.0
15. Drum 86 0.1 400 259 15 48
16. MBM chip 4.0 20 8 26 5 6.1
17. MBM chip 4.0 20 80 -06 2 25.2
18. MBM chip 40 20 400 -09 2 99.0
19. MBM chip 7.3 10 8 109 9 5.8
20. MBM chip 7.3 10 80 02 3 18.6
21. MBM chip 7.3 10 400 -08 2 57.2

different devices and record sizes. In each case, p is
assumed to be 4 bytes. Record sizes used were 8 bytes, 80
bytes, and 400 bytes, typifying very small, small (card
image), and moderate record sizes. Recall that the record
size includes the pointer size p = 4. The very small case
of s=28 bytes would very likely correspond to the
situation in which only keys (and links) were stored in
the internal nodes of the tree, and the complete records
were stored in external nodes at the bottom of the tree.

The right-most column of Table 2, labeled g, gives
values of the function g(m) = a/ln m + rs(m — 1)/In m +
rp/ln m. Note that ¢(m) = In n(g(m) + b/In 2), so that total
access time (excluding internal searching) is g(m) In n.
Cases 4, 5 and 6, which specify an average access time of
25 ms for a cartridge disk, assume that the file occupies
a rather small number of cylinders (less than 10, say), and
that arm movement is hence restricted to this subregion
of the cartridge.

The most notable pattern in the table is that under
comparable circumstances, the optimal order is much
smaller for MBMs than for rotating disks and drums.
The cause of this difference is clearly the faster seek
times and slower transfer speeds of MBMs. For moderate
sized records (m = 400) the optimal structure for MBMs
is a binary tree, the same as for main memory. Even
when the optimal order is 3, 4, or another small number,
it may be preferable to use a binary tree owing to its
greater flexibility regarding insertions, deletions, and
balancing.

Insertions, deletions, and balancing comprise an

48 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

important problem for multiway trees. An excellent
solution to the problem is to use a special kind of
multiway tree called a B-tree,'?"!3 which guarantees a
certain minimum balance and also facilitates insertions
and deletions. A number of variations of B-trees are
discussed in Refs 12 and 13, and the discussion is equally
as applicable to MBMs as to rotating disks and drums.

The previous development in this paper for multiway
trees largely applies also to B trees. The one important
difference is the simplifying assumption in Eqn (1) that
the tree is balanced. B-trees deal with the question of
balance more precisely. In particular, it is shown in Ref.
12 that the number of accesses required to search a B-tree
is less than or equal to logy, ((n+ 1)/2). If m>2
then 108mz1((7 + 1)/2) < 10gya((n + 1)/2) = (In(n + 1) —
0.7)/(Inm —0.7) = L.

If m (and n) is large, then L = In n/ln m = log,,n, which
is the number of accesses used in Eqn (1).

If m is small, a simple formula for ¢(m) for a B-tree is
not possible. Nevertheless, the same general conclusion
would apply, namely that the optimal order for MBMs
would be much smaller than for rotating disks and drums.
The exact optimum for a particular situation could be
determined through simulation.

Indexed sequential files

Indexed sequential files attempt to provide a combination
of the advantages of sequential processing and random
processing. Three versions of indexed sequential files are
IBM’s ISAM (Indexed Sequential Access Method) and
VSAM (Virtual Sequential Access Method),!® and
CDC’s SCOPE.'*

Indexed sequential structures are basically special
kinds of tree structures in which the records themselves
are stored as nearly as possible in physical sequential
order. Insertions are accommodated by providing a
certain amount of overflow space in the record nodes.
Exceeding overflow space will result in some deviation
from sequential storage.

IBM’s ISAM is inherently based on rotating disk
architecture, and attempts to reduce arm motion during
sequential processing by storing logically adjacent records
at least on the same cylinder if not physically adjacent.
Such a consideration is not relevant to MBMs, since the
seek component of access time is analogous to rotational
delay on a disk, not arm movement.

Nevertheless, the basic features of the indexed sequen-
tial structure, a combination of indexing, sequential
storage, and dispersed overflow areas, can be suitable for
MBMs. Sequential processing on an MBM was discussed
in a previous section, and the remarks also apply here.
Similarly, the discussion of indexing in the previous
section also applies to the indexing aspect of indexed
sequential files. The new consideration, then, is for
overflowing and the resultant possibility of nonsequential
accessing of logically sequential records.

As noted, there is no need for concern about limiting
arm motion on an MBM, as there is for a disk. When a
nonsequential access must be made to the next record,
however, it is advantageous if the access is just a little
way down the minor loop from the present one. Since the
MBM can stop instantly after each access, it would then
need to seek only a short distance along the loop instead
of halfway around on the average.

20z 11dy 0} U0 180NB Aq 611 LGH/EY/L/92/aI01E/|UlWO9/W0d" dno"olWspEdE//:SAY WOI) PSPEOjUMOQ

SOME FILE STRUCTURE CONSIDERATIONS PERTAINING TO MAGNETIC BUBBLE MEMORY

Unfortunately, if it is seeking to an overflow area, or
a new area created out of sequence as a result of an
overflow, then the seek back to the prime area would
necessitate a rotation all the rest of the way around the
loop, and nothing is gained. The only possible savings
would occur if a sequence of two or more such
nonsequential seeks could be spaced each a little further
along than the previous one. Then moving from the
original location, to the first overflow record, to the
second overflow record, etc., could be done in one loop
rotation.

We can look at this idea more carefully by considering
the two common ways of handling the overflow problem
in indexed sequential files, chaining and cellular splitting.
ISAM reserves overflow areas in the form of overflow
tracks or overflow cylinders. Records overflowing from
a prime track are placed on the overflow tracks and/or
overflow cylinders and are chained together in logically
sequential order. If a chaining scheme such as this is used
in bubble memory, then ideally it should be possible to
move through every element in each chain in just one
complete cycle of the minor loops. In this way, the time
‘wasted’ for sequential accessing of overflow records will
be just one minor loop cycle per chain, instead of, say,
one-half cycle per overflow record.

In order to achieve this property for the overflow
chains without having to move overflow records, it will
in general be necessary to store records in the overflow
area according to a combination of a back-to-front
pattern and a bisection pattern. The reason for the back-
to-front pattern is that if the inserted record has a key
which is smaller than the key of the last record on the
primary track corresponding to the overflow chain, then
that last record is bumped off the primary track and
becomes the next overflow record. Its key will be less
than all the other keys on the overflow chain, hence it
should be stored in front of the other records in the
overflow chain, hence the back-to-front storage pattern
should be used.

This straight pattern, however, will not be suitable for
handling cases in which the inserted record has a key
which is higher than the key of the last record on the
primary track but smaller than the key of the last record
on the overflow track. In such cases the inserted record
will itself be the next overflow record, and it will need to
be stored after the logically preceding record in the chain
and before the succeeding record in the chain.

Accordingly, it is desirable to leave gaps in the back-
to-front storage pattern, to accommodate possible later
insertions. The size of the gap should decrease as the
length of the chain increases, since the probability of
needing the gap would decrease (assuming ‘random’
insertions). Specifically, if p is the number of records in
the primary track (e.g. 20) and r is the number of
available overflow record cells in the overflow area in
front of the first overflow record in the chain (e.g. 200),
then a good value for the size of the gap is

r
G(p, 1) 012 (3
e.g. 200/22 ~ 9. For example, if the first record in the
overflow chain is stored in overflow record position 274,
then the new overflow record should be inserted in
position 259, say, assuming six positions from 260 to 273
are taken (see Fig. 6).

First record in
overflow chain

New record in
overflow chain

Reserved cell
in other chain

Empty cell
l 270 275

255 260 265

Figure 6. Back-to-front storage allocation for ISAM overflow
chain.

The rationale for this gap size is that after the insertion
there will be p + ¢ primary and overflow records affiliated
with the primary track, where q is the number of records
in the overflow chain. If there is a subsequent insertion
into this set of records, the probability that it will fall
between the first and second overflow records is 1/(p + ¢q)
(assuming equal likelihoods), whereas the probability
that it will be somewhere before the first overflow record
is (p+ 1)/(p + q). The latter case will result in an
insertion of a new overflow record prior to the current
first one, hence the remaining r available overflow cells
should be apportioned according to the ratio 1/(p +
9):(p+ 1)/(p + q), or 1:p + 1. This gives the fraction
r/(p + 2) of Eqn (3). Note that p is a constant whereas r
is decreasing (for a given chain). Note also that as a
special case, if the overflow record is the first one in the
chain then it should be stored in the backmost available
overflow cell.

With this back-to-front pattern clarified, we still need
to consider the case in which an insertion falls after the
last primary record (technically, after the first overflow
record). As noted earlier, it is then desirable to store the
record in the gap between the preceding and succeeding
records in the overflow chain. The best position to use in
the gap would generally be assumed to be the middle
position, so as to bisect the gap into two smaller gaps
containing approximately equal numbers of available
overflow cells. This policy yields the bisection pattern
alluded to earlier.

It is possible, of course, that for either the back-to-
front policy or the bisection policy, there may not be an
available overflow cell which will maintain the overflow
chain in the desired storage pattern. In other words, the
‘gap’ in which an insertion is to be made may have 0
length. In this case the insertion would simply be made
elsewhere and the sequential access time would be
degraded somewhat, or the overflow records would have
to be moved. We shall not discuss any policy or algorithm
for this situation.

It is apparent from the preceding discussion that there
must be some scheme for keeping track of available cells
in the overflow area. A bit map would be very suitable
for this purpose. There is no advantage, incidentally, in
having more than one overflow area, such as ISAM does.
It is better instead to have one large contiguous area for
overflow, with each prime track using this area for its
overflow chains. Obviously the chains will intermingle,
but this fact does not alter the previous analysis.

The original motivation for the storage allocation
scheme presented for overflow records was to minimize
the access time during sequential processing. The scheme

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 49

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

W. E. WRIGHT

also helps with random processing, however, since it will
facilitate searching the overflow chain.

It should finally be noted, with regard to this ISAM
discussion, that we have continued to use the basic ISAM
organization. Specifically, we have assumed the use of
structures analogous to primary tracks and overflow
chains. Other organizations could have been used, of
course, and that in fact brings us to the VSAM or SCOPE
type of implementation of indexed sequential files.

VSAM and SCOPE use the technique of cellular
splitting to help with the overflow problem. For speci-
ficity, we shall confine our attention to the VSAM
organization. VSAM maintains overflow space in three
different places: at the end of control intervals, at the end
of control areas, and in a global area from which new
control areas can be created.!® If an insertion will fit in
a control interval, the records are shifted to maintain
physical sequential order, and there is no special problem
with regard to MBM.

If a control interval overflows, it tries to split using a
free control interval in the same control area. If this is
not possible, the entire control area splits using a free
control area from the global overflow space. In MBM the
first type of cellular splitting is unnecessary, since shifting
to the local overflow control interval, and then back to
the next ‘primary’ control interval, will still waste one
complete cycle of the minor loops. It is just as efficient (in
access time) not to reserve any free control intervals in
the primary control areas, but to use instead a single
global free space for creating new control areas. Note
that overflow space within a control interval is still
beneficial in MBM. An additional advantage of a global
free space is that it eliminates the possibility of ‘wasting’
free control intervals in control areas that have experi-
enced few insertions, with the free intervals being
unavailable to other control areas.

We shall conclude our discussion of indexed sequential
files with a consideration of bidirectional shifting of the
minor loops. The TIB 0103 and TIB 0303 do not have
this capability, but it is a logical possibility for the major—
minor loop architecture. Moreoever, it would have major
implications for storage allocation for overflow records
in indexed sequential files.

For both the chaining scheme and the cellular splitting
scheme, local overflow space becomes worthwhile with
bidirectional shifting. Using chaining, global overflow
space should be dispersed uniformly around the minor
loop, and an overflow record should be stored in the
available cell which minimizes the sum of the distance
from it to its predecessor and its successor. Using cellular
splitting, free control intervals can be beneficial, and it is
also desirable to disperse the global free space uniformly
around the minor loop.

Hashed files

Hashed file structures are quite dependent on the storage
medium, and some analysis is appropriate before apply-
ing the structures to MBMs. Seek time, transfer rate, and
memory size and cost are clearly important features in
considering overflow rate, bucket capacity, probing
sequence, etc. (cf. Ref. 12, pp. 506-540; Ref. 10, pp. 376
396). The general principles, rationale, and techniques

50 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

developed for hashing still apply, but it is important to
particularize the ideas to the performance characteristics
of the new technology.

One special consideration regarding the implementa-
tion of hashed files in MBM concerns the use of
bucketing, and the desirable size of the buckets. Table 3
gives the average number of accesses to secondary

Table 3. Average accesses in a success-
ful search using linear probing
(cf. Ref. 12, pp. 506-540)

Packing density

Bucket size (b) 80% 90%

1 3.000 5.500

2 1.903 3.147

3 1554 2.378

4 1.386 2.000

5 1.289 1.777
10 1.110 1.345
20 1.036 1.144
50 1.005 1.040

memory during a successful search to the file, as a
function of the bucket size. A linear probe technique is
assumed, and figures are given for both 80% and 909
packing densities. In general, the average number of
accesses decreases as the size of the bucket increases, and
this is the primary advantage of using large buckets. The
primary disadvantage is that a large bucket requires a
longer transfer time during an access.

Because MBM is so different from disks and drums in
its seek time and transfer rate, the optimum bucket size
is also radically different. To illustrate this, let ¢ denote
the expected time for a retrieval (on either disk or bubble)
and a the average access time. We shall assume for
simplicity that the average access time is the same for
overflow probes as for the initial probe. In reality the
time can be reduced using linear probing, but this fact
does not alter the results which follow. Thus

= a x E[number of accesses]

Let us suppose that the disk has an average seek time
of 33 ms (recall that we are including latency in the seek
time) and a transfer time of 0.8 us/byte. Suppose also that
the MBM has an average seek time of 4 ms and a transfer
time of 20 ps/byte. Let s denote the size of the record in
bytes, b the number of records per bucket, and ¢4 and #,
the expected time required to retrieve a random record,
using disk and bubble memory, respectively. Then

ts = (33 ms + 0.8 us/byte x s x b)E[number of accesses]

t, = (4 ms + 20 ps/byte x s x b)E[number of accesses]

Table 4 gives the values of ¢; and ¢, for several bucket
capacities and two record sizes, assuming an 809, packing
density.

It is clear from the table that the optimal bucket size is
much larger on disk than on MBM. This pattern holds in
general for all record sizes. For example, for a record size
of 300 bytes, the optimal bucket size is approximately 20
for the disk and still 1 for the MBM. The results hold in
a general fashion for other similar seek and transfer

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

SOME FILE STRUCTURE CONSIDERATIONS PERTAINING TO MAGNETIC BUBBLE MEMORY

Table 4. Expected retrieval time in a successful search using
linear probing (80% packing density)

S = 500 bytes S = 100 bytes
b ty (ms) t,, (ms) ty (ms) t, (ms)
1 100.20 92.24 18.00
2 64.32 45.67 63.10 15.22
3 53.15 52.84 51.65 15.54
4 47.96 60.98 46.18 16.63
5 45.12 69.61 43.05 18.05
10 [41.07] 11544 37.62 26.64
20 4248 211.34 4558
50 53.27 506.52 37.19 104.52

speeds. If the bubble transfer rate were increased
(through improved technology or the use of more chips in
parallel), then it would become desirable to bucket with
records larger than 300 bytes, but the bucket sizes would
still be smaller than for disks. Finally, the general results
also hold for unsuccessful searches and for other probing
algorithms. It is interesting to note, though, that for an
unsuccessful search using secondary hashing, the optimal
bucket size is 1 (i.e. no bucketing) for MBM for records
larger than just 40 bytes.

The nature of bucketing on MBM has some important
implications for the handling of overflows and the
probing sequence. For example, the ‘consecutive spill’
method (Ref. 10, pp. 376-396), in which overflow from

one bucket causes a probe to the next consecutive bucket,
benefits from a large bucket size. If the bucket size is
small, as on MBM, then this method would not be very
suitable. In general, MBM is surprisingly similar to main
memory with regard to the overflow problem, especially
if the bucket size is 1. Thus the advantages and
disadvantages of collision-handling algorithms for main
memory also usually apply to MBM.

SUMMARY

We have described some typical MBM architectures and
analyzed their access times. We have analyzed the effect
of accessing records which are larger or smaller than the
standard size. We have discussed the advantages and
disadvantages of parallel and serial systems of MBM
chips.

We have discussed a number of file structure consid-
erations for the emerging MBM architectures, keeping
in mind the most likely areas of application for the new
devices. For the most part, the file structures discussed
have already been applied to older technologies. In many
significant instances, however, the nature or extent of
such usage is substantially different from what it should
be for MBMs, and we have tried to analyze these cases.
This analysis has included sequential files, tree-structured
files, indexed-sequential files, and hashed files.

REFERENCES

1. H. Chang, Memory technology, magnetic bubble, in Encyclo-
pedia of Computer Science and Technology, Vol. 10, ed. by J.
Belzer, pp. 274-384. Marcel Dekker, New York (1978).

. Electronics review, Bubble memory chips now able to pack in

quarter million bits. Electronics, 39-40 (17 August 1978).

W. Myers, Current developments in magnetic bubble technol-

ogy. Computer, 73-82 (August 1977).

J. E. Juliussen, Bubble memory as small mass storage, Electro

77 (April 1977).

. J. E. Juliussen, Magnetic bubble systems approach practical

use. Computer Design, 81-91 (October 1976).

J. E. Juliussen, Bubbles and CCD memories—solid state mass

storage. National Computer Conference, 1067-1075 (1978).

. J. E. Juliussen, D. M. Lee and G. M. Cox, Bubbles appearing
first as microprocessor mass storage. Electronics, 81-86 (4
August 1977).

8. C.K.WongandP.C. Yue, Data organization in magnetic bubble
lattice files. /BM Journal of Research and Development, 576~
581 (November 1976).

9. W. Wright, External sorting using general purpose magnetic
bubble memory. Proc. COMPSAC 80, 716-722 (1980).

N o o A W N

10. J. Martin, Computer Data-Base Organization, 2nd Ed, pp. 332-
396. Prentice-Hall, Englewood Cliffs, New Jersey (1977).

11. J. Nievergelt, Binary search trees and file organization. Com-
puting Surveys 6 (3), 195-207 (1974).

12. D. E. Knuth, The Art of Computer Programming, Vol. 3, pp.
472-479. Addison-Wesley, Reading, Massachusetts (1973).

13. R. Bayer and E. McCreight, Organization and maintenance of
large ordered indexes. Acta /nformatica 1, 173-189 (1972).

14. J.Tremblay andP. Sorenson, An/ntroduction to Data Structures
with Applications, pp. 580-583. McGraw-Hill, New York
(1976).

15. Texas Instruments, 7/B 0203 Magnetic-Bubble Memory Sys-
tem Application Manual, Texas Instruments, Dallas (1979).

16. Texas Instruments, Quarter- Million Bit Magnetic Bubble Mem-
ory, Texas Instruments, Dallas (1979).

17. D. E. Knuth, The Art of Computer Programming, Vol. 1, pp.
435-451. Addison-Wesley, Reading, Massachusetts (1968).

Received March 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 51

202 udy 01 U0 1s8n6 AQ 61| LGH/EH/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMOq

