High Level Form Definition in Office Information

Systems

N. H. Gehani
Bell Laboratories, Murray Hill, New Jersey 07974, USA

Several office information systems based on the concept of forms have been built. However, none of these systems
provides a high level language for defining forms. In this paper, I will discuss the advantages of a high level form
definition mechanism, state the requirements that should be satisfied by such a mechanism, and then propose a high
level form definition language based on the concept of abstract data types in programming languages. The proposed
mechanism can be used in a form manipulation system. Alternatively, it can be incorporated into an existing language
or be the core of a specially designed form manipulation language. The form definition language is illustrated by two

exemplary form definitions.

1. INTRODUCTION

Automated office information systems based on the
concept of electronic* forms have many advantages over
other kinds of systems.! Dealing with forms is a major
activity of manual office systems. Consequently, one
important advantage of form based office information
systems is that they allow for a smooth and natural
transition from manual office systems to automated
systems. Some other advantages of form based systems
are:

(1) forms allow logically related data to be treated as an
entity
(i) forms retain many of the properties of paper forms
on which most manual systems are based
(iii) forms can be automatically traced, and routed, and
(iv) access to form fields and operations on forms can be
restricted to specific classes of users.

Electronic forms combine the virtues of paper forms with
the power of the computer and can be made intelligent.
They can guide the user in filling out the required
information and prevent the user from inserting incorrect
information.

Electronic forms can be used as a vehicle to integrate
all the different facilities and services offered by office
information systems. Theoretical models of office infor-
mation systems based on forms will aid in the design and
analysis of these systems. Such models could be used to
analyze the flow of forms, bottlenecks, the work load at
a node in the system, forms that flow in infinite loops,
and so on. Form flow models have been proposed and
research in this direction is continuing.?3

Several office information systems either based on the
concept of forms, e.g. OFS* and Office Talk,® or having
forms as important objects, e.g. SBA®~® have been built.
However, none of these systems provide for a high level
form definition language. Only SBA comes close to
providing a high level form definition facility.

* I shall use form to mean an electronic form and shall therefore omit the
adjective electronic unless there is some ambiguity or an empbhasis is
intended.

Office Talk provides the user with a forms editor which
allows for the specification of the graphical design of the
form and the style of each field in the form. The forms
editor requires that newly designed forms satisfy certain
conditions such as no overlapping fields. It also permits
certain fields to be designated as signature fields.

OFS provides no mechanism for defining new forms.
The system administrator may incorporate new forms
into OQFS by manually modifying and including code for
them.

1.1 Advantage of a high level form definition language

Every office information system based on forms should
provide a high level language for defining forms. There
are numerous advantages in having a high level form
definition language:

(1) It will be easy to define new forms.

(ii) All information associated with a form definition
will be in one place.

(iii) Modifying a form can be accomplished easily by
changing its high level definition instead of modi-
fying code. Only one module, the form definition,
has to be modified instead of several modules
implementing the definition as in present systems.
Forms can thus be easily corrected and customized.

(a) The high level form definition will be easy to
read and understand compared to reading code
defining a form as in present systems.

(b) An efficient implementation can be produced
by a good form definition translator.

(c) Porting a form from one office information
system to another is simply a matter of moving
the form definition. No code has to be moved
(code is notoriously unportable).

1.2 Forms and abstract data types

A type is a set of values plus a set of operations that may
be performed on these values. An abstract data type is a
user defined type. A form type is a set of values

CCC-0010-4620/83/0026—-0052 $04.00

52 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

© Wiley Heyden Ltd, 1983

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

HIGH LEVEL FORM DEFINITION IN OFFICE INFORMATION SYSTEMS

(corresponding to all the ways in which a form can be
filled correctly) plus the operations that can be performed
on these values (e.g. edit, check for completeness, copy).
A form is an instance of a form type. The high level form
definition language I am proposing is based on the idea
of abstract types in programming languages. It would
allow the programmer to define forms in much the same
way one defines abstract data types via packages in Ada'®
or clusters in CLU. !

1.3 Forms manipulation and forms processing

The form definition mechanism can be used by itself in
conjunction with a form manipulation system (Fig. 1).

FORM DEFINITIONS

DATABASES, LIBRARIES

FORM

DEFINITION

TRANSLATOR
FORM SYSTEM

F) INTERPRETER/
MANIPULATOR
USER
Figure 1

Alternatively, it can be incorporated into an existing
programming language or become the core of a specially
designed forms manipulation language. The first ap-
proach is simpler but has the disadvantage that the form
definition and the form manipulation system are written
in different languages. Also application programs to
process forms are written in a language different from
the form definition language. The second approach is
more complex but provides an integrated language for
defining, manipulating and processing forms.

Business programming languages such as SBA,®8
OBE'? and BDL'® provide for the processing of
documents such as forms. However, like the form based
office information systems, they do not provide a high
level notation for describing forms.

2. REQUIREMENTS FOR THE FORM
DEFINITION LANGUAGE

I had recently proposed the idea of a high level form
definition language.' I then built a prototype electronic
form system to determine the feasibility of a form
definition language and to get a better idea of the facilities
that should be included in such a language.'* The
prototype relied on hand translated form definitions. A
translator for the form definition language was not built
since it was not clear what facilities should be included
in the form definition language. Construction of the
translator was left for the next stage—after the form
definition language was specified based on the experience
gained with the prototype.

Having built the prototype, I now feel that a form
definition language should allow for the specification of
all the information of a form type in one module. This
encapsulation of all information related to a form in a
module makes this information available in one place
leading to form definitions that can be easily understood,
modified, and so on. This facility would be similar to
packages in Ada which allow logically related informa-
tion to be specified in one place, e.g. the specification of
abstract data types, a collection of subprograms and
other groups of logically related entities.

It should also be possible to define objects of type form
so that the form definition mechanism can be easily
incorporated into a programming language to provide
for the convenient processing forms. Forms would be full
fledged objects like any other object in the language, e.g.
integers, queues.

Specifically, a form definition language should provide
for:

1. Specification of the textual information that is to be
displayed to help the user in filling out a form.
Heuristic algorithms can then be used to display this
information appropriately on different types of
terminals.

2. Specification of the types and other attributes of the
fields ina form. Types appropriate for form definitions
should be provided, e.g. date, signature, lock, order,
variant. These attributes will be used by the forms
system to ensure that the user supplies the right
information in the manner specified. For example, a
valid date must be filled in a field requiring the birth
date, but only after the user has filled in the name
field.

3. Definition of all the operations that can be performed on
the form type being defined. Some form operations
come with all forms, e.g. edit, mail. The user should
be able to define any other operations appropriate to
the type of form being defined.

4. Association of access rights with the fields. User rights
to operate on fields may be restricted. For example,
only the staff of the treasurer’s office should be able
to fill in fields reserved for treasury use.

5. Association of access rights with the operations. User
rights to operate on forms may be restricted. For
example, not everybody should be allowed to destroy
forms. (The above access rights could be further
refined by specifying the time periods during which
users are allowed to update fields and perform form
operations and the specific work stations they may
use for this purpose.)

6. Association of pre-conditions and post-conditions with
the fields. A pre-condition is a constraint that must
be satisfied before filling a field. A post-condition is
a constraint that must be satisfied after a field is
filled. These conditions help specify the complex
relationships that exist between the various fields in
a form. In case of paper forms these conditions are
specified as a set of instructions to the user.
Verification that correct information has been filled
in a paper form is carried out manually some time
after the form has been filled out. In case of electronic
forms, specification of these conditions will enable
the verification to take place automatically and will
happen while the form is being filled out.

1. Association of pre-actions and post-actions with fields.

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 53

202 udy 60 U0 1s9n6 Aq 8E L LGH/2G/1/9Z/a101E/UlWod/ W00 dnodlwspeoe)/:SdjY Wolj paPeojuMoq

N. H. GEHANI

Two sets of pre-actions can be associated with every
field. A pre-action is an action that is performed just
before a field is filled. One set of pre-actions is
performed if the associated pre-condition is satisfied.
Otherwise, the alternate set of pre-actions is per-
formed.

Similarly, two sets of post-actions can be associated
with every field. A post-action is an action that is
performed just after a field is filled. One set of post-
actions is performed if the associated post-condition
is satisfied. Otherwise, the alternate set of post-
actions is performed.

8. Specification of external routines and names that are
being used in the form definition. For example, the
name of a package (i.e. module) containing routines
to access an employee data base could be specified
indicating to the reader and the form system that it
is needed by the form definition.

9. Definition of local data and routines. The data and
routines used by the rest of the form definition are
specified here. These are not available to any user.

10. Forms processing. It should be possible for the form
definitions to interface with a forms processing
language. For example, it would then be possible to
write a routine that takes a set of ExpenseVoucher
forms and determines how many employees have
claimed reimbursement for dinners over $30.00.

2.1 SBA and the requirements for the form definition
language

SBA provides the user with a mechanism for defining
forms based on Query-By-Example.!* As mentioned
before it is the only system that provides a form definition
facility that comes close to being high level. However, it
does not satisfy many of the requirements listed. The
major deficiencies of SBA with respect to the above
requirements are

1. There is no notion of field access rights.

2. There is no notion of access rights for operations.

3. There is no separation of condition into pre-condition
and post-condition and actions into pre-actions and
post-actions.

4. Only limited field types (e.g. no lock, ordered,
signature, or variant fields).

5. Same operations are provided for all form types.
There is no way to define new form operations.

6. Forms are not treated in the same manner as the data
types provided in SBA. For example, instances cannot
be passed as parameters like integer objects.

On the plus side, it provides for the inheritance of form
definitions (in the manner of Simula classes). For
example, one can define a specialized form book purchase
order based on the definition of a general type of purchase
order.

3. THE FORM DEFINITION MECHANISM

Based on the requirements for a form definition language,
I propose notation of Fig. 2 to describe forms.

54 THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983

form xxx is
imports
all external procedures and functions used
in the form definition
display

The display text of the form along with the field
names. The position of the field
names indicates the positions of the field when
the form is displayed. The attributes of the fields
are described below.

fields

field attributes, constraints, and actions
associated with the fields

operations
operations that can be performed on forms of this type
access rights
fields
which users can update which fields
operations
which users can perform which operations
local data and routines
data and routines that are local to the form definition
end xxx

Figure 2

I shall now describe each part of the form definition
mechanism in detail,* illustrating its use by developing
the definition of the Tuition Reimbursement form shown in
Fig. 3. The TuitionReimbursement is used by company
employees to have the company reimburse them for the
cost of taking job related courses after working hours at
a local university. After the form has been filled out by
the employee, it must be approved by the employee’s
project leader and then by the manager of the project.

I shall use an Ada-like!? notation to describe my ideas.
Comments in the form definition (none allowed in the
display part) begin with ‘— —’ and are terminated by an
end of line. Keywords of the form definition language
will be depicted in bold font, e.g. lock, after.

3.1 Form type

The first line of a form definition specifies the name of
the form type, e.g.

form TuitionReimbursement is

3.2 Imports section

The imports section contains the names of the packages
(Ada terminology used—also known as modules) that
will be used in the form definition but are defined outside
the form definition.

The TuitionReimbursement form definition uses the
package EMPLOYEE which provides an interface to

* The exact details of the notation that will be used for the high level
form definition language are not important. The important thing is the
idea of a high level form definition language.

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

HIGH LEVEL FORM DEFINITION IN OFFICE INFORMATION SYSTEMS

Tuition Reimbursement Application # :
Last Name, Initials: Company-Id # :
Room Number: Extension:
School Name: Address:
Course # Title Credits Tuition
1.
2.
3.
Total Cost

Working for Diploma? Yes or No:

Diploma Title:

Credits Required:

Credits Finished:
Signature: Date:
Approval—Project Leader Signature: Date:

Manager Signature: Date:

Figure 3

the company database. The specification of the package
EMPLOYEE is
package EMPLOYEE is
function EMP_NAME(ID:INTEGER) retarn STRING;
function EMP_EXT(ID:INTEGER) return STRING;
function EMP_ROOM(ID :INTEGER) return STRING;
function EMP_ORG(ID:INTEGER) return STRING;;
function VALID_SIGNATURE(S :SIGNATURE) return BOOLEAN ;
— — validates the signature as being that of the user
— — logged on to the system
function DESIGNATION return RANK ;
— — returns the designation of the user
end EMPLOYEE;
The declaration of each procedure or function completely
specifies the types of the formal parameters and the result
so that type checking can be done at compile time.
The fact that the form definition Tuition Reimbursement
uses the package EMPLOYEE is specified by means of
the with clause as

with EMPLOYEE;

The subprograms inside the package can now be accessed
in the form definition by qualifying them with the
package name, e.g.

EMPLOYEE.VALID_SIGNATURE($Sigl)

The need for this qualification can be eliminated by
means of the use clause, e.g.

use EMPLOYEE;

which makes the components of the package EM-
PLOYEE directly visible, i.e. the subprograms inside the
package can now be accessed without any qualification
(provided there is no ambiguity), e.g.

VALID_SIGNATURE($Sigl)
The imports section of the TuitionReimbursement form is
imports
with EMPLOYEE;
use EMPLOYEE;

3.3 Display section

Every form has some pre-printed text on it. This text is
specified in the display section and is interspersed with
field names of the form S$identifier. The text is provided
to help the user in filling the form. It also provides
semantic information to the reader of the form to allow
proper interpretation of the user supplied information.
The pre-printed text is specified in the format in which
it should appear on the terminal screen. Heuristics will
have to be used if the information does not fit on a screen.

The location of the field names (separated by blanks,
tabs or new lines to help in recognition) identifies the
location of the form fields in the display text. It is at these
positions the user will be able to insert information
corresponding the fields. These field names are not
displayed on the screen. The field names are used (in the
next section) to associate information about the type of
the fields, the constraint and actions associated with
them. The display portion of the TuitionReimbursement is
defined as:

Display
Tuition Reimbursement Application # : $No

Last Name, Initials: $Name
Room Number: $Room

Company-id# : $1d
Extension: $Ext

School Name: $Sname Address: $Add

Course # Title Credits Tuition
1. $Cnl $T1 $Ci1 $Tul
2. $Cn2 $T2 $C2 $Tu2
3. $Cn3 $T3 $C3 $Tu3

Total Cost $Tud

Working for Diploma? Yes or No: $D
Diploma Title: $Dt
Credits Required: $Cr
Credits Finished: $Cf

Signature: $Sigl Date: $Datel

Date: $Date2
Date: $Date3

Approval—Project Leader Signature: $Sig2
Manager Signature: $Sig3

3.4 Fields

The fields section of a form definition contains the type
and other attributes of a field, conditions that must be
satisfied before a field is filled, actions that must be
performed if these pre-conditions are satisfied, conditions
that must be satisfied after the field is filled, and actions
that must be performed after these post-conditions are
satisfied.

3.4.1 Field attributes. A field is specified as having a type
in much the same way variables in programming
languages have types. These types are CHARACTER,
STRING, INTEGER, FLOAT, BOOLEAN, enumera-
tion types, SIGNATURE and DATE.

A signature field is like a string field, except that the
sequence of characters inserted by the user are not
displayed. Instead the name of the person signing (who
must be the person logged on to the system) is displayed.

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 55

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

N. H. GEHANI

The system itself will not do any checking. This must be
done in the post-condition part of a field as will be shown
later. A date field is one which accepts all the usual
denotations of dates. In addition to the type attribute, a
field may have the following additional attributes (and
combinations of these when it makes sense).

(i) required—specifies that this field must be given a
value for a form to be considered complete.

(ii) virtual—specifies that this field will have the value
specified by the expression given. This field cannot
be filled in by the user. This expression is re-
evaluated every time a field it depends upon is
changed by the user.

(iii) unchangeable—specifies that the field cannot be
changed after it has been filled. The field can only be
filled if it has the null initial value.

(iv) tag and variant—the value of this field determines
which list of fields, called a variant can be filled in by
the user. The syntax of the tag and variant fields is

case F of
when v, = > FL,;

whenv, => FL,;
end case;

where F is the tag field and FL, are field lists. Each
field is described as defined later. If the field F is
given the value v; then the variant FL, is the active
one.

(v) ordered—specifies that the field can be filled in only
after some other field has been filled in. The syntax
used, along with the different options, is

after field_name
before field_name

(vi) lock—specifies that certain fields cannot be changed
after this field has been filled. The syntax used is

lock field_name_list
lock all above
lock all except field_name_list

All fields to be filled in by the user have appropriate null
values initially. Thus a form is blank when displayed.

3.4.2 Field definition. All fields are described using the
following syntax.

pre{a = > al,,, aly,} field_name_list attributes
POSt{B = > blirue, bljuse}

where a and g are the pre and post conditions, al,,.,, and
bl are lists of procedure calls specifying the actions to
be performed if the corresponding pre-conditions and
post-conditions are satisfied, and alg,, and bl are lists
of procedure calls specifying the actions to be performed
if the corresponding pre-conditions and post-conditions
are not satisfied. The procedure calls in each list are
separated by semi-colons.

If the pre-condition is not satisfied then the user cannot
fill the field; if the post-condition is not satisfied then the
field reverts to its previous value. The user will be
informed that a correct value was not supplied for the
field. Elaborate error messages can be given to the user

56 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

by means of procedure calls performed when the
conditions are not satisfied.

The = > symbol may be left out if there are no actions
to be performed. The pre{...} part may be left out if the
field is to be filled without any pre-condition and pre-
actions. Similarly for the post{...} part.

For example, the pre-condition of an amount field in
a bank withdrawal form would be amount > 0 and the
post-condition will be amount > 0. These conditions
would be specified as

pre{amount > 0.0} and post{amount > 0.0}

The fields portion of the TuitionReimbursement is defined
as follows:

fields
$No: INTEGER virtual NEXT();
— — every form instance gets a unique identification number
— — got by calling the local routine NEXT
$Name: STRING(1..30) required;
$1d: INTEGER range 0..99999 required post{SNAME = EMP_NAME($Id)};
— — The post-condition specifies that
— — the name associated in the data base with the Id
— — supplied must match the name supplied

$Room: STRING(1..5) virtual EMP_ROOM(S$1d);
$Ext: STRING(1..4) virtual EMP_EXT($1d);

— — The values are determined automatically for the user
$Sname: STRING(1..25) required;
$Add: STRING(1..35) required, after $Sname;

— — School name must be filled in before its address

$Cn1: STRING(1..5) required;

$T1: STRING(1..15) required, after $Cn1;

$C1: FLOAT after T1 post{SC1 > = 0};

$Tul: FLOAT required, after SC1 post{$Tul > = 0.0};
— — at least one course must be filled in the form
— — tuition must be positive

$Cn2: STRING(1..5) after $Cnl;

$T2: STRING(1..15) after $Cn2;

$C2: FLOAT after T2 post{$C2 > = 0};
$Tu2: FLOAT after $C2 post{$Tu2 > = 0.0};

$Cn3: STRING(1..5) after $Cn2;

$T3: STRING(1..15) after $Cn3;

$C3: FLOAT after T3 post{$C3 > = 0};
$Tu3: FLOAT after $C3 post{$Tu3 > = 0.0};

$Tud: FLOAT virtaal $Tul + $Tu2 + $Tu3;
— — the total tuition is computed automatically
— — to be the sum of the tuition for each course

case $D: (Yes, No) required of
— — $D is defined to have either Yes or No as a value
when Yes = > $Dt: STRING(1..20);
$Cr: FLOAT post{$Cr > = 0.0};
$Cf: FLOAT post{$Cf < $Cr};
when No = > pall;
end case;
— — only if the user is working for a diploma (i.e., $D = Yes)
— — is the user allowed to fill the fields $Dt (diploma title),
— — $Cr (credits required) and $Cf (credits finished)
— — Credits required must be greater than credits finished
— — Inapplicable fields will be skipped automatically

. $Sigl: SIGNATURE (1..6) lock all above, required
post{ VALID_SIGNATURE($Sigl)};
— — if the signature is not valid, an error
— — will be indicated and the old value
— — restored
$Datel: DATE after $Sigl, required;

$Sig2: SIGNATURE(1..6) after $Datel post{ VALID_SIGNATURE($Sig2)
) and DESIGNATION () = PROJECT_LEADER};
$Date2: DATE after $Sig2, required;

$Sig3: SIGNATURE(1..6) after $Datel post{ VALID_SIGNATURE($Sig3)
and DESIGNATION () = MANAGER};
$Date3: DATE after $Sig3, required;

Although in this example the pre-condition part has not
been used, its use will be necessary in situations when a
field is to be filled only after certain conditions have been
satisfied. An example of such a situation is when the

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

HIGH LEVEL FORM DEFINITION IN OFFICE INFORMATION SYSTEMS

amountin bank account mustbe > 0 prior to withdrawing
money from it. Of course, after the withdrawal, the
account balance should not be negative. This is expressed
as

pre{BALANCE($Name) > 0} $Withdrawal: FLOAT post{ BALANCE($Name)
— $Withdrawal > 0.0};

3.5 Operations

The forms system interpreter provides a number of
operations that come with every form definition. Users
will be allowed to perform only authorized operations on
a form type. This will be in accordance with the access
rights specified in the form definition. Some operations
that come with every form definition (provided by the
forms system) are:

Edit: Used to fill a form.

Create: Used to create a new instance of a form type. An
unique identifier for the form is given to the user by the
interpreter.

Mail: Mails the specified form to another user.

Find: Returns a list (possibly null) of form identifiers that
match the desired characteristics, e.g. a specific string
pattern.

Complete: A form is complete if all the required fields
have been filled.

Destroy - The specified form is destroyed. In practice it
will probably be made inaccessible to the user.

Display: The specified form is displayed.

It must be noted that his mechanism is being designed
for use with a system that supports the form definition
mechanism, i.e. an interpreter or a language. For
additional operations the user can write additional
procedures or functions. Inside such a procedure or a
function, each form is like a record and its fields are
accessed as such.
functi?n TOTAL_AMOUNT (F: in TuitionReimbursement) return INTEGER is
be?::um F.$Tu4;
end TOTAL_AMOUNT;

The TuitionReimbursement form has no operations de-
fined in its operations section. The only operations that

can be performed on this type of forms are the ones that
are provided for all types of forms (stated above).

3.6 Access rights

3.6.1 Fields. This part of the form definition specifies
which users can change which fields.
case DESIGNATION () is
when TECHNICAL = > update all except $Sig2, $Date2, $Sig3, $Date3;
when PROJECT_LEADER = > update $Sig2, $Date2;

when MANAGER = > update $Sig3, $Date3;
end case;

The function DESIGNATION returns the RANK of
the user in the organization which is one of the values

(TECHNICAL, PROJECT_LEADER, MANAGER, DIRECTOR, SUPERVISOR,
TREASURER, SECRETARY)

In this example, a TECHNICAL employee can update
all the fields in a form except the fields which contain the
- signatures and dates filled in by the project leader and the
manager.

3.6.2 Operations. This part of the form definition specifies
which users can perform which of the operations
available for forms of this type. For example, in this case
a manager can perform any operation defined for the
TuitionReimbursement forms whereas persons classified
as other than technical, project leader, or a manager can
only display the forms.

case DESIGNATION is
when TECHNICAL = > all except destroy;
when PROJECT_LEADER = > all except destroy;
when MANAGER = > all;
when others = > display;
end case;

3.7 Local data and routines

In this section are specified data and subprograms local
to the form definition. These are not available outside the
form definition. For example, each instance of the
TuitionReimbursement form must be assigned a unique
identification number. The local function NEXT supplies
a series of unique identification numbers starting with 1.

N:INTEGER =0;

function NEXT return INTEGER is
N=N+1;
return N;

end NEXT;

3.8 End form type

end TuitionReimbursement

This just signals the end of the form definition.

The Appendix contains the complete definition of
another example form type, the Cash Advance and Ticket
Requisition form.

4. CONCLUSIONS

The definition and modifications of forms will be
simplified by providing a high level form definition
language in form based office information systems. High
level form definitions will be easy to understand and
check for correctness.

The high level form definition language I have
proposed was designed on the basis of the experience
gained from the prototype electronic form system'* in
which a preliminary version of the form definition
language was used. The form definitions in this prototype
were hand translated. The next step is the construction of
the form definition translator.

Office information systems are inherently distributed
systems. There should be no difficulty in implementing
the form definition language on a distributed system
provided each node in the system has access to the form
definitions and the packages imported by the form
definition.

The form definition language proposed is quite

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 57

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

N. H. GEHANI

powerful and can be used to describe a wide variety of
forms. It appears that the proposed form definition
mechanism will blend easily with a language like Ada or
Pascal extended for forms processing because each form
instance can be treated as a record. Research in this
direction is in progress.

Considerable amount of work research needs to be
done to adapt the proposed high level form definition
language to the needs of real offices. For example, how
would one define that a field X in a form A has the same
value as a field in another form B which must be filled to

determine the value of X? Or, how would one allow fields
to be unlocked to allow modification 7*

Acknowledgements

I very much appreciate the constructive comments and suggestions of
my colleagues C. D. Blewett, J-M. Chang, J. O. Limb, P. Zave and C.
S. Wetherell.

* Signature fields are often used to lock a set of fields. One possible
solution to the unlocking problem would be that they could be unlocked
by the person who signed the form by re-signing the form. This would
result in the signature field having a null value and can therefore be
signed afresh after modifying the fields that were unlocked.

REFERENCES

1. N. H. Gehani, The potential of forms in office automation. /EEE
Transactions on Communications, COM-30. (1), (January
1982). (Special Issue on Communications in the Automated
Office.)

2. |. Ladd and D. Tsichritzis, An office form model. Proceedings
NCC, Anaheim (1980).

3. D. Tsichritzis, Forms management. In Omega Alpha ed. by D.
Tsichritzis, Technical Report CSRG-127 (March 1981).

4. C.K. Cheung and J. Z. Kornatowski, The OFS User’s Manual.
Computer Systems Research Group, University of Toronto,
Ontario, Canada (March 1980).

5. C. A Ellis and G. J. Nutt, Office information systems and
computer science. Computing Surveys 12 (1), (March 1980).

6. S. P. de Jong, The system for business automation (SBA): a
unified application development system. Proceedings of IFIP
80 (October 1980).

7. S. P. de Jong and R. J. Byrd, Intelligent forms creation in the
system for business automation (SBA). Research Report RC
8529, Computer Science Dept. IBM T. J. Research Center,
Yorktown Heights, New York 10598 (October 1980).

8. M. M. Zloof and S. P. de Jong, The system for business
automation (SBA): programming language. Communications
of the ACM 20 (6), (June 1977).

9. D. Tsichritzis, private communication. 24 February (1981).

10. Reference Manual for the Ada Programming Language. United
States Department of Defense (July 1980).

11. B. Liskov et al., CLU Reference Manual. MIT/LCS/TR-225,
Laboratory for Computer Science, MIT (October 1979).

12. M. M. Zloof, A language for office and business automation.
Office Automation Conference 1980 Digest, Atlanta, Georgia
(March 1980).

13. M. Hammer et al., A very high level programming language for
data processing applications. Communications of the ACM 20
(11), (November 1977).

14. N. H. Gehani, An electronic form system: an experience in
prototyping. Submitted for publication.

15. M. M. Zloof, Query-by-example. AF/PS Proceedings National
Conference 44, 431-438 (1975).

FURTHER READING

J. Hogg, O. M. Nierstrasz and D. C. Tsichritzis. Form procedures. In
Omega Alpha ed. by D. Tsichritzis, Technical Report CSRG-127
(March 1981).

V. Y. Lum et al, Automating business procedures with form
processing. Research Report RJ3050, IBM Research Laboratory,
San Jose, California 95193 (March 1981).

G.M.Rader, C.D. Blewettand D. W. Shaklee, private communication
(September 1980).

N. C. Shu et al., Specification of forms processing and business
procedures for office automation. Research Report RJ3040, IBM
Research Laboratory, San Jose, California 95193 (March 1981).
D. Tsichritzis, A form manipulation system. In A Panache of DBMS

Ideas I/l edited by F. H. Lochovsky. TR CSRG-101, pp. 53-71,
Computer Science Research Group, University of Toronto, Canada
(1979).

D. Tsichritzis, OFS: .an integrated form management system.
Proceedings of the ACM International Conference on Very Large
Data Bases (1980).

M. Zisman, Representation, specification and automation of office
procedures. PhD Thesis, Wharton School, University of Pennsyl-
vania, Philadelphia, Pennsylvania (1977).

Received March 1982

58 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

HIGH LEVEL FORM DEFINITION IN OFFICE INFORMATION SYSTEMS

APPENDIX
The Cash Advance and Ticket Requisition form (Fig. 4) is c hE!;gIOS;lee Only $"_frreasurcy orl:ly
ash: as . reas_Cas
used by an employee to requeSt an advaince (at most Tickets: $Ticket_Price : $Treas_Ticket_Price
$1500.00) for traveling on business. An employee requests Total: $Total . $Treas_ Total

some money to be given in cash and some money to cover
the cost of an airline ticket. This advance will be

for:
vouchered later after the employee has completed the Funds to be used for: $Purpose

business travel. Will be required until: $Until
The employee fills in the relevant fields in the form and .
mails it to the supervisor. The form is mailed to treasury Total Amount (in words): $Amount

by the supervisor after signing and dating it (assuming

. \ Signatures—Employee: $Emp_Si
the supervisor approved the travel). The supervisor keeps e ploy p->18

a copy of the form. Supervisor: $Sup_Sig Date: $Date_Sup
Treasury checks the total on the form, making .)
adjustments to the cash advance to reflect the actual cost Treasury: $Treas Sig Date: $Date_Treas

of the ticket. The total as computed by the employee and

field:
the treasury must be the same. e

$No: INTEGER virtual NEXT():

$Name: STRING(!..30) required:

Cash Advance and Ticket Requisition Form # : $Date_Emp: $Date required:

$1d: INTEGER range 0..99999 required post,$Name = EMP_NAME($1d)! ;
$Room: STRING(1..5) virtual EMP_ROOM($Id):

SExt: STRING(!..4) virtual EMP_EXT($1d):

Last Name, Initials: Date: $O0rg: STRING(1..4) virtual EMP_ORG(S$1d);
Company-Id # : Room Number: Extension: $Case: STRING(1..10) required:
Organization # : Case #: $Cash: FLOAT required post|$Cash > = 0.0} ;

$Treas_Cash: FLOAT required post.$Treas_Cash > = 0.0} ;
$Ticket_Price: FLOAT required post;$Ticket_Price > = 0.0 ;

Employee Only Treasury Only $Treas_Ticket_Price: FLOAT required post|$Treas_Ticket_Price > = 0.0}
Cash: : $Total: FLOAT virtual $Cash + $Ticket_Price post,$Total < = 1500.0!;
Tickets: . $Treas_Total: FLOAT virtual $Treas_Cash + $Treas_Ticket_Price
Total: . post;$Treas_Total = $Total | ;

$Purpose: STRING(1..100) required:
$Until: DATE required;
$Amount: STRING(I..100) required:

. $Emp_Sig: SIGNATURE(!..6) required, lock all above
Funds to be used for: post! VALID_SIGNATURE(SEmp_Sig) :
$Sup_Sig: STRING(1..100) required, after SEmp_Sig

Will be required until : post, VALID_SIGNATURE($Sup_Sig)! :
$Date_Sup: DATE after $Sup_Sig:
: . $Treas_Sig: STRING(1..100) required post; VALID_SIGNATURE($Treas_Sig)| :
Total Amount (in words): $Date_Treas: DATE after $Treas Sig:
X operations
Signatures—Employee : no additional form operations specified
access rights
Supervisor: Date: fields

case DESIGNATION() is
when TECHNICAL = > update all except $Treas_Cash, $Treas_Ticket_Price,

Treasury: Date: $Sig_Sup, $Date_Sup, $Treas_Sig, $Date_Treas:
A when SUPERVISOR = > update $Sig_Sup, $Date_Sup:
Figure 4 when TREASURER = > update $Treas_Cash, $Treas_Ticket_Price,
. $Sig_Treas, $Date_Treas;
. . .. end case;
The form is defined in the form definition language as operations
shown in Fig_ 5. case DESIGNATION() is
when TECHNICAL | SUPERVISOR | TREASURER = >
form CashAdvance is hen oth disol all except destroy:
. when others = > display .
imports end case;
. local data and routines
with EMPLOYEE; N: INTEGER =0;
use EMPLOYEE; function NEXT return INTEGER is
N=N+1;
dispay o
3 . . e ;
Cash Advance and Ticket Requisition Form # : $No end CashAdvance:
Last Name, Initials: $Name Date: $Date_Emp
Company-Id#:$Id Room Number: SRoom Extension: $Ext
Organization # : $Org Case #: $Case Figure 5

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 59

202 Iudy 60 U0 189n6 AQ 8E L LGH/2G/1/9Z/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj pOPEOUMOQ

