The Proposed COBOL Standard—Its Significance

J. M. Triance

Computation Department, University of Manchester, Institute of Science and Technology, PO Box 88, Manchester

M60 1QD, UK

A draft COBOL Standard has recently been published for public comment. The significance of the proposed Standard
is examined by looking at the new features it contains and by studying the incompatibilities between it and ANS 74

COBOL.

INTRODUCTION

A draft revision of the current COBOL Standard, referred
to as the proposed standard in this paper, has been
published.! On the basis of previous practice the draft
may be regarded as an accurate indication of what the
next standard will contain when it is published in 1983 or
1984 (by current estimates). In view of the almost
universal adherence to the standard by compiler writers
it is also a good indication of the features that will be
supported by COBOL compilers in the coming years.

This paper proyides an introduction to and a commen-
tary on the new features introduced in this revision;
investigates the incompatibilities with the current stand-
ard;? examines the impact of the new standard on
portability of programs between compilers; and looks at
the opportunities the new standard has missed.

ADDITIONS TO THE LANGUAGE

The draft standard adds many features to COBOL. The
most significant of these are (i) structured programming
facilities, (ii) nested programs, (iii) the INITIALIZE
statement, (iv) access to substrings, (v) the REPLACE
statement, (vi) de-editing and (vii) a more flexible form
of variable length record. A discussion of each of these
and a summary of the other significant additions follows.

Structured programming

A reasonably comprehensive set of structured program-
ming constructs have been added to COBOL. They
include (a) conditional statement terminators, such as
END-IF, (b) a null statement: CONTINUE, (c) a multi-
branch (case-type) statement: EVALUATE, (d) an
in-line looping construct: PERFORM with END-
PERFORM, and (e) a ‘test after’ looping construct.
Each of these is described and an overall assessment of
the structured programming package is made.

Conditional statement terminators. The IF statement now has
an explicit terminator—END-IF. Unlike the implicit
terminator (full stop) it can be used to terminate an IF
statement without at the same time terminating any other
statements in which it is nested. Thus the END-IF on

line 5 of Fig. 1 terminates the IF which starts on line 2
but does not terminate the IF which starts on line 1. This
permits an IF statement to be followed by another
statement (S3 in the example) within either branch of an
outer IF statement. In this example (and the ones that
follow) C1 and C2 represent COBOL conditions and S1,
S2, etc. each represent an imperative statement. (Remem-
ber that an imperative statement may consist of a string
of COBOL statements.)

1 IF Cl1

2 THEN IF C2

3 THEN S1
4 ELSE S2
5 END-IF
6 S3

7 ELSE S4

8 END-IF

Figure 1. END-IF in use.

The optional word THEN (which appears in Fig. 1) is
also introduced in the new standard.

The problem of terminating nested statements arises
with all conditional statements (READ with AT END,
ADD with ON SIZE ERROR, etc.). These statements
have all been given explicit terminators (END-READ,
END-ADD, etc.). A full list appears in Fig. 2.

END-ADD END-IF END-SEARCH
END-CALL END-MULTIPLY END-START
END-COMPUTE END-READ END-STRING
END-DELETE END-RECEIVE END-SUBTRACT
END-DIVIDE END-KETURWN cuD=-UNSTRING

END-EVALUATE END-REWRITE END=WRITE

Figure 2. List of explicit terminators.

Null statement. The proposed standard provides a null
operation statement—CONTINUE. It can be used
anywhere that an imperative statement may be used but
its main value will be for indicating that no action is
desired in the true path of an IF statement.

In the example in Fig. 3 the CONTINUE on line 3
indicates that no action is required when C2 is true so
control will pass directly to the next statement (on line 6).
NEXT SENTENCE, as used in the current standard,
would not meet this requirement since it would transfer
control to the end of the sentence (somewhere beyond
line 8). In fact NEXT SENTENCE may not be used
when END-IF is specified.

CCC-0010-4620/83/0026-0060 $04.00

60 THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983

© Wiley Heyden Ltd, 1983

202 udy 60 U0 1s9n6 Aq GG 1 /GH/09/1/92/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj paPEojuMOQ

THE PROPOSED COBOL STANDARD—ITS SIGNIFICANCE

1 IF Cl

2 THEN IF C2

3 THEW COWTINUE
4 ELSE 52

5 END-IF

6 s3

7 ELSE 5S4

8 EJdD-IF

Figure 3. The CONTINUE statement.

Multi-branch statement. A multi-branch multi-join (case-
type) statement has been added to COBOL. It is the
EVALUATE statement. Any number of alternative
actions may be specified, each accompanied by the
condition under which it is executed. Optionally, a final
action may be specified which is executed if none of the
conditions are satisfied. Thus in the example in Fig. 4, S1
is executed if condition Cl1 is true, S2 is executed if C2 is
true, and S3 is executed if neither C1 nor C2 is true. After
executing the appropriate action (S1, S2 or S3 in the
example) control is passed to the statement following the
EVALUATE statement.

EVALUATE TRUE
WHEN Cl1 sl
wHEN C2 32
WHEW OTHER S3
END-EVALUATE

(S SN N

Figure 4. An EVALUATE statement.

There is a great deal of flexibility in the form that the
conditions may take. It is even possible to associate a set
of conditions with each action. This is illustrated in Fig.
5 which shows a decision table and an equivalent
EVALUATE statement. This form of EVALUATE
statement, is obtained by turning the decision table

Decision Table:

EXAM TAKEN
EXAi1 PASSED
SEND REVISION |
SEND SECTION 2 i X
SEWD CERTIFICATE |

Corresponding EVALUATE statement:

EVALUATE EXAM-TAKEN EXAMN-PASSED

WHEN 1 I'RUE PERFORM SEND-REVISION
WHEN ANY FALSE PERFOR! SEWUD-SECI-2
wilEQ 2 TRUE PERFORM SEND-CERT

END-EVALUATE

Figure 5. A more complex EVALUATE statement.

through 90 degrees, replacing the hyphen by ANY, Y by
TRUE and N by FALSE. (In Fig. 5, EXAM-TAKEN
identifies a numeric data item and EXAM-PASSED is a
level 88 condition-name).

Thus in the EVALUATE statement in Fig. S SEND-
REVISION is executed if EXAM-TAKEN =1 and
EXAM-PASSED is true, SEND-SECT-2 is executed if
EXAM-PASSED is not true (regardless of the value of
EXAM-TAKEN) and SEND-CERT is executed if
EXAM-TAKEN = 2and EXAM-PASSED is true. Con-
ditions can thus be written in a tabular form but (unlike
the decision table) there is no facility for expressing the
actions in a tabular form.

In-line looping comstruct. A variation of the PERFORM
verb is used to provide an in-line looping construct (see

Fig. 6). The keyword PERFORM is immediately
followed by the UNTIL phrase (no procedure-name is
specified). This is followed by a string of statements
terminated by END-PERFORM. This string of state-
ments (S1 in the example) is executed repeatedly, but
before each execution begins the condition (C1 in the
example) is tested. When the condition is true control
is transferred to the statement following END-
PERFORM.

PERFORM UNTIL Cl
Sl
END-PERFORM

Figure 6. In-line PERFORM statement.

The other type of loop, in which the condition is not
tested until after the first execution, is supported by the
WITH TEST AFTER phrase. For example, in Fig. 7,
the condition is tested after each execution of S1 (not
before as in Fig. 6).

PERFORM WITH TEST AFTER UNTIL Cl
Sl
END-PERFORH

Figure 7. WITH TEST AFTER phrase.

The statements which are executed in the in-line
PERFORM (S1 in the example) may contain other
PERFORM statements or conditional statements with
explicit terminators. (In the proposed standard IF with
END-IF is classified as an imperative statement.)

Assessment. The new structured programming facilities
overcome the main deficiencies in the current standard
and thus represent a big step forward.

A major omission however are the alternative branches
for the other conditional statements (other than IF,
EVALUATE and SEARCH that is). Figure 8 shows the
solution chosen by CODASYL.? In the proposed stand-
ard there is no entirely satisfactory way of representing
this logic. However the CODASYL solution involves a

READ file-name
AT END S1
NOT AT END S2
END-READ

Figure 8. A CODASYL alternative branch.

lot of rather ungainly syntax (including double negatives,
e.g. NOT INVALID KEY). The tidy solution to the
problem would be a generalized exception handling
mechanism which would allow all exceptions to be tested
via the IF statement rather than by appendages to
intrinsically imperative statements such as READ, ADD
and STRING. Such a mechanism appears to be a long
way off.

No effort has been made to satisfy the users of the
Jackson Method* and its derivatives. In particular, there
are no additions to support the posit construct, quit or
inversion. ANSI have also missed the opportunity of
having one verb for selections (like the Jackson select
construct). Instead they have two verbs with completely
different formats—one which can be used for any number
of alternatives (EVALUATE) and another which is
reserved for when there happens to be two alternatives
(IF).

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 61

202 udy 60 U0 1s9n6 Aq GG 1 /GH/09/1/92/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj paPEojuMOQ

J. M. TRIANCE

Finally, although the proposed standard permits the
programmer to write structured programs (subject to the
limitations mentioned above) it provides no means of
enforcing this discipline: the ‘unstructured facilities’ (IF
without END-IF, GO TO, etc.) remain in the proposed
standard.

A more comprehensive discussion of structured pro-
gramming in COBOL appears elsewhere.®

Inter-program communication

A number of additions have been made to COBOL’s
inter-program communication. The main ones are nested
programs which are defined within other programs; global
data and global files which can be defined in one program
and accessed from within its nested programs; external
data and external files which can be accessed from any
programs in a run unit; ‘by content’ parameters which are
protected from corruption by the called program; and
initial programs in which the variables are re-initialized
each time the program is called. Each of these will be
discussed in turn.

Nested programs. Nested programs are defined at the end
of the Procedure Division of the containing program.
Each nested program must be terminated with an END
PROGRAM header. Thus, in Fig. 9, program P1
contains two programs—program P2 and program P3.

LOENVIFICALICH DIVISION. 3\
PROGRAM-ID. P1.

CALL "p2"
CALL "p3"

IDERTIFICATION DIVISION. Pl
PROGRAN-ID. P2.
H P2

END PROGRA{l P2.
LOENTIFICATION DLVISIOd.
PROGRAM=-1ID,., P3.

: P3

END PROGRAM P3.

END PROGRAM Pl. J

Figure 9. Nested programs.

The nested programs may themselves contain nested
programs. Figure 10 is a hierarchy chart for a program
P1 which contains P2 and P3, P3 contains P4 and P5, P4
contains P6 and so on. PX is a separately compiled
program of the type allowed by the current standard.

Each program may call any program immediately
contained in it. Thus in the example P3 may call P4 and
P5. Programs may, as in the current standard, call any
separately compiled program. Thus in the example P1,
P2 ... P8 may each call PX. By using the COMMON
clause in the PROGRAM-ID paragraph a program may
be defined as a common program. A common program
may be called by any programs nested (directly or
indirectly) in the program which contains it, provided
recursion does not result. Thus if P5 is a common
program, in addition to P3, it may be called by P4 and P6
but not P5, P7 or P8.

62 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

P1 PX
[
[1
P2 P3
l]
P4 PS
P6 P7
P8

Figure 10. A sample run unit.

Global items. Records, files or reports may be made global
by specifying the new GLOBAL clause in their
definitions.

In the case of global records the record-name can be
used to refer to the record from any program contained
directly or indirectly in the program in which its
definition appears. Thus if a global record is defined in
P3 (see Fig. 10) it may be referenced P4, P5, P6, P7 and
P8 (but not P1 or P2). It may also, of course, be referenced
from P3. The data items within the record may also be
referenced from all these programs.

Global files and reports are accessible to nested
programs in accordance with the same rules.

External items. An external record is a record which is
associated with the run unit rather than any particular
program. Any program in the run unit may reference an
external record provided that it is defined in that program
with the EXTERNAL clause in its description. Every
definition of an external record in a run unit must be
identical apart from the possible use of the GLOBAL
clause (an external item may be global in one program
and local in another).

The EXTERNAL clause may also be used to make
files external in the same sense as external records.

Call by content. In ANS 74 COBOL all parameters may be
accessed and modified by a called program. In the
proposed standard such parameters are known as ‘BY
REFERENCE'. In addition there is the ‘BY CON-
TENT’ parameter which can be accessed but cannot be
modified in the called program.

Figure 11 gives an example of a CALL statement in
the proposed standard. The called program, P1, will be

CALL "P1" USING BY REFEREWCE 11 I2
BY COWUTENT 135 14

Figure 11. By reference and content parameters.

able to access all the parameters 11, 12, I3 and I4. It will
however only be able to modify parameters I1 and I2 (not
I3 and 14).

202 udy 60 U0 1s9n6 Aq GG 1 /GH/09/1/92/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj paPEojuMOQ

THE PROPOSED COBOL STANDARD—ITS SIGNIFICANCE

Initial programs. The proposed standard has a new
INITIAL clause in the PROGRAM-ID paragraph.
When specified this ensures that all data items with
VALUE clauses are initialized with the specified values
each time the program is called.

The return links from (out-of-line) PERFORM state-
ments are initialized between executions of a called
program whether or not the INITIAL clause is specified.
(Some ANS 74 compilers already do this.)

Assessment. The concepts of global and external files for
thefirst time ensure that the programmer has a convenient
and standard method of processing files in more than one
subprogram. This is very welcome.

Global and external data items are completely new to
called programs and it remains to be seen how the
COBOL programmer will use them. The threat they pose
to module independence will worry some purists.

Since the by content parameter and the initial program
can be easily simulated in most ANS 74 COBOL
programs these two features will not have a major impact.

The INITIALIZE statement

This new statement can be used to initialize a whole
record or any category of data item in a record to
specified values. The example in Fig. 12 moves zeroes to
all numeric data items in SALES-TABLE (that is to each
occurrence of SALES).

1 SALES-TABLE.
2 PRGLUCT OCCUxs 30.
3 CODE-NO PIC X(7).
3 SALES PIC S9(5).

INITIALIZE SALES-TABLE
REPLACING HWUMERIC DATA BY Z£RC

Figure 12. The INITIALIZE statement.

Any one of the five categories of data may be specified
after the key word REPLACING: ALPHABETIC,
ALPHANUMERIC, NUMERIC, ALPHANU-
MERIC-EDITED or NUMERIC-EDITED. The value
to be used for initialization can be specified as a literal or
an identifier.

If desired the whole REPLACING phrase may be
omitted whereupon the numeric and numeric-edited
items are set to zero and the other items are set to spaces.

Access to substrings

A new feature known as reference modification permits
access to any string of consecutive characters in an
alphanumeric data item. The reference takes the form of
the name of the data item followed (in brackets and
separated by a colon) by the starting point of the string
and the length of the string.

Figure 13 gives an example of its use. If START-
POSN contains 61 and NO-OF-CHARS contains 7 then
the MOVE statement would access the 61st to 67th
characters of ADDRESS.

This new feature will be very useful for data items
whose structure is highly variable. It is, however, open to

1 EMPLOYEE-RECORD
2 EMPLOYEE-CODE PIC X(6).
2 DEPARTMENT-CODE PIC X(4).
2 ADDRES3S PIC X(72).
1 POS1-CODE PIC X(b).

MOVE ADDRLSS (START-POSN: NO-OF-CHARS)
TO POST-CUODE

Figure 13. Use of reference modification.

considerable abuse. A programmer could replace the
record definition in Fig. 13 by

1 EMPLOYEE-RECORD PIC X(82)

and, in the Procedure Division, access the department-
code as EMPLOYEE-RECORD (7:4). This would
seriously degrade the program’s readability.

The REPLACE statement

The REPLACE statement is designed for source text
editing. Like the REPLACING phrase of the COPY
statement it may be used to replace one string of COBOL
words by another. Unlike the COPY statement however
the words being replaced may appear anywhere in the
COBOL source, not just in text being copied in from a
COBOL library. Three sample REPLACE statements
appear in Fig. 14.

KEPLACE ==CSR== BY ==COlIP 5YNC KRIGHT==.

REPLACE ==EXTERi{AL== BY ==EXTERNAL-X=
==CONTINUE== BY ==PROCLEDE==.

REPLACE ==COMP== BY ==COMP-3==
==COMPUTATIONAL== BY =COup-3==,

Figure 14. Some REPLACE statements.

The simplest format of REPLACE is
REPLACE ==text-1== BY ==text-2==-

where text-1 and text-2 are both strings of COBOL
words. The effect of the statement is to scan the source
text for occurrences of text-1 and replace each occurrence
with text-2. The scanning begins at the code following
the REPLACE statement and ends at the next RE-
PLACE statement or the end of the program (whichever
is next encountered).

A list of substitutions may be given in a single
REPLACE statement (see second statement in Fig. 14)
and if it is merely desired to turn off all previously
specified substitutions

REPLACE OFF.

may be written.

This facility could be used to provide a shorthand
facility or to aid conversion (e.g. translating data-names
which have become reserved words or translating simple
clauses). It, in fact, provides the facilities of a simple text
editor without the ability to specify parts of words.

De-editing

In the proposed standard it is possible to move data from
an edited data item to an unedited one. For example with

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 63

202 udy 60 U0 1s9n6 Aq GG 1 /GH/09/1/92/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj paPEojuMOQ

J. M. TRIANCE

the data definitions in Fig. 15 it has always been possible
to move STORED-VALUE to I0-VALUE. Now the
move in the reverse direction, shown in Fig. 15, is
allowed.

This facility will be useful for handling humanized
input but it stops short of providing completely free-

1 IV-VALUE PIC ---9.99.
1 STORED-VALUE P1C 59939V99.

MOVE I10-VALUE 10 STORED-VALUE
Figure 15. An example of de-editing.

format input. This added flexibility with edited items has
not been extended to the arithmetic statements—arith-
metic can still only be performed on numeric (unedited)
items.

Variable length records

A new method of specifying the length of variable length
records is permitted in the proposed standard. The length
of each record in turn can be stored in a Working-Storage
data item, the name of which is specified in the File
Description Entry.

In Fig. 16, DELIVERY-DETAILS can contain any-
thing from 4 to 54 characters of information so in the
new RECORD clause in the FD entry the record length
is specified as 10 to 60 (characters). The DEPENDING
ON phrase is used to specify the data item (in this case
DD-RECORD-LENGTH) which contains the length of
the current record. This data item may not be defined in
the File Section.

FD DELIVERY-DETAILS-FILE
RECORD I3 VARYING It 3IZE FKOM4 10 TO 60
DEPENDING ON DD-RECORD-LENGTH.
1 DELIVERY-DETAILS5-RECORD.
2 CUSTOMER-CODE PIC X(6).
2 DELIVERY-DETAILS PIC X(54).

WORKING-STORAGE SECTION.
1 DD-RECORD-LENGTH PIC 99.

store lengtn of current record in
DD-RECORD-LENGTH
WRITE DELIVERY-DETAILS-RECORD

Figure 16. New type of variable length record.

In the Procedure Division the length of each record
must be calculated and stored in this data item prior to
the execution of a WRITE statement for the file. Then
only the specified number of characters are transferred to
the file.

The same mechanism is used to determine how many
characters are transferred by the INTO phrase in a
READ statement.

This new mechanism is flexible enough to cope with
any structure of variable length record. But as with
reference modification the flexibility is achieved by
making COBOL more low level.

Accompanying this new type of variable length record
are some relaxations on the restrictions currently placed
on variable length records. It will be possible to read a
record and rewrite it with a different length in Indexed
and Relative Files. It will also be possible to SORT and
MERGE variable length record files.

64 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

Other significant changes

Setting condition-names. It is now possible to set flags
explicitly. For example if END-OF-FILE is defined as a
(level 88) condition-name it can be set to ‘true’ by the
statement.

SET END-OF-FILE TO TRUE
The equivalent in ANS 74 COBOL is shown in Fig. 17.

1 END-OF-FILE-FLAG PIC 9.
88 SWD-OF-FILE VALUE 1.

SET END-OF-FILE 10 TRUE
is egqguivalent to:

MOVE 1 TO END-OF-FILE-FLAG

Figure 17. Setting a condition-name.

This feature can be used to significantly improve
program readability. It is however a great shame that
there is no feature for clearing condition-names (setting
them to ‘false’).

Optional entries. Those who criticize the verbosity of
COBOL will be pleased to discover that the following
language elements are now optional : (i) The Environment
Division, (ii) The Configuration Section, (iii) SOURCE-
COMPUTER Paragraph, (iv) OBJECT-COMPUTER
Paragraph, (v) The Data Division, (vi) The LABEL
RECORD Clause, (vii) FILLER, and (viii) The Proce-
dure Division. The omission of whole Divisions apart
from the Identification Division is permitted in the case
of nested programs.

SORT with DUPLICATES. The optional phrase WITH
DUPLICATES IN ORDER has been added to the
format of the SORT statement. When specified it ensures
that records with equal key values are output in the same
sequence as they are input.

Punctuation. The punctuation characters comma and
semicolon are now interchangeable with the ‘separator’
space. Thus a comma or a semicolon may appear in place
of or in addition to any space which is used to separate
COBOL words.

User defined figurative constants. The programmer can now
reference any character in the computer’s character set.
This is done by means of new clause in the SPECIAL-
NAMES paragraph which identifies the desired charac-
ter by means of its position in the collating sequence and
assigns it a name. This name may then be used as a
figurative constant. In Fig. 18 the name BELL is assigned
to the 38th character in the computer’s character set.

SPECIAL-NAMES.
SYMBOLIC-CHARACTER BELL IS 38.

DISPLAY "I1HVALID CUSTOMER CODE" BELL

Figure 18. User defined figurative constant.

DISPLAY WITH NO ADVANCING. It is now possible to
suppress the automatic line advance that occurs after

202 udy 60 U0 1s9n6 Aq GG 1 /GH/09/1/92/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj paPEojuMOQ

THE PROPOSED COBOL STANDARD—ITS SIGNIFICANCE

data has been DISPLAYed on a line printer or VDU.
The programmer simply writes WITH NO ADVANC-
ING at the end of the DISPLAY statement.

INSPECT CONVERTING. A new format for INSPECT is
introduced. It provides a more compact (butless readable)
means of specifying replacement within a data-item
when each of a set of individual characters is to be
replaced by another individual character (see Fig. 19).

INSPECT ITEM COWVERTING
“ABC" TO "XYZ"

is equivalent to:

INSPECY ITEM REPLACIWG
"A" By "x®
wgn gy "y
"cH By "gzw

Figure 19. INSPECT CONVERTING.

DAY-OF-WEEK. An addition to the FROM phrase of
ACCEPT permits a program to access a code number
representing the day of the week. (1 for Monday, 2 for
Tuesday up to 7 for Sunday). The statement ACCEPT
DAY-CODE FROM DAY-OF-WEEK would, for ex-
ample, store the appropriate code number in DAY-
CODE.

Communication with a single terminal. A third format of the
Communication Description Entry

CD...FORI-O...

is introduced for communication with a single terminal.
This simplifies programming for this rather common
situation.

SEND REPLACING LINE. When a VDU (or other device
to which messages are sent) permits both the superim-
position of characters and the replacement of characters
the programmer can now select the option he desires.

In such cases he can write

SEND cd-name AFTER ADVANCING 0 LINES
REPLACING LINE

to replace the last tine sent with a new message.
Alternatively he can omit REPLACING LINE to
superimpose a new message on top of the previously sent
line.

PURGE. The PURGE statement has been introduced for
the purpose of deleting any partial messages released by
the most recently executed SEND statement(s).

48 dimensional tables. It is now possible to define tables
with up to 48 dimensions—the ANS 74 limit is 3. The
main merit of this change is that 48 is somewhat less
arbitrary than 3. It is the maximum possible ina COBOL
record—an OCCURS clause on each level from level 2 to
level 49 inclusive.

Padding partially used blocks. The new PADDING CHAR-
ACTER clause may be used in a Select Entry to specify
a character for padding blocks in a sequential file. In an
output file it is used to fill any unused space at the end of
each block. On input any padding characters at the end
of a block will be ignored. Its main use is likely to be for
transferring sequential files between different machines.

Minor additions

The draft standard makes the following minor additions
to the COBOL language. (i) EXIT PROGRAM may
appear in the same paragraph as other statements; (ii)
the optional word TO may be used in the ADD ...
GIVING statement; (iii) non-numeric literals may be
160 characters long (the current limit is 120); and (iv)
parameters in a CALL statement need not be confined to
level 1 or level 77 data items. There are a further 47
minor additions. None of them add significantly to the
power or readability of COBOL.

INCOMPATIBILITIES

Programs written in ANS 74 COBOL will not necessarily
conform to the proposed standard. Some features of the
current standard have been deleted, the run-time behav-
iour of some features has changed and there are some
new reserved words. Programmers are also forewarned
of longer term incompatibilities.

Deletions from the language

The following features of ANS 74 COBOL have been
deleted: the RERUN clause, the ALTER statement, the
ENTER statement, the REVERSED option of OPEN,
the MEMORY SIZE clause, and double Character
substitution.

All of these features could be regarded as obsolete—
either because they are inconsistent with current practice
(like ALTER) or because they are superseded by other
features supported by COBOL or the Operating System
(e.g. the implementor is free to support other-language
routines by means of CALL instead of ENTER). Another
13 less significant features have been deleted from
COBOL. Some of these are features which no-one would
envisage using—such as the ADVANCING PAGE
option and END-OF-PAGE phrase in the same WRITE
statement.

Changes to run time behaviour

There are 26 changes which could affect the run time
behaviour of existing ANS 74 programs. The most
significant of these are the following.

1. STOP RUN will close all files which are still open.

2. Lower case letters are regarded as alphabetic in the
ALPHABETIC condition test.

3. EXIT PROGRAM initializes all PERFORM state-
ment return links.

4. In a string of conditions linked by OR the conditions
are evaluated from left to right and the evaluation
stops as soon as a true condition is found. Thus the
first condition can be used as a trap to prevent the
second condition being executed in circumstances
which would cause a run time exception.

In the first three examples ANS 74 did not define the
run time behaviour. In the last case the rules seemed to
imply that all the simple conditions (linked by ORs)
should be evaluated before applying the OR(s)}—many

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 65

20z 11dy 60 U0 3sNB Aq GG /G#/09/1/92/a101ME/|ulW09/Ww0d dno-oiWspedE//:Sdyy Wolj papeojumoq

J. M. TRIANCE

compiler writers currently implement the new rule
however.

Most COBOL programs will be unaffected by these
changes to run time behaviour—either because the
appropriate circumstances do not arise in the program or
because the implementor already abides by the proposed
rules.

New reserved words

The proposed standard introduces 57 new reserved
words. Many of them will be in use as user-defined words
in existing programs. Figure 20 lists some of the words
which are likely to be in use as data-names and procedure-
names.

ALPHANUMERIC END-SEARCH PADDING

ANY EVALUATE PURGE
CCUMON EXTERNAL REFERENCE
CONTINUE FALSE REPLACE
CONVERSION INITIALIZE TEST
DEBUG-STARY ORDER TRUE

Figure 20. Some of the new reserved words.

Future incompatibilities

A new departure with this proposed standard is a
‘transitional language element’ list of those features
which are scheduled for deletion in the next revision of
the Standard (some time in the 1990s). Those installations
that heed the warning will thus have plenty of time to
phase out the transitional features. The following features
are destined to fade away in this fashion: MULTIPLE
FILE TAPE clause, DATA RECORDS clause, LABEL
RECORDS clause, RECORD CONTAINS integer-1
TO integer-2 CHARACTERS clause, VALUE OF
clause, INSPECT with TALLYING and REPLACING
in the same statement, STOP literal statement and
Debugging Declaratives.

The transitional approach is also being used to achieve
a reshuffle of clauses between the Select Entry and the
File Description (FD) Entry. The following clauses are
transferred from the Select Entry to the FD Entry:
ACCESS MODE, RECORD KEY, ALTERNATE
RECORD KEY, and FILE STATUS.

The following clauses are transferred from the FD
Entry to the Select Entry: BLOCK CONTAINS, and
CODE-SET.

The purpose of this rationalization is to use the Select
Entry to describe the physical aspects of the file and the
FD Entry to describe the logical aspects.

During the life of the proposed standard these six
clauses may be written in either entry but after that they
will only be accepted in their new positions.

CONFORMANCE RULES

The rules which determine whether an implementation
conforms to the standard have been tightened up.

Subsets

The number of approved subsets has been reduced from
104,976 to 54. Three levels of COBOL have been defined.

66 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

(1) Minimum which consists of level 1 Nucleus (which
now includes table handling), sequential I-O and
Inter-Program Communication (i.e. called
programs).

(ii) Intermediate which consists of level 1 of Nucleus,
Sequential I-O, Relative I-O, Indexed I-O, Inter-
Program Communication, Segmentation, Sort-
Merge and Source Text Manipulation (COPY and
REPLACE).

(iii) High which consists of level 2 of all these modules.

The Debug, Report Writer and Communication (SEND
and RECEIVE) modules are classified as optional. This
means that an implementor can claim high level
implementation (or any other level) without implement-
ing any of these three modules.

Reserved words

All reserved words in the eight required modules (i.e.
excluding the optional modules) must be supported as
reserved words in all standard implementations even if
the features in which the reserved word is used are not
supported. This will aid portability between standard
conforming implementations but since the optional
modules and extensions to the standard are not covered
the problem is only partially removed.

Extensions

As with the current standard an implementor may add
any extension to the standard and still claim conformance
to the standard. Now, however, the implementor is
required to document all extensions to the standard.

Implementor defined elements

Some of the features which were not fully specified in
ANS 74 COBOL have been specified in the proposed
standard. The remaining sources of incompatibilities are
listed in the standard under the headings Implementor
defined language elements, Hardware dependent language
elements and Undefined language elements.

MISSED OPPORTUNITIES

Missing features

The two most significant omissions from the proposed
standard are database and screen handling facilities.

The CODASYL database facility was specified many
years ago and a great deal of work has been done on its
standardization. However, the current obstacle to stand-
ardization is the failure of the two ANSI committees to
agree on compatible specifications for the COBOL Data
Manipulation Language and the Schema. The problem
of agreeing on a standard has been aggravated by
disagreement on the type of database that should be
supported—hierarchy, network, relational or some com-
bination of the three.

Screen handling is much further from standardization.
At the present rate of progress screen handling in COBOL
is unlikely to be standardized this century.

20z 11dy 60 U0 3sNB Aq GG /G#/09/1/92/a101ME/|ulW09/Ww0d dno-oiWspedE//:Sdyy Wolj papeojumoq

THE PROPOSED COBOL STANDARD—ITS SIGNIFICANCE

What should be missing

The transitional language element list will in practice
give programmers ten years notice of features to be
deleted. Despite the existence of this safety net ANSI
have been extremely cautious about removing COBOL’s
dead wood. The following items have been suggested for
deletion but still remain in the language.

debug (D) lines

level 77 entries

CORRESPONDING option

EXIT (but not EXIT PROGRAM) statement
RENAMES clause

segmentation

SYNCHRONIZED clause

The level of COBOL

The proposed standard does not on average make
COBOL a higherlevel language. The higher level features
such as INITIALIZE and de-editing are balanced by the
lower level features such as reference modification and
the new form of variable length records.

The next round of standardization is likely to make
more progress with, hopefully, the addition of database
and validate facilities. There is also a possibility of
support for other data processing functions such as
update.

CONCLUSIONS

There is something of value for everyone in the proposed
standard but, apart from the structured programming
facility, no one feature is likely to make a big impact.

The proposed standard is not upward compatible with
ANS 74. However a large and fast growing language like
COBOL can only remain healthy if the dead wood is
removed. If anything, the pruning could have been more
severe. It is of course in the short-term interest of users to
maintain compatibility at the expense of perpetuating an
inferior language. The proposed incompatibilities are
relatively modest however and major manufacturers are
in any case likely to support a gradual transition from
ANS 74 to the proposed standard.

The proposed standard is undoubtedly a step forward—
but not a very big one. It has taken at least two years
longer to produce less changes than the ANS 74 COBOL
standard did. This slowing down of the standardization
process and the failure to incorporate the database
facility could mark the beginning of the end—if not for
COBOL then for COBOL standardization.

Acknowledgement

The author thanks P. Brown and R. Grealish for their comments on the
first draft of the paper.

REFERENCES

1. ANSI, Draft Proposed Revised X3.23 American National Stand-
ard Programming Language COBOL, American National Stand-
ards Institute (1981).

2. ANSI, American National Standard Programming Language
::OBOL X3.23-1974, American National Standards Institute

1974).

3. CODASYL, COBOL Journal of Development, Canadian Govern-

ment, Department of Supply and Services (1981).

4. M. A. Jackson, Principles of Program Design, Academic Press,
London (1975).

5. J. M. Triance, Structured Programming in COBOL—the Current
Options. The Computer Journal 23 (No 3), 194 (1980).

Received March 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 67

202 udy 60 U0 1s9n6 Aq GG 1 /GH/09/1/92/2101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY WoJj paPEojuMOQ

