Operations on Quadtree Encoded Images

M. A. Oliver* and N. E. Wiseman

Computer Laboratory, University of Cambridge, Corn Exchange Street, Cambridge CB2 3QG, UK

A quadtree is a form of picture encoding which is compact and easily handled. It is based on a description of the
recursive subdivision of those parts of the image where there is detail until some desired resolution is reached. This
paper proposes a method of storing quadtrees and operating on images by manipulating their quadtree encodings.

1. INTRODUCTION

1.1 Description of encoding

An image represented by an N x N square array of
pixels, each of P bits, would need P x N x N bits to store
inuncoded form. In practice, it is found that neighbouring
pixelsare often the same and that one- or two-dimensional
spatial coherence can be exploited to write the image in
much less than P x N x N bits by the use of a suitable
coding scheme. Run-length encoding is a popular
example which makes use of one-dimensional coherence.
A run-length encoded image is described in scanline
order as a sequence of pairs of values a, b where a
represents the number of consecutive pixels of value b in
each run. Run-length encoding gives reasonably good
compression in many cases (a factor of ten may be
typical) but the image is not easily manipulated in its
coded form. It is therefore useful for image storage and
transmission but not much else.

A quadtree encoded image exploits two-dimensional
coherence by recursively decomposing the image into
square areas in a particular way. The code is notionally
a tree structure with the root corresponding to the whole
image. Unless the image is homogeneous it is subdivided
into four quadrants, each being represented in the tree by
a node joined by a branch to the root. These nodes are
leaves when the quadrants they represent are themselves
homogeneous, otherwise they carry further branches to
nodes representing successively smaller subdivisions.
The subdivision, and hence the tree growth, stops when
either a sufficiently fine resolution is reached or all the
nodes are leaves.

1.2 Why quadtree encoding could be important

At first sight the tree encoding described above appears
to be just a compression trick which saves storage space.
The savings are modest to good, depending on the image
properties, and are generally rather better than for run-
length encoding. There are, however, other aspects which
are of interest and where the differences from other
encoding methods are dramatic. Manipulating an image
is often far easier to do by operating on its treecode than
its run-length code, or even its pixel array (what one
might call its uncoded form). Keeping images in a form

* Permanent address: The Computing Laboratory, The University,
Canterbury, Kent CT2 NF, UK.

suitable for display with only minor computations needed
at display time also favours a tree encoding, the anti-
aliasing values being held within the tree in a most
natural way. This is explained as follows:

1. One method of calculating the anti-aliasing values for
an image is based on super-sampling. The image is
defined to a higher spatial resolution than the output
device requires, and pixel averaging is used to reduce
the resolution by the desired amount and deliver the
soft edge pixel values.

2. In a quadtree encoded image a non-terminal node
corresponds with an area in the image defined by the
sub-tree which starts in that node. This sub-tree
contains the leaves whose values represent the super-
sampling of the node. Thus a node which fathers four
leaves represents another leaf at half the spatial
resolution of its descendants and can hold the average
of the four descendant leaves as its value.

Storing the anti-aliasing values in the treecode does
more than decorate the tree. Operations on treecoded
images can arrange to preserve the correct averages on
non-terminals, so that every image is available at all
interesting resolutions. This property can be exploited so
that an interactive system can always respond quickly
with a low resolution answer while a better one is being
loaded to the terminal. In animation work the display
updates can be at low resolution while rapid movement
persists, and at higher resolutions as movement slows or
ceases. An image can be prepared for output on several
devices of quite different resolutions and grey-scale
capabilities without recomputation or compromise.

2. STORING QUADTREES

2.1 Pointer structures

Although a pointer structure may simplify any operation
on the tree and speed access to its leaves, in general the
memory requirements are unacceptable. In the work
described here, we used one byte for each node value. A
single pointer to that node would take four bytes and, if
the whole tree were stored as a pointer structure, we
should need around five times as much space for pointers
as for leaves. Toy pictures of a few hundred leaves were
not of much interest to us and all the ‘real’ images we
worked with had a few thousand leaves (rarely more than
10 000 though). In using the system we built to manipulate
quadtree encoded pictures there would typically be half

CCC-0010-4620/83/0026-0083 $04.50

© Wiley Heyden Ltd, 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 83

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

M. A. OLIVER AND N. E. WISEMAN

a dozen images active at any one time and memory space
for pictures, though not desperately short, was not
plentiful. For our work we thought it better to save space
than time, and although this will not always be so, the
time requirements have seemed very reasonable with a
simple linear storage structure (see below).

2.2 Linear structures

If the producers and consumers of treecoded images can
agree about the way each value in the code shall be
interpreted there is no need to make the tree structure
itself explicit in the code. We can use juxtaposition in the
code to mean ‘next to’ in a treecoded image sense. A
sequence (4 B C D) of values could represent the four
leaves of a single subdivided square, given in an order set
by convention. If, say, B was not a leaf but was itself
subdivided into (W X Y Z) then we could write 4 B
(WXYZ)YCDorA(B)CD W X Y Z Inthe first
case every subdivided node is followed by its subdivi-
sions—a depth first method of storing the data. In the
second case each level is described in turn—a breadth
first scheme. Which is best? There is no doubt that the
algorithms described in this paper favour depth first
because the passing down of context during recursions
requires no specific action in the traversing procedures.
However a breadth first method has its attractions—the
point made in Section 1 about an animation application
would have a stronger effect with a breadth first structure.
We have not studied this issue with any thoroughness.

2.3 Treecodes

Following the first of the suggestions in Section 2.2 above
we now describe a linear code which specifies a quadtree
in depth first order. It makes no pretensions of generality,
but has found use for several different projects. Each
node, whether non-terminal or leaf, has a value given in
4 bits. One additional bit indicates which sort of node it
is and these 5 bit quantities are stored in byte fields in
memory. A sequence of bytes is read as follows:

1. Think of a square area.

2. Get next byte.

3. If leaf, colour the square with value in 4 bit field.

4. If non-terminal, subdivide the square and return to
step 2 four times for the bottomleft, topleft, bottom-
right, and topright squares.

Thus the code 20, 4, 18, 2, 0, 5, 1, 7, 3 is under-
stood to represent the quadtree of Fig. 1. The non-
terminals are 20 and 18 in this case, representing the
average value of the whole image (16 + 4) and the top
left quadrant (16 + 2) respectively.

Figure 1. Quadtreeimagefromtreecode20 4 18 2 0 5 1 7 3.

84 THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983

2.4 Leafcodes

The basic idea in leafcodes is to treat the square image
areas represented by the leaves in quadtrees as entities
separate from the structure of the treecode while retaining
the relation to quadtrees by requiring that only the square
areas corresponding to possible quadtree leaves are
permitted; in general arbitrary square areas must be
broken up into the leaves that cover them. The recursive
structure of the treecode determines both the size and the
position of a particular leaf. In leafcodes this information
is carried directly in the code for each leaf together with
its colour. The size of the leaf can be given by the number
of pixels along the edge of the square (which will be a
power of two) or implicitly by the recursive depth in the
quadtree. The position of the leaf is determined by the x,
y co-ordinates of the pixel in the lower left hand corner
of the leaf which will be called the origin of the leaf. Thus
a 512 x 512 picture has a number space as shown in
Fig. 2.

511,511

0,0

Figure 2. Number space for 512 x 512 picture.

Consider the following algorithm for the specification
of the position of a pixel:

1. Divide the image into quadrants.

2. Choose the quadrant containing the pixel and repeat
steps 1, 2 until no further subdivision is possible.

3. Write the sequence of quadrant numbers out in base
four using 0, 1, 2, 3 to identify the bottomleft, topleft,
bottomright and topright quadrants, respectively.

When the leaves of a treecode are represented in this way
the leaf co-ordinates are seen to be in strictly increasing
order. In the example shown in Fig. 3 the shaded square
has leaf co-ordinates 031 (001101 in binary).

Figure 3. Leaf with leafcode 001101 is shaded.

The space requirement for leafcode can compare
favourably with that for the corresponding treecode

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

OPERATIONS ON QUADTREE ENCODED IMAGES

owing to two factors. For quadtrees of a few hundred
nodes or more

number of leaves = (3/4) x number of nodes

very closely. Also leaves of the background colour can
simply be omitted from the list of leaves and inferred
when required. For line images on a uniform background
the space requirement is then only about 15%, greater
than that for the corresponding treecode.

3. OPERATIONS ON TREECODES

3.1 Walking a treecode

Many operations on quadtrees can be done by procedures
whose basis is the same: walking over the tree with a
simple recursion every time that a non-terminal node is
encountered. Such a walk is achieved by

let walk() be
$(fori=0to3
$(pointer = pointer + 1
if picture % pointer > 15 walk()
$

$

The walk is started by setting the static variable pointer
to the address of the first value in the tree, and then
going:

if picture %, pointer > 15 walk()

Note that the walk terminates when the tree it is started
on expires. It can therefore be used to traverse any
subtree in the code just by starting off in the right place.
On exit the value of pointer is just prior to the next node
that follows the tree which has been walked (i.e. on the
last leaf of the tree walked). In the following sections the
basic walk is embellished by statements which make use
of the values read from the input tree or inferred from the
execution path.

3.2 Display an image by recovering square coloured areas
from the treecode

Suppose that a picture represented by its quadtree is to
be drawn on a simple graphics display. The display is
driven by a procedure, not given here, which draws a
single coloured square of specified size and position on
the screen. It is called in the form square(x, y, side, colour),
where x and y specify the lower left corner of the square.
All that is needed is a version of walk, like that shown
above, but with something to keep track of the position
of each node and the size of the square area which it
represents. This procedure is

let putout (x, y, scale) be
$(fori=0¢to3
$(pointer = pointer + 1
if (scale = minsize) v
((scale > minsize) A (picture %, pointer < 16))
square (x + (i > 1 — scale. 0), y + ((i A 1) = 0 — scale, 0),
scale, picture %, pointer)
if picture %, pointer > 15
putout (x + (i > 1 - scale, 0), y + ((i A 1) = 0 — scale, 0), scale/2)
$)
$)

The static variable minsize allows the resolution of the
image to be controlled. If the picture is defined to a

resolution of, say, Z and minsize is set to Z or smaller,
then the output will be a picture using all the leaf values
in the tree. If minsize is larger than Z then the values in
non-terminals at resolution minsize are used in place of
the smaller leaves which make up those nodes. Since
these contain the averages of the leaf values beneath
them, the form of anti-aliasing described in Section 1 is
obtained very simply.

3.3 Rotate and reflect a treecode

Rotating a treecode by 180° is a permutation of the
following sort:

1 3 2 0
0 2 31

If the input tree is scanned forwards while the output
tree is constructed backwards, most of the work will be
done. However, each cell subdivision is preceded in the
input scan by the subdivided node value whereas the
output tree wants it afterwards. The recursive call is used
to introduce the required postponement in issuing the
node value and the entire algorithm is very simple:

let reverse() be
$(let nodevalue = ?
fori=0to3
$(inpointer = inpointer + 1
nodevalue = inpicture %, inpointer
if nodevalue > 15 reverse()
outpicture %, outpointer = nodevalue
outpointer = outpointer — 1
$)
$)

Inpointer and outpointer are initialized to the start and
end of the input and output trees, respectively (since the
output tree will be equal in length to the input tree we
know where to set outpointer so that it is at the end of the
output tree).

Rotation of a quadtree by 90° is a permutation of the
following sort:

1 3 01
0 2 23

and is considerably more difficult to do. The method
presented here processes the tree one level at a time and
makes multiple scans of the input. Each scan is to skip
over the subtree which separates one node from the next
one which is at the same level in the input data. Using it,
the four nodes at one level are discovered together with
the lengths of the intervening subtrees. The permutation
at that level is then written out and the next levels
inspected recursively. The procedure is:

let rotate (pointer) be
$(let res = vec 3
let pbefore = vec 3
let pafter = vec 3

fori=0to3
$(pbefore'i = inpointer + 1
res'i = inpicture %, (inpointer + 1)
scan()
pafteri = inpointer — pbefore'i
$)

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 85

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

M. A. OLIVER AND N. E. WISEMAN

/| now start the permutation
outpicture %, pointer = res! 2 //quadrant 2 to quadrant 0
if pafier'2 ne 0
$(inpointer = pbefore'2
rotate (pointer + 1)
$)

pointer = pointer + pafter! 2 + 1

outpicture %, pointer = res! 0
if pafter! O ne 0
$(inpointer = pbefore! 0
rotate (pointer + 1)
$
pointer = pointer + pafter! 0 + 1

//0 goes to 1

outpicture %, pointer = res' 3
if pafter! 3 ne 0
$(inpointer = pbefore' 3
rotate (pointer + 1)
$)
pointer = pointer + pafter! 3 + 1

//3 goesto2

outpicture % pointer = res! 1

if pafter! 1 ne 0

$(inpointer = pbefore! 1
rotate (pointer + 1)

$

//1goesto3

$

Of course other permutations can be used in the same
manner to rotate the other way, reflect or flip the image.
The permutation for left to right reflection is, for example

1 3 31
0 2 20

and the changes to the procedure given above to achieve
this are obvious.

The procedure given above is space efficient and
sufficiently quick to be useful on real pictures (see Section
4). Quicker methods are possible, although at a cost in
memory requirements. One approach is to rebuild the
tree as a pointer structure and then permute the nodes
while compressing the tree back to its linear form. For a
tree of depth D the speedup should be of the order of D/2,
but workspace is increased fourfold (if wordlength is four
bytes). We did not think the trade favourable in the
environment we were in.

3.4 Translate a treecode

In general, moving the image through a displacement
x, y will involve a wholesale reorganization of the tree.
However some observations can be made:

1. Large homogeneous areas stay large and homogeneous
so the compaction which treecodes permit must still
be available.

2. A leaf which is translated by some multiple of its side
remains a leaf.

3. Growth of tree detail is along the edges of incursions
so it is clear where to start looking for new nodes.

Consider for example Fig. 4 showing an incursion into
the left edge of a leaf by a feature being moved right by
a distance x. We have to replace the leaf by a sub-tree
having subdivisions concentrated on its left side in which
to write the new data extending at most by x into the
original leaf area. We do this by keeping a leftstate vector
of the values to displace into the newly constructed sub-
tree and making the total translation by a succession of
leaf sized moves of diminishing size.

86 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

000 XXX
000 XXX
000 XXX
00

XX
XX

00
000 XXX

-— X —

Figure 4. Incursion of an image feature into a leaf.

Moving up is accomplished in the same manner.
However, moving down or to the left is impossible. We
can manage without such moves by reversing the image
before a down-left move, making the move (which will
then of course be up-right), and finally reversing the
image again. Reverse is pretty quick.

Another, probably better, way to do translation (and
indeed some other transformations, such as zoom, i.e.
scaling) is to do it on the leafcode for the image. The
displacement of a picture represented by its leafcode is
evidently achieved by displacing each leaf independently.
Adding an x, y displacement to a leaf co-ordinate will in
general not result in a valid leafcode of course, owing to
the need for leaves to register with the image space in a
particular way. What has to be done is to break the
translated squares back into leaves and then sort them to
restore their relative ordering in the tree and compress
the result by amalgamating identical quadrants. This
approach is quite appealing and we expect to report in a
later paper on a comparison of treecode and leafcode
transformations.

3.5 Truncate a treecode

Below a prescribed depth the branches and leaves of the
quadtree are removed and all nodes at the lowest
remaining level are turned into leaves. This is accom-
plished quite simply by a walk which keeps a record of
the depth reached. At and above the specified maximum
depth the node values of the input picture are passed to
the output picture and pointers in each are stepped on
(note that the input picture can also be the output picture
because the reading position is never prior to the writing
position). When a non-terminal node at the maximum
depth is encountered, walk is called, thus stepping the
input pointer to the point just before the next node at the
same depth. In this case the non-terminal is converted to
aleaf before being written to the output. As the truncation
proceeds, the situation may arise where four leaves in a
non-terminal have the same value, one or more of the
leaves having just been created. In that case compression
should occur with the non-terminal becoming a leaf in
place of the four equal valued leaves. The algorithm
below takes care of this case with the test that follows the
main for-loop in the walk:

let truncate (depth, average) = valof
$(let pointer = ?
let nodevalues = vec 3

fori=0to3
$(inpointer = inpointer + 1
outpointer = outpointer + 1

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

OPERATIONS ON QUADTREE ENCODED IMAGES

test inpicture %, inpointer < 16 then

8 nodevalues! i = inpicture %, inpointer
outpicture %, outpointer = nodevalues' i

%)

or
test depth < maxdepth then
$(pointer = outpointer
nodevalues! i = truncate (depth + 1, inpicture %, inpointer)
outpicture % pointer = nodevalues! i
%)
or
$(nodevalues! i = inpicture %, inpointer A 15
outpicture %, outpicture ‘= nodevalues! i
walk()
$)
$)
test nodevalues! 0 = nodevalues' | = nodevalues! 2 =
nodevalues! 3 A nodevalues! 0 < 16
then

$(outpointer = outpointer — 4
resultis nodevalues! 0
$
or
resultis average
$)

Truncate is called with inpointer at the input picture root,
depth set to one, and average set to the value of the root
node.

3.6 Merge, mask and invert a treecode

Combination of quadtrees is surprisingly simple. Merging
two trees is an operation similar to OR in which the
output value in any pixel is the larger of the two input
values. It is done by examining the nodes of each input
tree once, stepping forwards in each tree with a stride
chosen to keep the two scans synchronized. Thus if at a
certain stage the next node in each tree is a leaf node then
the leaves are combined to form an output node (this
may or may not be a leaf because adjacent nodes of the
same value can later be amalgamated to form bigger
leaves). If the first tree contains a non-terminal node and
the second a leaf, then the first scan recurses while the
second waits for the first to ‘catch up’. Similarly if the
second contains a non-terminal while the first contains a
leaf, then the second scan recurses. If both trees contain
non-terminals, then both scans recurse. The algorithm is
plainly seen in:
let quadmerge() = valof
$(let pointer = outpointer + 1
let res = vec 3
let a = inpica %, inpointera
let b = inpicbh %, inpointerb

/| park four subdivisions here
// value from first input tree
//and one from the other

outpointer = outpointer +.1 | | step output pointer

if(@a<16) A (b < 16) // both leaves?
** $(curpic%outpointer=a>b— >a,b // merge them if so
resultis curpic %, outpointer //and exit
$)

test a < 16 then // must subdivide b if a is leaf
fori=0to3 /[so do four subdivisions of b
$(inpointerb = inpointerb + 1

b = inpicb %, inpointerb

res! i = quadmerge()

$)

or

test b < 16 then // well then a must be subdivided
fori=0to3 /[so do its four subdivisions

$(inpointera = inpointera + 1
a = inpica %, inpointera
res! i = quadmerge()

$

or | | or else both subdivided
fori=0t¢to3 //so do them both
$(inpointera = inpointera + 1

inpointerb = inpointerb + 1

a = inpica %, inpointera

b = inpicb %, inpointerb

res! i = quadmerge()

$

if (res!0=res! 1 =res!2=res!3) A (res! 0 < 16) //see results

$(curpic %, pointer = res! 0 //if all the same we can
outpointer = pointer // amalgamate the cells
resaltis res! 0 /| & pass up the result

%)

fori=0to3res!i=res'inl5

curpic % pointer '= 16 v (res! 0 + res! 1 + res! 2

+res!3 + 2)/4 [/average

//and pass up the result

|/ force to leaves

resultis curpic 9, pointer
9
The procedure is called with picture vectors and initial
pointer values held in static variables. At the statement
where leaves are actually combined alternative connec-
tives can be substituted to combine trees in different
ways. Thus masking two trees, an operation similar to
AND, we could do by replacing the statement at ** by:

curpic %, outpointer =a <b—a, b

The output tree has its non-terminals properly averaged
so giving the anti-aliasing effect referred to earlier and
the whole operation is an agreeably cheap computation.

3.7 Building trees for polygons and circles

Consider first the construction of a quadtree to represent
a filled convex polygon. The tree is built by a recursive
procedure which compares probe cells with the polygon
boundary, returning for each cell an outside, inside, or
neither result. If inside, the cell is coloured with the inside
colour. If outside, it is coloured with the outside colour,
and if neither it is subdivided and the process repeated.

D probe cell

polygon

Figure 5. Polygon and probe cell.

The polygon (Fig. 5) is defined by a chain of edges
tracing the boundary in, say, an anticlockwise direction
and the in/out/neither condition is evaluated as follows:

For each edge:

1. Test if all cell vertices are on the ‘inside’ side of the
edge. If so the cell is inside that edge.

2. Test if cell is outside the bounding box for that
edge. If so the cell is outside that edge.

3. Testif all cell vertices are on the ‘outside’ side of the
edge. If so the cell is outside that edge.

4. The result is neither.

If for all edges the test returns inside, the cell is inside
the polygon. If for any edge the test returns neither,

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 87

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

M. A. OLIVER AND N. E. WISEMAN

then the cell intersects the polygon and has to be
subdivided. Otherwise the cell is outside the polygon.

Test 1 causes the condition to be evaluated incorrectly if
the polygon is concave, because some probe cells actually
inside the polygon are not on the ‘inside’ side of every
edge. An example is shown in Fig. 6.

Figure 6. Probe cell not inside all edges.

The equation for the line on which an edge of the
polygon falls is given by

ax+b—cy=0

where
a=y2-yl
b=yl-x2 —y2-xl1
c=x2-xl

and the edge joins vertices (x1, y1), (x2, y2). For an
arbitrary point X, Y we have

aX+b—cY=m

and m then indicates the relative disposition of the point
and the line. If m = 0 the point is on the line, if m < 0 the
point is on the ‘inside’ side of the line and if m > 0 it is on
the ‘outside’ side.

A procedure testpolygon which works in this way is
then used in the tree constructing algorithm as follows:

let buildtree (polygon, probecellx, probecelly, scale) = valof
$(let pointer = outpointer + 1

let testresult = ?

let nodevalue = ?

outpointer = outpointer + 1
testresult = testpolygon (polygon, probecellx, probecelly, scale)
picture %, outpointer = testresult = outside — 15, 0
unless testresult = neither resultis testresult
scale = scale/2
nodevalue = scale = minsize — 7,
(buildtree (polygon, probecellx,
probecelly, scale) +
buildtree (polygon, probecellx,
probecelly + scale, scale) +
buildtree (polygon, probecellx + scale,
probecelly, scale) +
buildtree (polygon, probecellx + scale,
probecelly + scale, scale) + 2)/4
picture %, pointer '= scale = minsize — nodevalue, 16 v nodeval
resultis nodevalue
$

The procedure is called with outpointer at its initial
value, scale at its maximum value, and probecellx and
probecelly both zero (lower left corner is the quadtree
origin). In the process of building the tree the anti-
aliasing values are produced as a by-product and recorded
in non-terminal tree nodes.

88 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

If only the boundary is to be converted to quadtree
form the procedure above can be simplified slightly. Of
course it then works for concave polygons perfectly well,
or for that matter unclosed or disconnected linechains.

The procedure testpolygon can be replaced by others
which test for a differently shaped object against the
given probecells so that buildtree can cope with images
other than of polygons. For example, a circular disc could
use a procedure called testcircle, say; after translating the
image space so that the disc is centred on the origin, it
goes:

1. If all probecell vertices are closer to the origin than
the radius, R, then the cell is inside the disc and a
result of inside is returned.

2. If any vertices are closer to the origin than R then,
since test 1 failed, the result is neither.

3. If the probe cell straddles both axes, the result is
neither.

4. If the probe cell straddles the x (y) axis and the y-co-
ordinate (x-co-ordinate) of any vertix of the cell is less
than R, the result is neither.

5. The result is outside.

The first two tests have an obvious interpretation. The
third test deals with the case when the cell overlaps the
disc, but all vertices are outside the circle. Test 4 is
necessary because the disc can penetrate the cell along an
edge even when all vertices are outside the circle.

3.8 Area filling in general

Given a quadtree for an arbitrary closed boundary the
task of filling the interior of the boundary is quite
different from that just described. The tree is already
correctly structured and the algorithm has only to colour
leaves in it. Well known methods which start by seeding
an interior point and growing colour up to the boundary
need modification when used with a quadtree because
the adjacency tests are complicated. It is easy to find
what lies above and to the right of a particular node, but
not what is below or to the left. What our method does is
sweep the tree colouring upwards and to the right, then
turn the image upside down (using reverse as described
above). This is done repeatedly until no changes in colour
occur. Any number of seeds can be given to start the
algorithm off—if well chosen the number of sweeps can
be minimized, but even with a single poorly positioned
seed most images are coloured in a few seconds. The
basic idea is shown below:

let colourwalk (x, y, scale) be
$(let nodevalue = picture %, pointer
fork=0to3 '
$(pointer = pointer + 1
test nodevalue > 15
then colourwalk (x, y, scale/2)
or
if colourcontact (x, y, nodevalue, scale)
Dpicture %, pointer = 15
outpicture %, outpointer = nodevalue
outpointer = outpointer — 1
switchon £ into
$(case 0: y =y + scale
endcase

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

OPERATIONS ON QUADTREE ENCODED IMAGES

case 1: x = x + scale

y =y — scale
endcase
case2:y =y + scale

$
$
$

Two static state vectors, leftstate and bottomstate, carry
the information about coloured areas and boundary
leaves to the left and below the node being inspected.
These are updated by the function colourcontact each
time a change is made to the colour of a leaf. There are
three cases to be distinguished:

1. The leaf is already filled. The state vectors must be
brought up to-date and the value true returned.

2. The leaf is part of the boundary. Update the state and
return false.

3. The leaf is neither filled nor part of the boundary. The
state vectors are consulted to see if there is any contact
with a coloured leaf; only leaves that have already
been seen in the current pass can have any effect.
According to the result the leaf may either be filled
and true returned or false is returned. The state is
updated in either case.

Colourwalk is only concerned with setting the leaf
values for interior points and will leave the tree with
incorrect values in non-terminals. A final step therefore
istocalculate the correct averages for these non-terminals
as necessary.

4. ASSESSMENT

4.1 Space and time comparisons

The efficiency of treecodes in representing arbitrary
pictures is not easy to assess. For contrived pictures one
can find that the code behaves well or badly, according
to desire, and no very good notion of a ‘canonical’ picture
occurred to us. Each of the examples shown in Fig. 7 has
its tree size appended and the compression is seen to vary
from 25 upwards. Although these are high numbers,
nobody could claim that the pictures are in any useful
sense representative. What is important, however, is the
way the algorithms exploit shortness of code to deliver
quickness of answers. It is unusual to find that an
encoding that saves space will at the same time speed
computations. The examples were used to compare the
speeds of some of the operations described above on a
Motorola M68000 microprocessor using a 32-bit imple-
mentation of BCPL as the programming language and
without any serious attempt at optimizing the code. The
compiler benchmark runs about 3 times faster on a
VAX11/780s0we would expect a corresponding improve-
ment in quadtree processing times on such a machine.

First experiment. For an image space 512 x 512 we built
quadtrees for three circular outlines, each of radius 75
pixels, positioned respectively at (206,284), (306,284) and
(256,198). The generation took 1.8 s each and gave tree

sizes of 2381, 2381 and 2429 nodes. These trees are
identified as A, B and C in the table below:

Resolution Tree size Time
Operation (pixels) (nodes) (s)
D =merge (A, B) 1 3429 1.1
E =merge (D, C) 1 6893 1.6
F =invert (E) 1 6893 0.3
G =reverse (F) 1 6893 0.5
H=fill (E,a b, c w) 1 6893 6.5
I'=fill (E,a b, c) 1 6893 6.5
J=fill (E,w) 1 6893 6.1
K = rotate (E) 1 6893 5.0
E2 = truncate (E) 2 3325 0.5
K2 = rotate (E2) 2 3325 2.2
H2 =fill (E2, a, b, c, w) 2 3325 3.2
E4 = truncate (E) 4 1565 0.4
K4 = rotate (E4) 4 1565 0.9
H4 =fill (E4,a b, c, w) 4 1565 1.6
E8 = truncate (E) 8 653 0.3
K8 = rotate (E8) 8 653 0.4
H8 =fill (E8, a, b, c, w) 8 653 0.7

The seeds given to fill were a, b, ¢, w which were the
centres of the circles A, B and C together with a point in
their common region (in fact 256,256).

Second experiment. Using a stylus-tablet some sketches of
simple line features were digitized and converted to
quadtree form. One of these is the spiral shown in Fig. 7
(referred to as picture L in the experiment). We also had
some polygonal outlines of some high quality alphabets
designed by David Kindersley. A short text in one of
these alphabets was converted to quadtree form and is
named picture M.

Resolution Tree size Time

Operation (pixels) (nodes) (s)

N =Tfill (L, seed) 4 2205 3.6
P =fill (~M, seed) 1 9161 10.7
Q=inv(™M) 1 9161 0.4
R =merge (Q, N) 1 6881 24
S =rotate (R) 1 6881 48
T =merge (R, S) 1 10213 29

The final illustration in Fig. 7 shows an image
composed from three circular discs at 256 x 256, 512 x
512, and 1024 x 1024 resolutions built as a single
quadtree and displayed at 512 x 512. Although not easily
visible in the reproduction of this paper the actual image
quality we achieved impressively demonstrates the
effectiveness of the anti-aliasing in the rendering of fine
detail.

4.2 Future work

The present work describes how to operate directly on
treecode. Readers who want to see the detailed programs
should write for a copy. Some treecode operations have
not yet been coded by us in a fully satisfactory form and
there is little to report on the breadth first storage

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 89

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

M. A. OLIVER AND N. E. WISEMAN

Picture E:
Quadtree outlines
Treesize 6893 nodes

Picture H:
Treesize 6893 nodes

Picture M:
Quadtree outlines
9161 nodes

THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

Figare 7.

/
/
.\w”‘/
Picture E:
Treesize 6893 nodes

e
T e

=t
._.f :

HirH
i

AT
53i]
g

FimHHy

Picture L:
Quadtree outlines
2205 nodes

Picture N:
2205 nodes

202 udy 60 U0 1s9n6 Aq ££2/GH/£8/1/92/2101E/UlWOd/Wod dno dlWspeoe)/:SdjY Wolj paPEojuMoq

OPERATIONS ON QUADTREE ENCODED IMAGES

Picture R:
Quadtree outlines
6881 nodes

Picture T:
10213 nodes

Picture T:
Quadtree outlines
10213 nodes

hoxh 1 x 1
pixels pixels

Anti-aliasing demonstration

Figure 7.

structure referred to in Section 2.2. Work on these topics
continues.

For some operations treecode is an inappropriate data
structure as it does not always support simple algorithms
that lead to fast computation. Leafcode is particularly
appropriate for some such operations e.g. translation or
scaling (‘zoom’). These possibilities are in the process of

being investigated and we hope to report on them in the
near future.

Acknowledgement

We are grateful to Jon Fairbairn for the use of his program which was
used in the preparation of the figures produced on a Versatec plotter.

REFERENCES

1. R. D. Dyer, A. Rosenfeld and H. Samet, Region representation:
boundary codes from quadtrees. Communications of the ACM
23, 171-179 (1980).

2. G. M. Hunter and K. Steiglitz, Linear transformation of pictures
represented by Quadtrees, in Computer Graphics & Image
Processing, Vol. 10, 289-296 (1979).

3. G. M. Hunter and K. Steiglitz, Operations on images using
Quadtrees. /EEE Transactions on Pattern Analysis & Machine
Intelligence PAMI-1, 145-153 (1979).

4. H. Samet, Region representation: raster to quadtree conversion.
Computer Science TR-766, University of Maryland, College
Park, Maryland (May 1979).

5. H. Samet, Region representation: quadtrees from boundary
codes. Communications of the ACM 23, 163-170 (1980).

Received June 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 91

20z 11dy 60 U0 3s0NB Aq 2£Z/GH/€8/1/92/2101E/|ulW09/W0d dno"oIWspesE//:Sd)y Wolj Papeojumoq

