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We introduce a new class of binary search trees, the height-ratio-balanced binary search trees, as the height based

analogy of welght - ratlo) balanced bmary search trees. They form a proper subclass of the class of bmary search trees,

of pe“*o‘”,where u={- 21n (a/(l - a)) ln (n) 7 Thls result lndlcates that these naturally deﬁned trees should not
be used to implement the DICTIONARY operations, in practical situations.

INTRODUCTION

Since the AVL or height-balanced binary search trees
were introduced by Adelson-Velskii and Landis' in 1962,
there have been surprisingly few new classes of ‘loga-
rithmically-balanced’ search trees introduced. The only
ones known to the authors are the weight-balanced trees,?
k-height-balanced trees,> one-sided height-balanced
trees,* half-balanced trees,’ and a-balanced trees.® All
these classes allow updating to be carried out in O(log n)
time, when the starting tree has n nodes and the resulting
tree is in the same class. Furthermore searching a tree of
n nodes in any of these classes is also an O(log n) time
operation. Typically whenever these so called DICTION-
ARY operations’ need to be implemented with O(log n)
time complexity, one of these classes of trees is chosen
(typically the AVL-trees).

In each of these classes of trees mentioned above,
the notion of a balanced node is defined which depends
on either the height or the weight of the node’s subtrees
(additionally the trees in Refs 5 and 6 require the shortest
path to a leaf from the node). Hence a natural question
arises, namely, when can the roles of height and weight
be interchanged leaving a logarithmically-balanced class
of trees. This paper considers the weight-balanced trees
of Nievergelt and Reingold? as such a candidate.

We prove that these height-ratio-balanced trees give a
non-logarithmic class of trees, but of more interest is
the worst case height of a height-ratio-balanced tree
of n nodes: h=pe* %Y where u={—2In(x/(1 -

a))In(n)}'72.

1-6

HEIGHT-RATIO-BALANCED TREES

Before introducing our central notion we require some
preliminary definitions.

A binary tree of n nodes, T, is the empty tree T, if n =
0 and otherwise is a triple (T;, u, T,) where /[ +r + 1 =
n, T, and T, are binary trees, u is the root of T,, T} is the
left subtree of u and T, is the right subtree of u. For the
purposes of this paper we define the height of a tree T,
denoted by ht(T,,), as follows:

h(T,)=1if n=0and 1 + max (h«(T}), ht(T,))
otherwise.

The height is defined as one larger than usual to simplify
the balancing formula.

The particular balancing measure we study is captured
in the following definition.

Definition

Let n>1 and T,= (T}, u, T,). Then the balance of u,
denoted by B(u), is defined by

h(T,)
ht(T,) + h«(T,)

This in turn leads to our central notion:

P(u) =

Definition

Let « be a number, 0 < a < 4. A tree T, is said to be
height-ratio-balanced of order o, a-hrb, if either n =0 or
n>1,T,=(T,,u, T,), « < B(u) < 1 — a and both T, and
T, are a-hrb.

With any notion of balance it must be demonstrated
that there is a tree of every size satisfying the balancing
criterion. In the present case we do this in two stages, we
first show that not all values of « in [0, 1] are viable and
second we show that for viable a there exist trees of every
size. Observe that by definition, the class of 0-hArb-trees
equals the class of binary trees, and that not all « are
viable, that is similar to the case of weight-balanced
trees’ there is a ‘gap’ lemma.

Lemma 1

For all a, § <a <%, the class of a-hrb trees does not
contain any trees with an even number of nodes.

Proof. Let T, be a-hrb, for some a, 4 < « < 4. This implies
thata < B(u) < 1 — a, forallnodes u in T,,. That is, letting
x be the height of u’s left subtree and y the height of u’s
right subtree, a < x/(x + y) <1 — a. Since « > 1, this
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implies x < 2y < 4x, must have integral solutions for y
for all integral values of x > 1. In particular 1 <2y < 4
implies y = 1, that is f(«) = 1. But if n is even there must
be at least one node with both an empty subtree and a
non-empty one, that is with balance at most i. This
proves the result. |

Note that this gap result is not as strong as the one of
Ref. 2, since in their case, there are only completely
balanced trees in the gap. Our result says that there are
no trees in the gap with n even. Because of Lemma 1 we
will only treat viable a in the remainder of the paper, that
is0<a<i.

Lemma 2

For all a, 0 < a <} and for all n > 0, there exists a T,
which is a-hrb.

Proof. Let T, be a minimal height tree with n nodes, then
for every node u in T}, the difference between the height
of u’s subtrees is at most 1. Letting A, denote the height of
the left subtree of u, then f(u) = either 4 or h/(2h, + 1),
without any loss of generality. In the latter case f(u) > 1
implies 4, > 1, which is trivially true. Hence in both cases
1 < B(u) < 4, as desired. |

To demonstrate that the class of a-hrb trees is, indeed,
balanced, we need to prove that insertions and deletions
can be performed in O(ht(T)) time, for all T in the class,
yielding, perhaps by way of some restructuring, a tree T”
in the same class. However, because of the worst case
analysis of the height, which we now present, this is left
to the interested reader.

Theorem 3

Let a be viable and T, be an a-hrb-tree, then
h(T,) < per*om
where a = a/(1 — «) and u = {—2In(a)In (n)}'/%.
Proof. To prove this theorem we will find the smallest tree

(least number of nodes) of a given height. The tree may
be represented as

Let ht(B) > ht(A). If this tree has the least number of
nodes, then B also has the least number of nodes, that is
it is in the same class. From the balancing condition we
conclude that

he(B)
h(B) + hiA) =

or

% hi(B) < hi(A).
1l —«a

Letting @ = a/(1 — «) and noticing that the height is
always an integer

ht(A) > la-ht(B)]

Since the number of nodes for this class is clearly
monotone in the height, we will select A4 to be the smallest
possible tree with the least number of nodes, and also in
the same class.

Consequently we have a recurrence relation in the
minimal number of nodes N(h) of a tree with height 4:

Nh+1)=NMh)+ N(a-h) + 1

Let h(n) be the smallest 4 such that N(h + 1) > n. Then
it is easy to see that the height of any tree with n nodes is
bounded from above by h(n). If N~ '(n) denotes the
inverse function of N(h) then it is easy to see that
h(n) =N ~'(n)].

For example with « = { and a = { we obtain

h 1020 30| 40 50 60 70
N(h) 29 11941729 2061 | 4913 | 10398 | 20133
h 80 90 100 150 200

N(h) 36450 | 62573 | 102928 | 7821533694 785

Then we can define
N*h+ 1) = N*(h) + N*(ah) + 1

a functional equation defined for real 4. Using standard
techniques we can show that In(N*(h)) has a proper
asymptotic expansion in terms of w(h), the first few terms
being:

In(N*(h)) = {o(h)?

-1
In(a)
+ c-w(h) + In(a)-In(w(h)) + O(1)} (1)
where
c=—In(@) +2In(In(a)) + 2

and w(h) is the transcendental function defined by
w(h)e®® = h.

We can also invert the asymptotic series to obtain 4 in
terms of N (the inverse of the function N*(h)):

_In(@In(p)

h*(N)= eu—C/Z(# 5

+ 0(1)> 2

where
p={-2In(a)In(n)}'"

Intuitively, N(h) should be close to N*(h), the only
difference being the ceiling function in one of the
arguments.

To prove that the relation N(h)/N*(h) is bounded we
will first introduce the function N * (h),

N*h+1)=N*(h)+ N*(lah)) + 1

with the same initial conditions as N(4). Then it is not
difficult to show that

N(h) = N*(h) = N " (h)
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A careful study of the difference N(h) — N *(h) shows
that

hm
The relation between N(h) and N*(h) follows im-
mediately.
The final step is to relate h*(n) to A(n) (the inverses of
N*(h) and N(h)). The previous theorem says that

h(N) = h*(KN)

in some bounded constant, K. Since

1
w0 (1 +o( L)

we finally conclude that the height of an n node tree is
greater than or equal to

1
h(N);e“‘c/2<u——l—n—(£;—I—lﬁ+O(l)>- 1
There is an interesting relation between N(h) and P(h),
a partition number. P(h) of index r is the number of
different solutions (number of different ordered sets of
values kg, hy, h,,...)of

h0+h1r+h272+"‘gh

< constant

This latter problem was solved by Mahler® and de
Bruijn® in great detail as was kindly pointed out to us by
A. Odlyzko (private communication).

P(h) satisfies the functional equation

Ph+1)=P(h) + th—j—lJ)

It is easy to verify that the binary partition problem
(Mabhler’s partition problem for r = 2) satisfies exactly
the same functional equation as the hrb-tree for a = 4.
Owing to different initial conditions,

N(h) = P(h)/2 — 1.

In any case P(h) always satisfies the same asymptotic
expression (1) witha = 1/r.

It is interesting to note that N(h) has a much simpler
solution in terms of w(h) than in terms of In(k) and
In(In (h)), cf. Mahler® and de Bruijn.®
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