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This paper describes an algorithm designed to compensate for the varying difficulty of examination papers when
options are permitted. The algorithm is non-iterative, and does not require a common paper to be taken by all students.
It may be possible to extend the approach described to the more general statistical ‘missing values’ problem.

1. INTRODUCTION

Differences between the individual papers constituting
an examination, both in their intrinsic difficulty and in
the rigour of their marking, form occupational hazards
for students and examiners alike. If options are not
permitted, no individual student is unduly penalized or
rewarded by the occasional maverick paper and a degree
of rough justice prevails. If, on the other hand, students
have a choice of options open to them, those electing to
take easy ones with generous examiners have a distinct
advantage over those whose choices are less fortunate or
less cynical. In particular, since projects seem to attract
higher marks than conventional written examinations,
students whose courses include a high project component
enjoy advantages over those taking courses of a more
theoretical or abstract nature.

Similar problems of assessment arise whenever more
than one measure of value is available, where each
measurement is made in different circumstances and
where some results are ‘missing’. Another example would
be the analysis of the performance of competing
algorithms where the algorithms were tried out on
different, but partially intersecting, sets of test problems.
If every item to be tested is not subjected to every test
there will inevitably be difficulties of evaluation, and
nowhere are there difficulties more agonizing than in a
final examiners’ meeting.

The methods so far proposed to overcome these
problems fall into four broad categories. In the first the
marks are scaled (with or without the addition of a
constant term) in order to produce mark distributions,
for particular groups of students, that have comparable
means and standard deviations for all papers attempted
by that group. Methods of this type have been considered
by Peaker' and Backhouse.? They have been used in
many universities for a considerable period of time, and
depend for their validity on having a reasonably large
class. In the second category the marks scored are used
only to determine a set of rankings, the final ranking
being determined by a series of pairwise comparisons.
These algorithms have been discussed by, among others,
Ford,? David,* Backhouse® and Wood and Wilson,® with
Davidson’ contributing a tie-break strategy. The third
group of algorithms uses regression analysis to estimate
the ‘missing’ data, the final ranking being then deter-
mined by assuming that all candidates have taken all
papers. Methods using regression techniques have been
described by Johnson and Schwartz,® Rubin® and

Backhouse.? Finally methods of estimating the missing
values using maximum likelihood have been discussed
by Orchard and Woodbury,'® Buck'' and Beale and
Little.!?

The specific problem of determining which average to
use when combining examination marks has been dealt
with in an ingenious manner by Griffiths.!® This paper
shows how different averaging processes may be used,
sequentially, to give the same limit but does not address
specifically the problem of ‘missing values’.

It may be inferred from the appearance in the literature
of so many types of solution of the compensation problem
that no method is entirely satisfactory. The forms of
scaling hitherto attempted require at least one paper to
be taken by all candidates, and sometimes give the
‘wrong’ ranking (i.e. a ranking which conflicts with the
commentator’s prejudices). The regression and maximum
likelihood methods require marks to be estimated for
examinations that never took place (politically danger-
ous) whereas the paired comparison methods deliberately
and wilfully discard information. The maximum likeli-
hood methods, moreover, are iterative and often require
many iterations for their solution.

A spirited critique of many of the existing methods has
been given by Wood and Wilson,® who justify their own
favourite by the statement (p. 211)

It seems to us that a procedure which simply
registers whether individual A scored more (or
less) than individual B is truer to the nature of
the data we have to deal with in educational
measurements than methods which proceed as
if marks were unequivocal placings on an equal
internal scale.

Whatever one’s views on this philosophy, it is
adequately refuted by Wood and Wilson themselves
(Ref. 6, p. 209) who roundly declare

What is required . . . is a procedure that uses a//
the available information, however it comes, to
estimate what the missing values would have
been. (Their italics, not mine!)

Since no agreement on a satisfactory method exists,
the proposal of an alternative might prove to be helpful.
That described below is a scaling method which works
when the data are incomplete in an irregular way. It is
non-iterative and computationally simple, although it
does give the ‘wrong’ ranking when applied to certain
published data (but see Section 4 below).
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2. THE METHOD

The method is based on the assumption that, on average,
a student will tend to perform with a certain degree of
consistency in all the papers that he attempts. This is,
perhaps, a somewhat hairy assumption but is probably
less so than the assumption on which no scaling at all is
based, namely that different examiners, teaching in
widely different subject areas, set papers of equal intrinsic
difficulty. The method works by scaling the marks of
each individual paper in order to maximize the consist-
ency of each individual student. More precisely, let m
students attempt a selection of papers from the maximum
of n available, with the ith student taking n; papers.
Denote the raw mark obtained by the ith student on the
Jjth paper by x; and the factor by which the marks on the
Jjth paper are to be scaled by f. Then if v; denotes the
variance of the scaled marks of the ith student,

v = Z (i — x.)*/n; 1

where

X; = Z xufj/ni 2

the sum in each case being taken over all papers
attempted by the student. Since n; is a measure of the
consistency of the ith student, the method seeks to choose
the factors f; that minimize Y ;n; over all students subject
to the constraint that the total aggregate mark M remains
unchanged.

To see how the method works, consider two cases
where the marks on a particular paper are low. If this is
due to the paper being unusually difficult, the effect of
upward scaling will be to bring the marks of each
individual student on that paper more into line with his
or her other marks, so reducing the variances. Scaling
will thus occur, the marks on the other papers being
scaled down slightly to preserve the total aggregate. If,
on the other hand, the low marks are due to the paper
being taken by weak students, any attempt at scaling will
have the effect of increasing the variances so in this case
no, or only a very slight, adjustment will be made.

To derive the equations for the optimal values of £, let
X; denote the vector of the ith student’s marks and s; the
vector whose jth element is unity if the ith student
attempted the jth paper, and zero otherwise. Equations
(2) and (1) may be written, since s's; = n; and the matrix
I — s;sT/s's; is idempotent,

% = X 'Fs;/sTs; 3)

and

sT
n,-l)[- = XTF(I - sfl-s‘ > Fx, (4)
SiS;

where F = diag(f).

Now, since F is diagonal, it follows from the definition
of s; that x; will have zeros wherever Fs; has zeros. Thus
the inner product sTFx; will remain unchanged if the
zeros of Fs; are replaced by arbitrary values. In particular,
if they are replaced by the corresponding diagonal
elements of F, Fs; becomes f, where f = [ £], and since the
inner product is unchanged it follows that

s'Fx; = f'x; %)
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Equation (4) may thus be written
ny; = X F2x; — f'xn;7 'x'f (6)
= tr(Fxx'F) — f'x;n; 'xf @)

If we define X =[x;] to be the matrix of raw marks
(whose ith row is, of course, just x} ), N = diag(n;) and

V= Z n; (®)

it follows from equations (7) and (8) that
V = tr(FXTXF) — fTX"N " 'Xf )
Let now D denote the diagonal matrix obtained by

setting all the off-diagonal elements of X"X equal to zero.
Then, since both D and F are diagonal,

tr(FX"XF) = tr(FDF) = f'Df
so that, from equation (9),
vV =f{TKf (10)
where
K=D-X"N"IX (1n)

The constraint that the sum of the scaled marks must
remain unchanged may be expressed as

e'Xf=M (12)

where M is the original total aggregate and e is the mth
order vector whose every element is unity. The value of
f that minimizes V subject to this constraint being
satisfied is obtained by solving

Kf+ X"eg=0 (13)

where ¢ is a Lagrange multiplier whose value is obtained
from (12), and which is given by

g = — M/(€"XK " 'XTe) (19

Thus, provided that K is non-singular, the determination
of the scaling factors f; is a relatively straightforward
matter.

3. THE NON-SINGULARITY OF K

Tojustify the above method it is necessary to demonstrate
that K is non-singular. Since

V = {'Kf

and V is defined to be the sum of squares, K is either
positive definite or positive semidefinite, and is singular
iff 3 f # 0 such that

f'’Kf =0

This occurs if v; = 0 for all i, and since v; is itself a sum of
squares, it follows from equation (1) that K is singular iff
a set of scalars f; can be found such that

for all (i, j) pairs for which the ith student attempted the
jth paper.

Let now p; = X; and g; = 1/f. Equation (15) becomes
x; = pig; so that K is singular only if the elements x; of X
corresponding to papers attempted (the non-zero ele-
ments of X, if it is assumed that no student scored zero
marks on any paper) are the (i, j)th elements of some
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rank-1 matrix. Since, in practice, this is never likely to
occur, K may be assumed to be positive definite and the
constrained minimization problem therefore possesses a
unique and easily-determined solution.

Conversely, if

xuf; =Di Z Xu]; =n;p;
J

so that p; = X;. Thus v; and hence V are all equal to zero,
and it follows that K is then positive semidefinite. These
results may be expressed as the following

Theorem

Let X = [xy»] be an m x n sparse matrix with n; non-zero
elements in its ith row. Let D denote the matrix obtained
by setting all the off-diagonal elements of X"X equal to
zero and let N = diag(n;). Then D — X"N !X is either
positive definite or positive semidefinite, and is semide-
finite if and only if the non-zero elements x; of X are the
(i, ))th elements of some rank-1 matrix.

4. RESULTS AND CONCLUSIONS

This note presents an easily-implemented method of
compensating for differences in difficulty of examination
papers when determining the overall mark or when
comparing candidates taking different options. The
method is non-iterative and works with an irregularly
sparse data matrix, and calculates no fictitious scores for
papers not attempted.

To compare it with some existing methods, it was
applied to an (admittedly trivial) set of data due to
Backhouse.? The original data are given in Table 1 and
the scaled data, together with the resulting aggregates
and rankings, are given in Table 2. The final ranking is
the same as that given by simple scaling, and has been
criticized by Wood'* for violating ‘common sense’. I find
the common sense arguments unconvincing, preferring
instead to appeal to a clear principle when forced to rank
students taking papers whose means differ by as much as
a factor of three.

A less trivial illustration of mark compensation is
provided by Table 3. This shows a selection of results

Table 3

Year Grand mean Selected paper Selected paper
(unscaled) (scaled)

n 50.8 51.8 49.8

n+1 50.3 64.9 52.2

n+2 447 57.2 56.9

taken from actual finals papers for three consecutive
years and demonstrates forcibly (and quite fortuitously)
the distinctions the method was designed to reveal.
Column 1 shows the grand average percentage for all
papers (the same, of course, for both scaled and unscaled
marks), and columns two and three show the unscaled
and scaled average percentages of a selected paper with
a high project content. In year n the marks are all much
of a muchness, indicating that the students taking the
selected paper not only were representative of the group
as a whole but that the markers of that paper shared the
overall view of the worth of the candidates. In year
(n + 2) the average mark for the selected paper was 12.5
above the grand average, but the scaled marks fully
substantiate the claim that the mark was high because
only the best candidates attempted that paper. Year
(n + 1), though, is not so reassuring. Again the marks of
the selected paper were much higher than the grand
average but on this occasion the results show a consid-
erable disagreement between the markers of that paper
and their departmental colleagues as to the worth of the
students in question.

Since the precise interpretation of the results computed
by this and similar methods will always be in some degree
contentious, it is unlikely that they will ever be used
without modification to produce the final class lists. In
particular, no algorithm working from the marks alone
will be able to distinguish between high marks due to a
‘successful course’ (one where the blend of personal
qualities of those involved leads to higher-than-average
performance) and high marks due to over-generous
assessment. The value of the algorithm described, and of
similar algorithms, lies in their identifying students near
a borderline whose positions may have been affected by
their choice of options, and in drawing anomalies to the
examiners’ attention. It could be that the results will then
be used on a ‘help but not hinder’ basis, and if this leads
to students selecting options for their academic interest
and not for their perceived scoring potential, this will be

Table 1 no bad thing.

Candidate P Q R S T V] Vv w X Y Mean

Paper1 20 18 15 12 10 8 13.83 Acknowledgement

Paper2 30 35 28 26 20 5 31 32 27 14 2480 ) ) )

Paper 3 50 37 45 26 39.50 The author wishes to thank both his colleague, Jim Doran, and the

referee for their helpful and constructive suggestions.

Table 2
Candidate P Q R S T V) \ w X Y Mean
Paper 1 3477 3129 26.08 20.86 17.38 13.91 24.05
Paper 2 29.26 34.13 2731 2536 1950 4.88 30.23 31.21 26.33 1365 24.19
Paper 3 3255 24.09 2930 16.93 25.72
Sum 64.03 6542 5339 46.22 36.88 18.79 62.78 55.30 55.63 30.58 48.90
Rank 2 1 6 7 8 10 3 5 4 9
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