A Step Towards the Automatic Maintenance of the
Semantic Integrity of Databases

R. A. Frost and S. Whittaker
Department of Computer Science, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK

A database should be an accurate model of that part of the universe which it represents. However, this is rarely
achieved. Errors in the data occur for a variety of reasons. Various techniques have been developed to reduce such
errors and/or to detect them when they occur. Some of these techniques are concerned with checking that the data is
‘sensible’, i.e. that is complies with certain constraints which are derived from our knowledge of the semantics of that
part of the universe which is represented by the data. Such constraints are called semantic integrity constraints; an
example is: ‘no-one may be their own father’. Ideally, a database implementor should be able to specify a set of
semantic constraints and then let the system enforce them automatically. Some progress has been made towards this
ideal. However, the constraint definition languages which have been developed tend to be syntactically complex, and
the enforcement of constraints is often carried out in an ad hoc manner. An alternative approach is proposed in this
paper. We present a simple constraint definition language, SCHEMAL, and show how constraints expressed in it can
be enforced automatically. We describe in detail the algorithm which is used to enforce SCHEMAL constraints. The
method has been fully implemented at the University of Strathclyde.

1. INTRODUCTION

1.1 The problem

Ideally, a database should be an accurate model of that
part of the universe which it represents. However, this
situation is rarely achieved. Errors in the data occur for
various reasons:

(1) Parts of the universe are observed incorrectly before
they are represented by data. For example: a
thermometer might not be calibrated correctly.

(i) Observations are not made frequently enough. For
example: someone might be represented as having
single status in the database, whereas in reality they
have just married.

(iii) Data are corrupted in coding, transcription, and/or
transmission.

(iv) Data are corrupted in storage through hardware
faults.

(v) Errors are introduced through concurrent update.
For example: user 1 reads balance B at time T1,
adds X to B and overwrites the original balance at
time 7T2. User 2 repeats the process, reading at time
T3, adding Y to the balance, and writing at time T4.
If T1 < T3 < T2 < T4 the balance will be in error
if X #0.

Various techniques have been developed to reduce the
occurrence of such errors, or to detect them when they
occur. Many of these techniques are well understood and
their use is common practice. For example: (i) parity
checks are used to detect errors in data transmission, and
(i1) ‘locks’ are used to reduce errors due to concurrent
update. A concise description of some of these methods
is given by Wiederhold.!

Some aspects of the problem are very poorly under-
stood. For example: the problem of ‘out-of-date’ data has
not received much attention in the literature. However,
Klopprogge® has addressed this question in a recent

paper and makes some interesting suggestions as to how
the time dimension might be taken into account.

Other aspects of the problem are still poorly understood
although some progress has been made over the last few
years. One of these aspects is concerned with the semantic
integrity of the database. By semantic integrity we mean
the compliance of the database with constraints which
are derived from our knowledge about what is and is not
‘allowed’ in that part of the universe which is represented
by data.

The maintenance of semantic integrity involves pre-
venting data which represent a disallowed state of the
universe from being inserted into the database. (These
rather woolly descriptions of semantic integrity will
suffice for the present. We give more formal definitions
later.) The routines which maintain semantic integrity
detect ‘semantic errors’ (disallowed states), inform the
user that an error has taken place, and prevent data from
being inserted into the database.

This paper is concerned with the automatic mainte-
nance of database integrity, and in particular is concerned
with the detection of semantic errors. We commence by
reviewing past work.

1.2 Past work

A straightforward approach for the maintenance of
semantic integrity follows from suggestions by Abrial®
and Florentin.* It involves two steps:

(i) Provide the database implementor with a language
for specifying semantic constraints.

(ii) Use the constraints to vet data which are presented
for insertion into the database.

Ideally, the database implementor should be able to
specify constraints which are then used by the system to
maintain semantic integrity automatically. However,
this approach must be viewed with caution: First, for a
general language it is undecidable whether the constraints

CCC-0010-4620/83/0026—-0124 $04.50

124 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

© Wiley Heyden Ltd, 1983

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

A STEP TOWARDS THE AUTOMATIC MAINTENANCE OF THE SEMANTIC INTEGRITY OF DATABASES

expressed in it are themselves consistent. Second, vetting
data against a complex integrity constraint might require
access to a large portion of the database.

The first problem can be solved only if the language in
which the constraints are expressed is simple (e.g. it must
not contain function symbols) and well defined. The
second problem is related to the first. Given a constraint,
the system must be capable of determining how costly it
is to apply that constraint. Ideally, this cost should be
estimated when the constraints are being formulated,
thereby allowing the user to replace ‘expensive’ con-
straints with ‘cheaper’ ones. We illustrate this with an
example taken from Blaser and Schmutz:® given a
‘father’ relation, a semantic constraint might state that
the subgraph containing only edges labeled with ‘father’
must be cycle free. Checking this constraint is likely to be
expensive. If the database also contains birthdates, then
the constraint above could be replaced by a constraint
which states that the birthdate of the father must precede
the birthdate of the child.

These considerations, however, have not deterred the
development of the two step approach, and progress has
been achieved through the work of Abrial,* Florentin,*
Eswaran and Chamberlin,® Stonemaker,” Hammer and
McLeod,® Biller and Neuhold,® Pelagatti, Paolini and
Bracchi,'® Roussopoulos,'' Mylopoulos, Bernstein and
Wong,'? Brodie,'* Borgida and Wong'# and Shipman. '3

Florentin* was one of the first to propose that predicate
calculus could be used for the precise specification of
semantic integrity constraints. However, he goes on to
state that the manipulation of logical formulae is likely to
be too tedious to be useful as a practical method for the
maintenance of semantic integrity. This conclusion is
accompanied by a reference to work carried out by
Robinson.'®

The papers by Eswaran and Chamberlin® and Stone-
braker’ are concerned with the maintenance of semantic
integrity of relational databases. Constraints are specified
in two relational query languages: SEQUEL and QUEL,
respectively. However, no indication of how such
contraints might be enforced is given.

A more general approach is claimed to have been made
by Hammer and McLeod.? Although they describe their
work in the context of a relational database system, they
go some way towards the specification of a special
purpose constraint definition language. Several useful
examples of constraints are presented in Hammer and
McLeod’s paper, but no indication of how these con-
straints might be enforced is given.

Biller and Neuhold® also recognize the need for
generality and point out that it would be difficult to
translate an integrity constraint formulated in terms of
one specific view (e.g. the relational view) into constraints
expressed in terms of some other view (e.g. the hierar-
chical view). Consequently, they have developed an
abstract conceptual view which uses the concepts of
entity, entity type, and relation. Constraints are expressed
in terms of this view in a language called LDDL.
Although LDDL has a simple semantic basis, it has a
complex syntax. For example, there are seven different
kinds of ‘type’ definition. No indication of how LDDL
constraints might be enforced is given.

Pelagatti, Paolini and Bracchi'® discuss semantic
integrity in relation to their main topic of ‘mapping
external views to a common data model’. For this reason

they restrict their attention to two types of constraint:
‘cardinality’ and ‘equivalence’ constraints. They suggest
a technique similar to that proposed by Abrial® for
expressing cardinality constraints and claim that the
consistency of cardinality constraints can be checked
automatically, but no indication of how they might be
enforced is given.

The next significant contribution was made by Rous-
sopoulos'!' who developed a conceptual schema definition
language called CSDL. This language is based on the
semantic-network model of databases proposed by
Roussopoulos and Mylopoulos'’ and as such is more
‘data-independent’ than earlier languages (i.e. it is
independent of the structures which are used to store the
data).

CSDL facilitates the specification, modification, and
examination of constraints through high level support
facilities. However, once again, no indication of how
constraints might be enforced is given.

Another major step forward was made by Mylopoulos,
Bernstein and Wong'? in their design of a language called
TAXIS. This language is specifically aimed at interactive
information systems such as airline booking systems. It
offers traditional database management facilities and a
means of specifying semantic integrity constraints,
integrated into a single language. The conceptual frame-
work underlying TAXIS is based on the concepts of class,
property, and the °‘IS-A’ hierarchy similar to that
proposed by Smith and Smith.!® Semantic integrity
constraints are regarded as prerequisite and result
conditions of transactions which must be met if the effect
of the transaction is to be accepted. Mylopoulos et al.
give a few examples of semantic integrity constraints but
do not indicate how they might be enforced. Their main
contribution is in recognizing that constraints defined
over one class of entities or transactions should be
automatically inherited by sub-sets of that class.

Borgida and Wong'* have given two formal specifi-
cations of the semantics of the TAXIS language one of
which is based on axioms and partial correctness
assertions intended for verifiers who wish to show that
the system maintains database integrity. However, they
do not describe the mechanics by which the system
actually could maintain integrity.

A somewhat different approach has been proposed by
Brodie'® who suggests that data type tools can be used
for the definition of semantic constraints and for the
maintenance of semantic integrity. Strong typing is
provided in a Pascal-like type system embedded in a
language called BETA. For example, specification of the
type ‘person object’ might be:

type
person = object name : nametype;

number : social-insurance # ;

sex : (male, female)
unordered;

address : address type;

title : (professor, tutor,
student);

keys name, number

dependencies names—
address|sex|title
end object;

Enforcement of the semantic constraints implied by this

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 125

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

R. A. FROST AND S. WHITTAKER

specification may then be carried out automatically by
normal type-checking routines. For example the con-
straint: ‘person objects may only be of sex male or
female’, which is implied in the above, is easily enforced.

However, it is not easy to see how more complex
constraints such as ‘a person may not be the son of
someone born at a later date than themselves’ could be
expressed in a type declaration. Brodie’s work is
interesting because it questions the values which are used
to distinguish between syntax and semantics.

Shipman'® has designed a data definition and manip-
ulation language called DAPLEX. This language is based
on a conceptual view called the ‘functional’ view which
is similar to the binary-relational view in some respects.
Constraints may be expressed in DAPLEX as, for
example:

DEFINE CONSTRAINT Native Head (Department) =
Dept (Head(Department)) = Department

which states that a department’s head must come from
within the department.

A complete implementation of DAPLEX is not yet
available. However, an implementation written in ADA,
called ADAPLEX, should be available shortly.'®

1.3 Review of past work

Most of the approaches described in Section 1.2 have
concentrated on the specification of integrity constraints
rather than on the enforcement of these constraints. Many
of the methods classify constraints in what would appear
to be an attempt at facilitating specification. This has
lead to syntactically complex languages and presumably
ad hoc methods for the enforcement of constraints.

In no case has a detailed description of how constraints
might be enforced been presented. We must assume
either (i) no method exists or (ii) the method is too
complex to be outlined in a publishable paper.

1.4 An alternative approach

The approach which we have adopted and which is
described in this paper concentrates on constraint
enforcement rather than on constraint specification. We
have designed a constraint definition language called
SCHEMAL such that any constraint which can be
expressed in SCHEM AL can be enforced automatically by
a general purpose algorithm. Constraint enforcement is
relatively straightforward and we describe the algorithm
in detail.

We do not claim that our approach represents a
complete solution to the problem. SCHEMAL is based
on a decidable sub-set of first order predicate calculus
and therefore inherits all of the expressive limitations of
this logical framework. The main purpose of this paper
is to demonstrate that the use of a simple conceptual
framework as a basis for the specification of constraints
can lead to a simple method for their enforcement. We
see SCHEMAL as the first in a series of languages. The
next step will be to apply a similar approach and to
develop a more powerful language based on a sub-set of

126 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

a higher order logic. We discuss this further in the last
section of the paper.

The sub-set of first order predicate calculus which
underlies SCHEMAL is called the ‘simplified binary-
relational (SBR) view of the universe’.?® It does not
contain functions and only accommodates binary rela-
tions. A database based on the SBR view is called an
SBR database. SCHEMAL and the method for main-
taining database integrity are described in relation to an
SBR database for which it was developed. However, the
approach could be readily adapted for other types of
database.

The SBR view is described in Section 3, SCHEMAL
is described in Section 4, and the method for the
automatic maintenance of database integrity is given in
Section 5.

2. EXAMPLES OF INTEGRITY CONSTRAINTS

We shall use the following constraints as examples in this
paper:

Cl: members of the set of husbands may not also be
members of the set of bachelors.

C2: only students may enrol for something.

C3: anemployee’s manager must also be an employee.

C4: professors may not earn more than £20 000.

C5: male persons are only allowed to marry if they are
older than 18 years.

C6: no two entities may have the same name and
address.

C7: adepartment can only have one manager.

C8: no one can set an exam unless they teach someone
who is a student.

C9: all employees who work in the same department
must have the same personal manager.

C10: the only relationship in which lecturers are allowed
to participate are of type ‘teaches’ and ‘sets exam’.

C11: a married person may not become a single person.

C12: an employee’s salary may not be reduced.

Cl13: the professor’s average salary may not exceed
£16 000.

Cl4: an employee’s salary must exceed deductions.

Constraint C2 is interpreted as meaning that an entity
may not be enrolled for a course unless that entity is
known to be a member of the set of students. For example,
the data ‘entity #3 is enrolled for English’ may not be
inserted into the database unless that database already
contains the data ‘entity #3 is a member of the set of
students’. Similar interpretations apply to constraints C3,
and CS.

Cl11 and CI12 constrain the way in which the database
may be updated rather than extended.

3. THE SIMPLIFIED BINARY-RELATIONAL
VIEW OF THE UNIVERSE

The simplified binary-relational (SBR) view of the
universe regards the universe as consisting of entities with
binary relationships between them.?° An entity is anything
of interest which can be identified. A binary relationship
is an association linking two entities or an entity to itself.

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

A STEP TOWARDS THE AUTOMATIC MAINTENANCE OF THE SEMANTIC INTEGRITY OF DATABASES

A binary relation is a set of binary relationships. N-ary
relationships, such as ‘a bought b from ¢’ are reduced to
sets of binary-relationships by the explicit naming of the
implied entity involved. For example :

sale #1. buyer is. a
sale #1. item bought. b
sale #1. seller is. ¢

€, the set-membership relation, is treated like any other
binary relation. For example, the fact, that ‘John is a
policeman’, is regarded as a binary relationship of type
€ linking the entity ‘John’ to the entiry ‘set of policemen’:

John. €. policemen

Things and properties of things are both regarded as
entities. For example, the fact that ‘John is 6’ 1” tall’ is
regarded as:

John. height is. 6" 1”

In order to rationalize the semantic rules which might
apply in some part of the universe, the SBR view includes
additional concepts denoted by:

variable, (. —.), <=, A, v, [..]
where:

() awvariable is a universally quantified variable which
is used to represent entities. In the remainder of this
paper, variables are represented by single capital
letters.

(i) (X.Y.Z) means that a relationship of type Y exists
between entities X and Z. This is similar to the
logical construct Y(X, Z) in which Y is a predicate.
In agreement with Kowalski,?! the infix notation is
regarded as more natural. .

(iii) P<=Q means PifQ

(iv) A is the logical conjunction operator: AND

(v) v is the logical disjunction operator: OR

(vi) 1 is the logical negation operator: NOT

(vii) [..] are brackets with usual meaning

These concepts are sufficient to describe many, but not
all, semantic rules. For example, the rule ‘someone may
not be a bachelor and a husband’ may be expressed as

—1(X. €. bachelors) <= (X. . husbands)

A set of data representing a binary relationship is called
a triple and consists of three fields. A set of triples is
called an SBR database and may be stored in a structure
called an SBR data storage structure. Triples may be
retrieved from such structures using any combination of
fields as key. Retrieval requests are denoted as, for
example:

retrieve (?. €. people)

which retrieves all members of the set of people.
SBR storage structures are similar to binary-relational
storage structures as described by Frost.??

4. SCHEMAL: A CONCEPTUAL SCHEMA
CONSTRAINT LANGUAGE

A conceptual schema is a set of semantic rules which
apply to some part of the universe. Conceptual schemas

do not refer to data nor to its manipulation. However, the
rules may be used:

(i) to constrain what may be represented by data

(i1) toinfer unknown aspects of the universe from known
aspects and, therefore, to infer new data from
existing data.

SCHEMAL?°isaconceptual schema constraint language
which is based on the SBR view. SCHEMAL is a
decidable sub-set of first-order predicate calculus. By
decidable, we mean that the consistency of a set of
SCHEMAL rules can be determined. An implementation
of SCHEMAL has been carried out by Asher.?® The
formal syntax of SCHEMAL is given in Figure 1.

(rule) : 1= {consequent) < {antecedent) | (consequent) < | <
{antecedent)

{consequent) . .= (antecedent)

{antecedent) : ;= {conjunction) | (disjunction) | {expression

{conjunction) : ;= {expression) { A {expression)|

{disjunction) : .= {expression) { v {expression)|

{expression) .= —1{item) | (item)

item) : ;= (triple) |[{conjunction)]|[{disjunction}]
(triple) : ;= ({entvar).(relation) . {entvar))
{entvar) . .= {entity) | {variable)

Figure 1. The formal syntax of schemal.

Rules C1, C2 and C6 of Section 2'may be expressed in
SCHEMAL as:

Cl’: 11 (X. e. bachelors) <= (X. €. husbands)

C2': (X.e. students) < (X. enrolled for. Y)

C6': (X.ident. Y)<[(X. named. N) A (X. lives in. A)
A (Y.named. N) A (Y.livesin. A)]

These may be read as: ‘if an entity is a member of the set
of husbands, then it must not be a member of the set of
bachelors’, ‘if an entity is enrolled for anything, then it
must be a member of the set of students’, and ‘if two
entities have the same name and address then they must
be identical’.

SCHEMAL is limited in its expressive power. For
example, it cannot be used to specify constraints such as
C10, C13, or C14. Also, it is not yet clear how it might be
used in relation to constraints such as Cl1 and C12.
However, most rules which can be specified in
SCHEMAL can be used to maintain database integrity
automatically. The next section illustrates how this is
done.

S. AUTOMATIC MAINTENANCE OF DATABASE
INTEGRITY

5.1 Informal overview of the method

An SBR database exhibits semantic integrity with respect
to a set of SCHEMAL constraints if all (possibly partial)
instantiations of these constraints which are implied by the
triples in the database are true. If any implied instantia-
tion is false then the database does not exhibit semantic
integrity.

An implied instantiation of a constraint is derived by
the substitution of variables in that constraint by entities.

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 127

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

R. A. FROST AND S. WHITTAKER

For example, the triple (e,. €. bachelors) implies the
following instantiation of constraint C1:

—(e,. €. bachelors) < (e;. €. husbands)

A formal definition of an implied instantiation is given in
subsection 5.4.

The integrity of a database can be maintained by
checking that all new instantiations of constraints which
are implied by a new triple would be true if the triple
were in the database. If so, the triple may be inserted into
the database, otherwise it is rejected.

Maintenance of database integrity involves a five-stage
process:

(1) the constraints are specified in SCHEMAL by the
database implementor. For example:

C2': (X. e. students) <= (X. enrolled for. Y)

(i1)) The SCHEMAL constraints are then converted to
a partially simple form called clausal form, which is
described in section 5.2. An example of a rule in
clausal form is: :

C2”: (X. e. students) v —(X. enrolled for. Y)

which may be read as ‘either X is a student or X is
not enrolled for anything’.

(i11) On attempting to insert a new triple TI into the
database, it is matched against the constraints in
clausal form, as discussed in section 5.3. For
example, the triple (e, . enrolled for. physics) matches
constraint C2” above.

(iv) For every constraint C which is matched by TI, the
set of new (possible partial) instantiations of C which
are implied by TI and the database are generated.
For example, the set of new instantiations of C2”
above, implied by the triple (e,. enrolled for.
physics), consists of one instantiation only, irrespec-
tive of the database contents:

(e;. €. students) v (e, . enrolled for. physics)

(v) The new instantiations are then evaluated assuming
that the new triple were in the database. If the
instantiations are a/l true then the triple may be put
into the database, otherwise it is rejected. For
example, the triple (e,. enrolled for. physics) may
only be inserted if the triple (e,. €. students) is
already in the database. If this triple is not in the
database then the instantiation of C2” above is false.

We now describe this process more precisely, define the
terms introduced, and show how stages (ii) to (v) may be
carried out automatically.

5.2 Conversion of constraints to clausal form

A SCHEMAL constraint in clausal form consists of a
disjunction of literals, where a literal is a triple or the
negation of a triple. Examples of constraints in clausal
form are:

C1”: (X. €. bachelors) v —(X. €. husbands)

which may be read as ‘either X is not a bachelor or X is
not a husband’

C2": (X. . students) v —(X. enrolled for. Y)

128 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

C6”:(X.ident. Y) v 1I(X. named. N) v —(X. livesin. A) -

v 7(Y.named. N) v (Y. livesin. 4)

Some SCHEMAL constraints transform into more than
one constraint in clausal form. For example:

[(X. €. animals) A (X. €. minerals)] < (X. €.
: vegetables)]

transforms into the two constraints:
—(X. €. animals) v —(X. €. vegetables)
—(X. €. minerals) v I(X. €. vegetables)

Automatic conversion of SCHEMAL constraints is
described by Whittaker?* and is based on a method given
by Nilsson.?*

5.3 Matching a triple against a constraint

The method which we are describing assumes that all
triples in the database are variable-free. This assumption
is reasonable for most database applications.

A variable-free triple TI matches a constraint C if there
is at least one triple TC in C which corresponds to TI.
Two triples TC and TI correspond if:

(i) TI=TC
or
(i) TI and TC have identical second fields
and
(a) TIand TC have identical first fields AND)
the third field of TC is a variable
or
(b) TI and TC have identical third fields and
the first field of TC is a variable

~

or
(c) the first and third fields of TC are
variables J

For example:

(e,. €. bachelors) matches C1” above
(e;. named. Peter) matches C6” above

5.4 Implied instantiations

An instantiation of a constraint is obtained by the
consistent substitution of all of its variables by entities.

A partial instantiation of a constraint is obtained by the
consistent substitution of some of its variables by entities.
For example, the following is a partial instantiation of
constraint C2”:

(e4. €. students) v —(e,. enrolled for. Y)

The set of new (possibly partial) instantiations of a
constraint C, which is implied by matching triple TI, is
generated by calling the recursive procedure p-instant
below for each triple TC in C which corresponds to TI.
Notice that the set generated will depend upon the
database into which TI is being proposed for insertion.

Notes
(i) constraint C is an array of literals representing a
constraint. For example:

| (e,. €. students)]

(e, . enrolled for. Y)]

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

A STEP TOWARDS THE AUTOMATIC MAINTENANCE OF THE SEMANTIC INTEGRITY OF DATABASES

(i) TDX is also an array of literals, none of which
contains a negation sign.

(ii1) The statement commencing ‘substitute variables in
TC by equivalent . . .” is not a comment on the code
following it, but is shorthand for a number of
statements, details of which are not given.

(iv) The procedure generates all new instantiations of C
which are implied by TI due to its correspondence
to TC in C.

(v) The Boolean variable sub is used to flag when no
more variable substitution can be made. At this
point a new (possibly partial) instantiation has been
generated and is printed. The call print is replaced
later by a procedure call to evaluate the instantiation.

(vi) []triple TDX = retrieve (TX); causes the set of triples
which correspond to TX to be retrieved from the
database and assigned to TDX.

proc p-instant (triple T1, TC, constraint C):
begin
substitute variables in TC by equivalent entities in TI;

make the same substitution(s) throughout C;
bool sub = false;

for each triple TX in C still containing one or two
variables
do begin

[1triple TDX = retrieve (TX);

if TDX isnt empty

then sub = true;
for each TD in TDX
do begin
p-instant (TD, TX, C)
end
fi

end;
if sub = false
then print (C)
fi

end;

Dr P. M. D. Gray of Aberdeen University has pointed
out that the algorithm above is actually a variant of the
recursive formulation of the eight queens problem.2® The
vector of constraints corresponds to the chessboard and
instantiation of variables to placing of queens in
positions.

Dr Gray also noted that the algorithm is very similar
to the process of unification in theorem proving and in
particular is similar to the method used to do this in the
PROLOG language.?” If the database were held as
PROLOG unit clauses, then the constraint could be held
directly in PROLOG form, for example:

C2 (x): — not ((not(tup(exist, x, studs)),
tup(enroll, x, y)))

PROLOG is more powerful than SCHEMAL in that it
can handle function symbols and will evaluate arithmetic
expressions. However, it should be noted that the
consistency of a set of constraints which contain function
symbols is undecidable as pointed out by Frost er al.2°
The initial call of p-instant substitutes the entities from
the triple to be inserted into corresponding variables in
C. Subsequent recursive calls substitute the remaining
variables in all possible ways which are implied by triples

in the database. Sometimes, it may not be possible to
substitute all the variables. In these cases, partial
instantiations are generated. To illustrate the process,
consider the following examples:

Suppose that the database contains the triples:

(ey. € .students)
(e,. named .Peter)
(e,.livesin .London)
(e,. named .Peter)
(e;. livesin .London)
(e,. named .Peter)

and also suppose that the following constraints hold:

C2”: (X. . students) v —(X. enrolled for. Y)
C6”: (X. ident. Y) v —(X. named. N) v —(X. lives in.
A)
v (Y. named. N) v (Y. lives in.
A)

Example 1. If TI = (e,. €. students) then this matches C2”
because TI corresponds to (X. €. students). With TC =
(X. €. students), the call p-instant (T1, TC, C2”) generates
the single partial instantiation:

I1: (e4. €. students) v —(e,. enrolled for. Y)

No other triples in C2” correspond to TI, therefore no
further substitutions can be made, consequently I1 is the
only new instantiation of C2” which is implied.

Example 2. If TI = (e,. enrolled for. physics) then this
matches C2” because TI corresponds to TC = (X.
enrolled for. Y). The call p-instant (T1I, TC, C2”) generates
the instantiation:

12 (e,. €. students) v —(e,. enrolled for. physics)

No other triples in C2” correspond to TI, therefore, this
is the only instantiation implied.

Example 3. If TI = (es. lives in. London) then this triple
matches C6” because TI corresponds to TC = (X. lives
in. A). The call p-instant (T1, TC, C6") generates the
instantiations:

I3: (es. ident. es) v (es. named. Peter) v —(es. lives in. London)
v “(es. named. Peter) v —(es. lives in. London)

14: (es. ident. e,) v (es. named. Peter) v —i(es. lives in. London)
v “(e,. named. Peter) v —i(e,. lives in. London)

I5: (es. ident. e) v “(es. named. Peter) v —i(es. lives in. London)
v (ey. named. Peter) v —i(e,. lives in. London)

16: (es. ident. e3) v “(es. named. Peter) v —i(es. lives in. London)
v "(e;. named. Peter) v —i(e;. lives in. London)

The triple (es. lives in. London) also corresponds to triple
(Y. lives in. A) in C6”. The set of instantiations implied
by this correspondence is similar to the set above.

Notice that the set of new instantiations of C is implied
by a triple in conjunction with the database for which the
triple is being tested.

5.5 Evaluation of instantiations

For reasons which will be apparent later, we consider the
evaluation of two types of instantiation:

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 129

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

R. A. FROST AND S. WHITTAKER

5.5.1 Evaluation of instantiations in which no further variable
substitution can be made. These instantiations may be
completely variable-free or may contain triples with
variables for which there is no corresponding triple in
the database, e.g. I1 of Section 5.4.

Such (possibly partial) instantiations are true if they
contain at least one literal which is true.

A literal which contains a negation sign is true if the
triple it contains is false otherwise it is false. A literal
which does not contain a negation sign is true if the
literal it contains is true otherwise it is false. For example,
if the triple (e, . €. students) is true then the literal (e, . €.
students) is true and the literal —(e, . €. students) is false.

A triple is assumed to be true: (i) if it is the triple being
tested for input, or (ii) if a corresponding triple is stored in
the database, or (iii) if its evaluation is true. Triples such
as (John. ident. John) and (5. <. 3) can be evaluated to
produce true or false.

The assumption here is that if a triple is missing from
the database or is not being proposed for input then the
corresponding fact is false. This is the ‘closed world
assumption’ as discussed by Minker.28

From the above, it can be seen that instantiation I1 is
true, and 12 is false with respect to the example database
of Section 5.4.

5.5.2 Evaluation of instantiations where further variable substi-
tution is possible. Such instantiations are generated as
intermediate results by p-instant and are not printed out.
For example, in the derivation of I5, the following
instantiation is generated as an intermediate result:

(es. ident. Y) v —i(es. named. N) v —i(es. lives in.
London)

v 71(Y. named. N) v (Y. lives in.
London)

An intermediate partial instantiation is true irrespective of
Surther variable substitution if either:

(i) It contains at least one literal with no negation
sign and a variable-free triple which is true.
or
(i1) Itcontains at least one literal with a negation sign
and a triple (which may or may not be variable-
free) which is false.

Similarly, an intermediate partial instantiation is false
irrespective of further variable substitution if it contains
no literals which could become true by such substitution.
That is if each one of its literals is either:

(i) A literal with no negation sign and with a triple
(which may or may not be variable-free) which is
false. .
or
(ii) A literal with a negation sign and with a variable-
free triple which is true.

5.6 Accepting or rejecting triples

As mentioned earlier, the integrity of a database D, with
respect to a set of constraints C, can be maintained by
checking each triple TI, proposed for input, to make sure
that all new instantiations of C, which are implied by TI
and D would be true if TI were in the database. So far, we
have described methods which could be used to carry out

130 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

this checking automatically. However, such an approach
assumes that the database already exhibits semantic
integrity which is then maintained. A simple solution is
to start with an empty database and then check every
triple proposed for input. This solution assumes that an
empty database exhibits semantic integrity with respect
to any set of constraints. This is not true. Therefore, we
have to impose a restriction on the type of constraints
allowed so that we can assume that an empty database
exhibits semantic integrity. The restriction is not severe
and may be thought of as a point of clarification as far as
the user is concerned :

The set of integrity constraints must not contain any
constraints consisting of one literal with: no negation
sign and with a variable-free triple. For example,
constraints such as:

(ey,. €. companies)

are not allowed. This constraint states that e,, must be
known to be a member of the set of companies at all
times, therefore an empty database does not satisfy this.
A database implementor wishing to make this constraint
could do so by putting the triple (e;,. €. companies) into
the database before it is handed over to the user
community.

5.7 Efficiency considerations

It can be seen that the procedure p-instant could generate
a large number of instantiations in some cases. Fortu-
nately it is not always necessary to generate all of these
explicitly:

(1) If an instantiation in which no further variable
substitution can be made is found to be false then
the whole process can terminate and the triple may
be rejected.

(ii) If an intermediate instantiation is found to be false
irrespective of further substitution (as described in
Section 5.5) then the whole process can terminate
and the triple may be rejected.

(ii1) If an intermediate instantiation is found to be true
irrespective of further substitution (as described in
Section 5.5) then further substitution of that instan-
tiation is not necessary and the current call of p-
instant can terminate. An extreme example of this is
where a triple TI matches a constraint C because it
corresponds to a literal which does not contain a
negation sign. In this case, all possible instantiations
of C which are implied by TI must be true.

The revised version is:

proc p-instant (triple T1, TC, constraint C):

begin
substitute variable in TC by equivalent entities in TI,
make the same substitution(s) throughout C;

if C is false irrespective of further substitutions
then goto reject
elsef C is true irrespective of further substitutions
then skip

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

A STEP TOWARDS THE AUTOMATIC MAINTENANCE OF THE SEMANTIC INTEGRITY OF DATABASES

else bool sub = false;
for each triple TX in C still containing one or two

variables

do begin

[] triples TDX = retrieve (TX);

if TDX isnt empty

then sub = true;
for each TD in TDX
do begin
p-instant (TD, TX, C)
end

fi

end;

if sub = false
then if C is false
then goto reject

fi
fi
end;

goto reject causes the process to terminate and the triple
to be rejected. A goto has been used for clarity and for
efficiency. Whenever any instantiation is found to be
false the whole process can terminate and there is no
need for recursive ‘ascent’. If the triple is not rejected,
then it is inserted.

As illustration of the process, consider the following
examples:

Take the example database in Section 5.4 and suppose
that the constraints C2” and C6” hold:

C2”: (X. . students) v —(X. enrolled for. Y)
C6”: (X. ident. Y) v —(X. named. N) v —(X. lives in.
A)
v =(Y. named. N) v (Y. lives in.
A)

Example 1. Try to insert TI = (eg. €. students):

(i) Match C2”
(if) Make the substitution {X = eg} giving:
(es. €. students) v —(eg. enrolled for. Y)

(iii) The literal (eg. €. students) is true irrespective of
further substitution (since it contains the triple being
proposed for insertion), therefore no further substi-
tution is necessary. Therefore, we can assume that
all instantiations of C2” implied by TI are true, and
TI may be inserted.

Example 2. Try to insert TI = (e;. named. Peter):

(i) Match C6”

(ii) Make the substitutions {X = e;, N = Peter} giving:
(e5. ident. Y)

v 7(e;. named. Peter) v —1(es. lives in. A)
v (Y. named. Peter) v (Y. lives in. A)

(iii) Find the corresponding triple (e5. lives in. London)
in the database, and make the substitution {4 =
London} giving:

(es. ident. Y)
v 7I(e;. named. Peter) v —1(e;. lives in. London)
v (Y. named. Peter) v (Y. lives in. London)

(iv) Find the corresponding triple (e;. named. Peter) and
make the substitution {Y =e,} giving:
(e3. ident. e,)
v 7(e3. named. Peter) v —(es. lives in. London)
v 7(e,. named. Peter) v —(e,. lives in. London)
(v) No more substitutions can be made, therefore this
instantiation is evaluated and found to be false.
(iv) No more instantiations of C6” need be generated
and no more constraints need be matched. TI is
rejected.

Example 3. Try to insert the triple TI = (es. named. James)

(i) Match C6¢”

(ii) Make the substitutions {X = es, N = James} giving:

(es. ident. Y) v mi(es. named. James) v mi(es. lives
in. A)

v M(Ys. named. James) v (Y. lives

in. A)

(iii) Try to find a triple corresponding to (es. lives in. A4)
in the database, since there is no such triple, the
literal —(es. lives in. A) must be true, therefore
further substitution of this instantiation is not
necessary and p-instant can terminate its current
call.

(iv) We have not finished yet, we must also test the
instantiations resulting from the substitution {Y =
es, N'=James}. We will find that all such instantia-
tions are also true.

(v) Since no more literals in C6” correspond to TI, we
can accept T1 for insertion because it has not been
rejected.

5.8 Implementation

A system based on these ideas has been written and
implemented as part of a final-year undergraduate
project.** The programs are written in SSALGOL?° and
run on a PDP 11/44. The procedure for generating and
evaluating instantiations implied by an incoming triple
are coded in about 200 lines of S-ALGOL.

6. LIMITATIONS OF THE METHOD

The method described in this paper is only one step
towards the automatic maintenance of database integrity
with respect to any set of constraints. The method has
limitations:

(i) Since SCHEMAL contains no constructs for dealing
with sets, constraints such as C13 and C14 cannot
be accommodated.

(ii) Although constraints such as C8 could be expressed
in SCHEMAL as:
[(X. teaches. Y) A (Y. . students)] <= (X. sets
exam. E)

the method will not work. This rule would be
transformed to two rules in clausal form:

(X. teaches. Y) <= (X. sets exam. E)
(Y. €. students) < (X. sets exam. E)

and the relationship between the two Ys is lost.

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 131

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

R. A. FROST AND S. WHITTAKER

The reason that the method does not work is that
the existentially quantified Y should be replaced by
the Skolem function f(x) when writing out the two
new rules. This cannot be done in SCHEMAL since
it lacks function symbols.

(iii) Constraints such as C10 could be expressed in
SCHEMAL as:

[(Y. ident. teaches) v (Y. ident. sets exam)]
<=[X. €. lecturers) A (X. Y. Z)]

However, this is not in keeping with the philosophy
behind SCHEMAL.

(iv) The method requires the whole database to be
locked while integrity checks are being carried out
for a single triple. Only when the triple has been
rejected or accepted can another triple be considered
for input. This situation can be improved somewhat
since two triples could be tested simultaneously if
the constraints which they matched formed disjoint
sets. This improvement however, has not yet been
implemented.

7. FUTURE DEVELOPMENTS

SCHEMAL is based on a subset of first-order predicate
calculus but is simpler because it only accommodates
binary relationships. However, SCHEMAL still inherits
all of the limitations of first-order predicate calculus. One
of the problems of moving to higher-order calculus is that
consistency checking becomes increasingly more in-
volved if not impossible. We, are currently working on a
second version of SCHEMAL which is based on a simple
subset of a higher-order logic. We shall continue to
restrict the language to binary relations since this has not
given us any problems yet and has made the task of
maintaining database integrity quite straightforward.

At present, the method is limited to the insertion of
single triples. We have not discussed the case where
several triples have to be inserted simultaneously to
preserve integrity. One approach to this problem would
appear to be to assume that all triples in the transaction are
already in the database and then check each one for
semantic integrity as outlined in the previous sections. If
any one triple is found not to comply with a constraint
then all triples in the transaction are rejected.

Further work on the efficiency of the method is
required: (i) the order of the literals in a constraint will
affect the number of database retrievals and partial
instantiations required. The effect of re-ordering con-
straints needs to be studied. (ii) the implementation
currently existing assumes that the triples returned by a

call of retrieve will fit into mainstore. This might not be
true, in which case some form of ‘lazy evaluation’ of
retrieve will be necessary.>® A problem here is that lazy
evaluation might require a disc access for each triple (as
and when it is needed). However, such evaluation would
save space since triples need not be copied into mainstore
until they were required.

8. CONCLUDING COMMENTS

We have shown how semantic constraints which are
expressed in a language called SCHEMAL may be used
to maintain the integrity of a binary-relational database
automatically. The method has been fully implemented
as part of a final-year undergraduate project. The fact
that it was possible to code and test the method in such
a short time indicates the simplicity of this approach.
This point has also been illustrated by the fact that the
complete method has been described in a few pages. This
is in marked contrast to most publications on database
integrity which tend to involve lengthy descriptions of
new constraint definition languages and very short (often
absent) descriptions of the way in which integrity is
maintained.

We recognize that SCHEMAL is limited in its
expressive power and have given examples of constraints
which cannot be accommodated by our method. How-
ever, we regard the design and implementation of this
language as a useful step in the development of more
powerful languages.

We also appreciate that SCHEMAL is not a particu-
larly user-friendly language. One needs to know some-
thing of mathematical logic to use SCHEMAL properly.
For example, it is quite easy to write a rule such as:

(X. €. alive) <= (X. €. dead)

and expect the system to reject the triple (John. €. alive)
if the triple (John. €. dead) is already in the database. In
fact, the system would not reject this triple.

We are currently working on a high-level user-friendly
language which would map into SCHEMAL. This
language may categorize constraints for user convenience,
but such classification would be ignored when the
constraints are translated into SCHEMAL.

Acknowledgements

We would like thank Dr Ian Sommerville and Mr Bob Welham of
Strathclyde University, and Dr Gray of Aberdeen University for their
interest in this work.

REFERENCES

1. G. Wiederhold, Database Design, McGraw-Hill, New York
(1977).

2. M. P. Klopprogge, Term: an approach to include the time
dimension in the entity—relationship model, in Entity-Relation-
ship Approach to Information Modeling and Analysis, ed. by
P.P.Chen, pp. 477-512. Institute (1981).

3. J. R. Abrial, Data semantics, in Data Management Systems, ed.
by J. W.Klimbie and K. L. Koffeman, North Holland, Amsterdam
(1974).

132 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

4. J. J. Florentin, Consistency auditing of databases. The Com-
puter Journal 17, 52-58 (1974).

5. A.Blaserand H. Schmutz, Data base research: a survey. Lecture
Notes in Computer Science, Vol. 39, ed. by G. Goos and J.
Hartmanis, Springer-Verlag, pp. 44-113. Berlin (1975).

6. K.P.Eswaran and D. D. Chamberlin, Functional specification of
a subsystem for data base integrity, in Proceedings of the
International Conference on Very Large Data Bases, MA, 22—
24 (1975).

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

7.

10.

1.

12.

13.

14.

15.

16.

17.

18.

A STEP TOWARDS THE AUTOMATIC MAINTENANCE OF THE SEMANTIC INTEGRITY OF DATABASES

M. Stonebraker, Implementation of integrity constraints and
views by query modification, in Proceedings of the ACM
SIGMOD Conference, San Jose, California (1975).

. M. M. Hammer and D. J. McLeod, Semantic integrity in a

relational data base system, in Proceedings of the International
Conference on Very Large Data Bases, Massachusetts (1975).

. H. Biller and E. J. Neuhold, Semantics of data bases: the

semantics of data models. /nformation Systems 3, 11-30
(1978).

G. Pelagatti, D. Paolini and G. Bracchi, Mapping external views
to a common data model. /nformation Systems 3, 141-151
(1978).

N. Roussopulos, CSDL: a conceptual schema definition lan-
guage for the design of data base applications. /EEE Transac-
tions on Software Engineering SE-5, 481-496 (1979).

J. Mylopoulos, P. A. Bernstein and H. K. T. Wong, A language
facility for designing database-intensive applications. ACM
Transactions on Database Systems 5, 185-207 (1980).

M. L. Brodie, The application of data types to database semantic
integrity. /nformation Systems 5, 287-296 (1980).

A. Borgida and H. K. T. Wong, Data models and data
manipulation languages: complementary semantics and proof
theory, in Proceedings of the International Conference on Very
Large Data Bases, pp. 260-271 (1981).

D. W. Shipman, The functional data model and the data
language DAPLEX. ACM TODS 6, 140-173 (1981).

J. A. Robinson, A review of automatic theorem proving, in
Proccedings of Symposia in Applied Mathematics 19, pp. 1-
18. American Mathematical Society, Providence, Rhode Island
(1967).

N. Roussopoulos and J. Mylopoulos, Using semantic networks
for database management. Proceedings of the International
Conference on Very Large Databases, Boston, Massachusetts
(1975).

J.Smith and D. C. P. Smith, Database abstractions: aggregation

19.

20.

21.

22.
23.

24,

25.
26.
27.

28.

29.

30.

and generalization. ACM Transactions on Database Systems 2,
105-133 (1977).

CCA, ADAPLEX Reference Manual, CCA, 575 Technology
Square, Cambridge, Massachusetts 02139 (1982).

R. A. Frost, A. D. McGettrick and R. K. Welham, The simplified
binary-relational view of the universe and a conceptual schema
definition language based on it. Technical Report, University of
Strathclyde, Glasgow (1981).

R. A. Kowalski, Logic for data description, in Logic and Data
Bases, ed. by H. Gallaire and J. Minker, pp. 77-102. Plenum
Press, New York (1978).

R. A. Frost, Binary-relational storage structures. The Computer
Journal 25, 358-367 (1982).

J. Asher, The design and implementation of a conceptual
schema definition language, Final Year Project, Department of
Computer Science, University of Strathclyde (1982).

S. Whittaker, Implementation of an automatic semantic integrity
maintainer. Final Year Project, Department of Computer Sci-
ence, University of Strathclyde (1982).

N.J.Nilsson, Problem Solving Methods in Artificial Intelligence,
McGraw-Hill, New York (1971).

N. Wirth, Algorithms + Data Structures = Programs, Prentice-
Hall, Englewood Cliffs, New Jersey (1976).

W. F. Clocksin and C. S. Mellish, Programming in Prolog,
Springer-Verlag, Berlin (1981).

J. Minker, in Logic and Data Bases, ed. by H. Gallaire and J.
Minker, Plenum Press, New York (1978).

R. Morrison, S-Algol Reference Manual, Department of Com-
putational Science, University of St Andrews, Scotland (June
1980).

P. Henderson, Functional Programming, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1980).

Received April 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 133

20z udy 01 uo 1s8n6 Aq Z8660E/PZ |/2/92/1014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

