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Two new formalisms are introduced: extended attribute grammars, which are capable of defining completely the
syntax of programming languages, and extended attributed translation grammars, which are additionally capable of
defining their semantics by translation. These grammars are concise and readable, and their suitability for language
definition is demonstrated by a realistic example. The suitability of a large class of these grammars for compiler
construction is also established, by borrowing the techniques already developed for attributable grammars and affix

grammars.

1. INTRODUCTION

This paper is concerned with the formalization of the
syntax and semantics of programming languages. The
primary aims of formalization are preciseness, complete-
ness and unambiguity of language definition. Given these
basic properties, the value of a formalism depends
critically on its clarity, without which its use will be
restricted to a tight circle of theologians. Another
important property of a formalism is its suitability for
automatic compiler construction, since this greatly
facilitates the correct implementation of the defined
language.

Experience with context-free grammars (CFGs) illus-
trates our points well. Although not capable of defining
completely the syntax of programming languages (which
are context-sensitive), CFGs have all the other desirable
properties, and their undoubted success has been due
both to their comprehensibility to ordinary programmers
and to their value as a tool for compiler writers. Indeed,
it is likely that any more powerful formalism, if it is to
match the success of CFGs, will have to be a clean
extension of CFGs which retains all their advantages.

We firmly believe in the advantages of formalization
of a programming language at its design stage. Even such
a clear and well-designed language as Pascal! contained
hidden semantic irregularities which were revealed only
by formalization of its semantics.? Similarly, certain ill-
defined features of the context-sensitive syntax of Pascal
(such as the exact scope of each identifier) are thrown
into sharp relief by an attempt at formalization.? It is
well known that issues not resolved at the design stage of
a programming language tend to become resolved de
Jacto by its first implementations, not necessarily in
accordance with the intentions of its designers.

A survey article* has assessed four well-known for-
malisms, van Wijngaarden grammars, production systems,
Vienna definition language and attribute grammars, com-
paring them primarily for completeness and clarity.
None of these formalisms is fully satisfactory, even from
this limited viewpoint. The first three formalisms tend to
produce language definitions which are, in our opinion,
difficult to read. Attribute grammars are easier to

understand because of their explicit attribute structure
and distinction between ‘inherited’ and ‘synthesized’
attributes. These same properties make attribute gram-
mars the only one of these formalisms which is suitable
for automatic compiler construction, an important
application which was not considered in the survey
article.

In this paper we introduce a new formalism, the
extended attribute grammars (EAGs), which we believe
will compare favourably with these well-known formal-
isms from every point of view. EAGs are based on
attribute grammars and affix grammars, and retain the
more desirable properties of these formalisms, but are
designed to be more elegant, readable and generative in
nature. They represent a refinement of earlier work by
the authors.> ®

Section 2 of this paper is an informal introduction to
EAGs via attribute grammars and affix grammars, and
Section 3 is a more formal definition of EAGs. In Section
4 we discuss the possibilities of using EAGs to specify
the semantics as well as the syntax of programming
languages, and we introduce an enhanced formalism, the
extended attributed translation grammars (EATGs), which
are designed to do so by translation into some target
language. Section 5 demonstrates the suitability of a large
class of EAGs for automatic compiler construction, and
contains a brief description of a compiler writing system
based on EATGs which has been implemented at
Aarhus.

In the appendices we give a complete definition by an
EAG of the syntax of a small but realistic programming
language, and by an EATG of its translation into an
intermediate language. These examples should allow
readers to judge for themselves the suitability of these
formalisms for language definition.

2. ATTRIBUTE GRAMMARS AND EXTENDED
ATTRIBUTE GRAMMARS

In this section we briefly describe attribute grammars
and affix grammars, and introduce extended attribute
grammars. We use a notation which is based on BNF.
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EXTENDED ATTRIBUTE GRAMMARS

The empty sequence is denoted by (empty). Terminal
symbols without attributes are enclosed in quotes.
Assignments in an ALGOL68-like language are used
as a running example throughout this section. The LHS
of each assignment must be an identifier of mode
ref(MODE), where MODE is the mode of the RHS;
each identifier must be declared (elsewhere), and its
mode is determined by its declaration. We shall use the
term ‘environment’ for the set of declared identifiers
together with their modes, and we shall view this
environment as a partial map from names to modes. We
shall assume the following context-free syntax:
(1) <assignment) : .= {identifier) *“: =" {expression)
(2) (identifier) : := (name)

2.1 Attribute grammars and affix grammars

Attribute grammars were devised by Knuth,” and affix
grammars independently by Koster.® The two formalisms
are essentially equivalent, and we shall attempt to
abstract their common properties by a unified notation.
We use the abbreviation AG to mean either attribute
grammar or affix grammar.

The basic idea of AGs is to associate, with each symbol
of a CFG, a fixed number of attributes, with fixed
domains. Different instances of the same symbol in a
syntax tree may have different attribute values, and the
attributes can be used to convey information obtained
from other parts of the tree. A distinction is made
between synthesized and inherited attributes. Consider a
symbol X and a phrase p derived from X. Each inherited
attribute of X is supposed to convey information about
the context of p, and each synthesized attribute of X is
supposed to convey information about p itself. We shall
prefix inherited attributes by downward arrows (|) and
synthesized attributes by upward arrows (1).

In our example, each of the non-terminals (assign-
ment), (identifier) and <{expression) will have an
inherited attribute representing its ‘environment’ (inher-
ited since it represents information about the context).
Each of (identifier) and (expression) will also have a
synthesized attribute representing its mode. The symbol
(name) will have a single synthesized attribute, its
spelling.

The attributes can be used to specify context-sensitive
constraints on a language with a context-free phrase
structure. Each AG rule is basically a context-free
production rule augmented by

(a) evaluation rules, specifying the evaluation of certain
attributes in terms of others, and

(b) constraints, or predicates which must be satisfied by
the attributes in each application of this rule.

In our example, assignments could be specified by the
following rule:
{assignment | ENV) : : =
¢)) (identifier | ENV1 1 MODE])*“:="
{expression | ENV21 MODE2)
evaluate ENV1 « ENV
evaluate ENV2 « ENV
where MODEI = ref(MCDE2)
‘Where’ introduces a constraint, and ‘evaluate’ introduces
an evaluation rule. Here we have used some attribute
variables, ENV, ENV1, ENV2, MODEI and MODE?2,
to stand for the various attribute occurrences in this rule.

The evaluation rules specify that the environment
attributes of both (identifier) and {expression) are to
be made equal to the environment attribute of {assign-
ment). The constraint specifies the relation which must
hold between the mode attributes of (identifier> and
{expression ).

An ‘identifier’ is a name for which a mode is defined in
the environment. We could specify this by the following
rule:

(identifier | ENV{MODE) : ;=
) {name I NAME)
evaluate MODE «— ENV[NAME)]

Here we compute the mode attribute of (identifier) by
applying the map ENV to NAME, the attribute of
(name), where ENV is the environment attribute of
(identifier). There is an implicit constraint here, that the
map ENV is in fact defined at the point NAME.

Inherited attribute-positions on the left-side and
synthesized attribute-positions on the right-side of a rule
are called defining positions. Synthesized attribute-posi-
tions on the left-side and inherited attribute-positions on
the right-side of a rule are called applied positions. This
classification is illustrated below:

Xl... 1o)==t 1.0,

def app app def

1O PR P

app def

In general, there must be exactly one attribute variable
for each defining position in a rule. The evaluation rules
specify how to compute all attributes in applied positions
from those in defining positions. The constraints relate
some of the attributes in defining positions. (This
definition is actually more restrictive than that of Ref. 7,
in which the evaluation rules may use attributes from any
positions. As Ref. 9 points out, however, the restriction
effectively excludes only grammars containing circu-
larities.)

In practice, many evaluation rules turn out to be simple
copies; we can eliminate these by allowing any variable
which occupies a defining position also to occupy any
number of applied positions, and for each such position
a simple copy is implied. This allows rule (1) to be
simplified as follows:

Cassignment | ENV) ; ;=
(1) (identifier | ENV 1 MODE]1) “:="
{expression | ENV { MODE2)
where MODE1 = ref(MODE2)

The choice of | and 1 to distinguish inherited and
synthesized attributes is motivated by the tendency of
inherited attributes to move downwards, and synthesized
attributes to move upwards, in a syntax tree. To illustrate
this, Fig. 1 shows a fragment of a syntax tree, based on
our example.

< identifieryE} ref(i?t)> ="

N

/ [
e [
< namedx >

< expression&Efirlt >
]

Figure 1. Fragment of an attributed syntax tree. The input string is:
x:= {expression). E stands for the attribute [x — ref(int), y—
bool]. Broken arrows leading to each attribute indicate which other
attributes it depends upon.
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Attribute grammars have been used to define the
context-sensitive syntax of several programming lan-
guages. Relative to van Wijngaarden grammars,'° for
example, language definitions by AGs are easy to
understand, because of the explicit attribute structure
and the distinction between inherited and synthesized
attributes. It is quite easy to detect the underlying
context-free syntax, although this does tend to be
obscured by a profusion of evaluation rules and con-
straints. Another disadvantage of AGs is that they are
not generative grammars.

AGs are well suited to compiler construction, and have
been exploited in many compiler writing systems.!!~18
We shall return to this topic in Section 5.

2.2 Extended attribute grammars

EAGsareintended to preserve all the desirable properties
of AGs, but at the same time to be more concise and
readable. Like van Wijngaarden grammars,'® EAGs are
generative grammars.

A straightforward notational improvement on AGs is
to allow attribute expressions, rather than just attribute
variables, in applied positions; for each such attribute
expression an evaluation rule is implied. For example,
rule (2) in our example could be expressed as follows:

(identifier | ENV 1 ENV[NAME]) : :=
) {name | NAME)

This relaxation makes explicit evaluation rules un-
necessary.

In EAGs we go much further, however, and allow any
attribute position, applied or defining, to be occupied by
an attribute expression. Moreover, we withdraw the
restriction that each attribute variable must occur in only
one defining position in a rule. These relaxations allow
all relationships among the attributes in each rule to be
expressed implicitly, so that explicit evaluation rules and
constraints become unnecessary. The attribute variables
become somewhat akin to the ‘metanotions’ of a van
Wijngaarden grammar.

Our example could be expressed in an EAG as follows:

{assignment | ENV) | =
1) {identifier | ENV 1 ref(MODE)) “:="
{expression | ENV 1 MODE)

{identifier | ENV 1 ENV[NAME)D : ;=
?2) <{name { NAME)

In rule (1) we have specified the relation which must hold
between the second attribute, MODE, of {expression)
and the second attribute of {identifier) simply by writing
‘ref(MODE)’ in the latter position. Similarly, in rule (2)
we have specified that the second attribute of (identifier)
is obtained by applying ENV to NAME simply by
writing ‘ENV[NAMEY] in the appropriate position.

It may be seen that the EAG rules are rather more
concise than the corresponding AG rules, and the
underlying context-free syntax is consequently more
visible.

Context-sensitive errors are treated by EAGs in the
same implicit manner as context-free syntax errors are
by CFGs. A CFG can generate only (context-free) error-
free strings. Similarly, an EAG can generate only
(context-sensitive) error-free strings.
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Each EAG rule acts as a generator for a (possibly
infinite) set of context-free production rules, using a
systematic substitution mechanism similar to that of van
Wijngaarden grammars. In detail, this works as follows.
To generate a production rule, we must systematically
substitute some suitable attribute for each attribute
variable occurring in the rule; then we must evaluate all
the attribute expressions.

For example, after systematically substituting [x —
ref(int), y — bool] for ENV and x for NAME in rule (2),
and evaluating ENV[NAME], we get the production rule

{identifier | [x — ref(int), y — bool] { ref(int)) : ;=
{name T x)

This production rule may be applied at some node of a
syntax tree (just as in Fig. 1).

If, instead, we try to substitute z for NAME, we find
that the value of ENV[NAME] is not defined; therefore
no production rule can be generated.

The rest of Fig. 1 can be filled in by substituting [x —
ref(int), y — bool] for ENV and int for MODE in rule (1),
giving the production rule

{assignment | [x — ref(int), y — bool]) : ;=
{identifier | [x — ref(int), y — bool] { ref(int))>
‘“:="Xexpression | [x — ref(int), y — bool]  int)

The systematic substitution rule makes it impossible
to generate from rule (1) a production rule in which the
mode attributes of (identifier) and {(expression) are, for
instance, ref(int) and bool, respectively.

3. FORMAL DEFINITION OF EXTENDED
ATTRIBUTE GRAMMARS

An extended attribute grammar is a 5-tuple
G=<{D,V,Z,B,R)

whose elements are defined in the following paragraphs.

D=(DI1,D2,..., fl,f2,...) is an algebraic structure
with domains DI, D2, ..., and (partial) functions f1,
/2, .. .operating on Cartesian products of these domains.
Each object in one of these domains is called an attribute.

V is the vocabulary of G, a finite set of symbols which
is partitioned into the non-terminal vocabulary Vy and
the terminal vocabulary V. Associated with each symbol
in V is a fixed number of attribute-positions. Each
attribute-position has a fixed domain chosen from D, and
is classified as either inherited or synthesized.

Z, a member of Vy, is the distinguished non-terminal of
G.

We shall assume, without loss of generality, that Z has
no attribute-positions, and that no terminal symbol has
any inherited attribute-positions.

B is a finite collection of attribute variables (or simply
variables). Each variable has a fixed domain chosen from
D.

An attribute expression is one of the following:

(a) a constant attribute, or

(b) an attribute variable, or

(c) a function application f(e,, ..., e,), where e,, . . .,
e, are attribute expressions and f is an appropriate
(partial) function chosen from D.

In practice, when writing down attribute expressions
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we use not only functional notation but also other
conventional notations such as infix operators.

Let v be any symbol in V, and let v have p attribute-
positions whose domains are D, . . ., D, respectively. If
a, ..., a, are attributes in the domains D, ..., D,,
respectively, then

Wtay - +ay)

is an attributed symbol. In particular, it is an attributed
non-terminal (terminal) if v is a non-terminal (terminal).
Each + stands for either | or 1, prefixing an inherited or
synthesized attribute-position as the case may be.

Ifey, ..., e,are attribute expressions whose ranges are
included in Dy, . . ., D,, respectively, then

v+e---+e)

is an attributed symbol form.
R is a finite set of production rule forms (or simply
rules), each of the form:

F::=F,...F,

where m >0, and F, F,, ..., F, are attributed symbol
forms, F being non-terminal.

The language generated by G is defined as follows.

LetF::=F,...F,bearule. Take a variable x which
occurs in this rule, select any attribute a in the domain of
x, and systematically substitute a for x throughout the
rule. Repeat such substitutions until no variables remain,
then evaluate all the attribute expressions. Provided all
the attribute expressions have defined values, this yields a
production rule, which will be of the form:

A::—_-Al...Am

where m >0, and 4, 4,, . . ., A, are attributed symbols,
A being an attributed non-terminal.

A direct production of an attributed non-terminal A4 is
a sequence A4, . .. A, of attributed symbols such that A4
.:=A,...A,isaproduction rule.

A production of A is either:

(a) adirect production of A4, or

(b) the sequence of attributed symbols obtained by
replacing, in some production of A, some attributed
non-terminal 4’ by a direct production of 4.

A terminal production of A is a production of A which
consists entirely of (attributed) terminals.

A sentence of G is a terminal production of the
distinguished non-terminal Z. (Recall that Z has no
attributes.)

The language generated by G is the set of all sentences
of G.

Observe that the distinction between inherited and
synthesized attributes makes no difference to the language
generated by the EAG. Nevertheless, we believe that
this distinction makes a language definition easier to
understand. It is also essential to make EAGs suitable
for automatic compiler construction.

Complete examples of EAGs may be found in
Appendix A and in Ref. 3.

4. EXTENDED ATTRIBUTED TRANSLATION
GRAMMARS

We have seen that a CFG can be enhanced with
attributes to define context-sensitive syntax. In a similar

manner, a syntax-directed translation schema (SDTS)°
can be enhanced with attributes and thus express context-
sensitivities of both an input grammar and an output
grammar. The attributed translation grammars of Ref. 20
are in fact an enhancement of simple SDTSs with
attributes, in the style of ordinary AGs.

By analogy with the previous sections, it is straightfor-
ward to generalize SDTSs in the style of EAGs. The
resulting extended attributed translation grammars
(EATGs) are a powerful tool for specifying the analysis
phase of compilers. A major example of this can be found
in Ref. 21.

An EATG is an EAG where the terminal vocabulary
is partitioned into two disjoint sets, the (attributed) input
symbols and the (attributed) output symbols. We shall
assume that no input symbol has any inherited attribute-
positions and that no output symbol has any synthesized
attribute-positions. Like an STDS rule, an EATG rule
consists of an input rule and an output rule. The input and
output rules are ordinary EAG rules. The input rules
consist of input symbols and non-terminals; the output
rules consist of output symbols and non-terminals. The
attributes are partitioned into two disjoint sets, one for
the input rules and one for the output rules. The two
attribute sets express context-sensitiveness of the input
language and the output language, respectively.

In general, we allow each output rule to make use of
any attribute variables from the corresponding input
rule, but not vice versa. Notwithstanding their separa-
tion, the input rule and corresponding output rule are
taken together when applying the EAG systematic
substitution rule.

It is straightforward to generalize the formal definition
of EAGs in Section 3 to EATGs and we shall not do so
here. The main advantage of EATGs relative to EAGs
is that EATGs are better suited for expressing modularity
in language definitions.

To demonstrate the advantages of EATGs we show
how example 9.19 of Ref. 19 may be written using an
EATG. The example is code generation for arithmetic
expressions to a machine with two fast registers, A and
B. The terminals of the output EAG correspond to
instructions of this machine. Most of these symbols have
an inherited register-valued attribute (ajb) and an
inherited attribute representing a storage address of the
machine. The multiply instruction, MPY, takes one
operand from B and the other operand from store, and
delivers its result in A. The other instructions should be
obvious. The corresponding output terminals are :

(LOAD |Register |Integer)
{ADD |Register |Integer)
(STORE |Register |Integer)
{MPY |Integer)
ATOB

The non-terminals of the output EAG have two attributes
each: an inherited register-valued attribute which speci-
fies where the corresponding subexpression should be
evaluated, and a synthesized integer attribute represent-
ing the height of the corresponding syntax subtree. The
latter attribute is used to keep track of safe temporary
locations. More details about the example and the code-
generation strategy adopted may be found in Ref. 19.
We have extended the input EAG with a map-valued
attribute which for each identifier gives its address in

(‘move contents of A to B’)
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store. We omit rules for defining this attribute since this
is fully demonstrated in Appendix A. We suppose that
the non-terminal <{evaluation) is part of a larger
grammar.

We have taken the liberty of adding a non-terminal to
the output EAG which is not present in the input EAG.
This should cause no conceptual difficulty.

Input rules

(1) <evaluation |ENV) : := {expr |[ENV)
(2) (expr JENV) .= (expr [ENV) “+”

{term |ENV)
3) | (term |JENV)
(4) <term |JENV) ;.= {term |[ENV) “s”
{factor |ENV)
5) | {factor JENV>
(6) <factor [ENV) ::=“(" {expr [ENV) *)”
@) | (name TNAME)

Output rules

(1) (evaluation) : ;.= {expr |a TH)
(2) <{expr |REG tmax(H1,H2) + 1) ::=
(term Ja TH1) (STORE |a |H2)
(expr |REG TH2)
{ADD |REG |H2)
(3) (expr |REG TH) . .= (term |REG TH)
(4) (term |REG Tmax(H1, H2) + 1) ::=
{factor |a TH1) (STORE la |H2)
(term |b TH2) (MPY |H2)
{move |REG)
(5) <term |REG 1H) : .= (factor |REG 1H)
(6) (factor |REG TH) : .= <expr |REG TH)
(7) <factor |REG 1) . .= .
(LOAD |REG |ENV[NAME])
{move |a) . .= {empty)
{move |b) .= ATOB

Figure 2 shows attributed syntax trees for an example
translation.

The generalization of SDTSs to EATGs in the style of
EAGs is, as mentioned, straightforward. Our reason for
treating EATGs in this paper is to demonstrate their
practical use when defining semantics. (In this paper we
take the liberty of using ‘semantics’ in the narrow sense
of defining a translation.) The use of EATGs allows a
high degree of modularity in defining semantics. The
input EAG may be used to define the (context-sensitive)
syntax of a language, and the output EAG its semantics.
This makes it possible to separate the two parts and to
have a clean interface consisting of corresponding rules
interconnected with attributes. Furthermore, itis possible
to have more than one output EAG corresponding to the
same input EAG, and in this way to define different
semantics. Examples of different semantics are:

(a) Defining a translation into an intermediate language
suitable for code generation. In Appendix B, the
EAG of Appendix A is enhanced to an EATG
defining such a translation.

(b) Defining a translation into code for a hypothetical
machine (perhaps a real machine if it has a simple
structure) intended for interpretation.
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(a) < evaluationyE >
< exprvE >
< tenIuE >
<termyE > . < factoryE >
< factoryE > < namedz >
[ | 1
( < expnE > )
T
< expryE > + < termyE >
<termyE> < factoryE >
< factoryE > < namedy >
< name$x>

Figure 2(a). Attributed syntax tree of the input string (x + y) *z
E is the value of ENV in the given context.

(b) <evaluation >
< expryall >

< termyad3 >
l

[

<factoryall> <STOREva12> <termibd2>

<MPYy2> <moveya>

< factoryb 42>

< LOADvav@z > <empty >

<exprybd2 >
4

[ | I

< termyabl> <STOREyasl> <exprebdl> <ADDiby1 >

< factoryadl > < termybdl >

< LOADvat@y > <factortb$1>

<LOADvbY@x>

Figure2(b). Attributedsyntaxtree of the outputstring correspond-
ing to Fig. 2(a). @x, @y, @z denote the addresses of x, y, z.

(c) Defining a translation into some lambda-notation
that may be ‘executed’ by a lambda reducer.??> An
example of this is the language LAMB of SIS,
which is a compiler generator based upon denota-
tional semantics;?* SIS also provides a reducer for
LAMB.

(d) Defining a verification generator by means of an
output EAG which has predicates as attributes and
generates a series of verification conditions.??

5. IMPLEMENTATION ISSUES

5.1 Parsing and attribute evaluation with AGs

Some AGs contain circularities, i.e. situations in which a
set of attributes (not necessarily all occurring in one rule)
depend upon one another circularly. Circularity implies
that there is no order in which all the attributes can be
evaluated. Fortunately, circularities can be detected
automatically from the grammar.’

A decade of research has produced a variety of
attribute evaluators for non-circular AGs. These include
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one-pass evaluators,® '>2526 multi-pass left-to-right

evaluators,” multi-pass alternating evaluators,2” and
multi-sweep evaluators.”® In all these cases the order of
evaluation is fixed by the constructor, independently of
any particular program. By contrast, there are some
systems (such as DELTA'® and NEATS!®) which choose
an evaluation order dependent on the particular program.
These are general enough to accept any non-circular AG.

5.2 Extension to extended attribute grammars

All the attribute evaluators mentioned in the previous
section can be used for EAGs as well. The simplest way
to establish this is to show how, and in what circumstan-
ces, an EAG can be converted automatically into an
equivalent AG.

The following examples, all taken from Appendix A,
illustrate the necessary transformations.

Example 1
(identifier | ENV 1 ENV[NAME].mode) ; ;=
(19) <{name ] NAME)

Here we have an  attribute  expression,
‘ENV[NAME].mode’, in an applied position. This
causes no problem: we just replace the expression by a
new variable, say MODE, and insert an evaluation rule
which makes MODE equal to ENV[NAME].mode:

(identifier | ENV1MODE) : :=
{name | NAME)
evaluate MODE « ENV[NAME].mode

Example 2
(assignment | ENV) : ;=
3) (variable |[ENV{TYPE) “="
(expression | ENV {1 TYPE)

Here the variable TYPE occurs in two defining positions.
To ensure that the variable receives a unique value, in
accordance with the systematic substitution rule, we
replace one occurrence of TYPE by a new variable, say
TYPEI, and insert the constraint ‘TYPE = TYPEI’:

(assignment | ENV) : : =
{variable | ENV1TYPE) “="
{expression | ENV { TYPE1)
where TYPE = TYPEI

Example 3
(variable | ENV]1TYPE) ;.=
{variable | ENV T array(LB, UB, TYPE))
“[” <expression | ENV { integer) *‘]”

Here we have two defining positions occupied by attribute
expressions which are not simple variables.

The constant attribute ‘integer’ can be replaced by a
new variable, say TYPE], and the constraint ‘TYPEI =
integer’ inserted.

The synthesized attribute of {variable) (on the right-
side of the rule) is more difficult. We know that this
attribute must be in the domain

(18d)

Type = ( boolean |integer |array(Integer, Integer, Type) )

but it will be necessary at evaluation-time to check that
the attribute is indeed of the form array(LB, UB, TYPE),
and thereby deduce the values of LB, UB and TYPE.

Now the composition function

array: Integer x Integer x Type — Type
has a partial inverse function:

array ~': Type — Integer x Integer x Type

array '(T)=if QL, U, T'XT = array(L, U, T"))
then (L, U, T')
else undefined

Thus we can replace the attribute expression ‘array(LB,
UB, TYPE)’ by a new variable, say TYPE2, and insert

an evaluation rule invoking the inverse function array ™! :

{variable | ENV1TYPE) ;.=
{variable | ENV 1 TYPE2),
“[” <expression | ENV { TYPE1) “]”
where TYPE1 = integer
evaluate (LB, UB, TYPE) « array ! (TYPE2)

Clearly the last transformation will work only if the
attribute expression in the defining position is composed
only of invertible functions. Among the useful functions
which do have (partial) inverses are the composition
functions for Cartesian products, discriminated unions
and sequences.

An EAG is well-formed if and only if :

(a) every variable occurs in at least one defining position
in each rule in which it is used; and

(b) every function used in the composition of an attribute
expression in a defining position has a (partial)
inverse function.

These conditions do not seem to be too restrictive in
practice. For example, the EAG in Appendix A is well-
formed.

Any well-formed EAG can be converted into an
equivalent AG by repeatedly applying the following
transformations to each rule of the EAG.

(T1) Wherever an applied position contains an attribute
expression e which is not a simple variable, choose
some new variable x (i.e. one which is not already
used in the rule) whose domain is the same as that
of the applied position, replace e by x, and insert
the evaluation rule ‘evaluate x « e’.

(T2) Wherever a variable x occurs in n+ 1 defining
positions (n > 0), choose some new variables
Xy, ... X, whose domains are the same as that of x,
use them to replace all but one defining occurrence
of x, and insert the constraint ‘where x = x; = - - -
=Xx,.

(T3) Wherever a constant attribute ¢ occurs in a defining
position, choose a new variable x, replace c by x,
and insert the constraint ‘where x = ¢’.

(T4) Wherever a function application f(x,,..., x,)
occurs in a defining position, where x,, . . ., x, are
all variables, choose some new variable x, whose
domain is the same as the range of f, replace
f(x;, ..., x,) by x, and insert the evaluation rule
‘evaluate (x,, ..., x,) < f~1(x)’. (Such a function
/! must exist, by condition (b) for well-formedness
of an EAG.)

Now any evaluator for AGs can be adapted to well-
formed EAGs as well. For example, the EAG in
Appendix A is capable of being handled by a two-pass
left-to-right evaluator.
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5.3 Attribute-directed parsing

Most evaluators for AGs assume that the underlying
CFG is deterministic (e.g. LL, LALR or LR). However,
most ‘natural’ grammars for programming languages
contain ambiguities which are resolved by context. An
EAG is a natural tool for expressing such ambiguities. A
typical example of this is rule-group (10) in Appendix A.
Here the underlying CFG is ambiguous, but the EAG is
not.

References 9 and 26 mention the possibility of making
the attributes influence the parsing. This would allow
some AGs and EAGs with ambiguous underlying CFGs
to be handled. This problem has not yet found a
satisfactory general solution; the main difficulty is that it
is undecidable whether the attributes do indeed resolve
the ambiguity. For a further discussion of attribute-
directed parsing, see Ref. 29.

5.4 The Aarhus compiler writing system

An experimental compiler writing system, NEATS, has
been designed and implemented at Aarhus.'® NEATS
accepts an EATG consisting of one input EAG and one
output EAG, and constructs a translator according to
this EATG.

The attribute domains available in NEATS are
essentially those defined in Appendix A.

The constructed translator translates an input string
into an output string, and if this is sufficient for the
application then the user need supply no more than the
EATG.

For most practical purposes, however, the user may
wish to do more. Instead of generating an output string,
the translator may be made to call a procedure each time
an output symbol is to be generated. The output symbol
and its associated attributes will then be passed as
parameters to the procedure. This will be the situation
when, for example, the EATG defines the analysis phase
of acompiler, and the user himself programs the synthesis
(code generation).

NEATS is programmed in Pascal and is an extension
of the BOBS-system, which is an LALR(1) parser
generator.>® Consequently, the CFG underlying the
EATG must be LALR(1).

NEATS will accept any non-circular EATG. During
parsing, the translator builds a directed acyclic graph
defining the order of evaluation of the attributes. After
parsing, a recursive scan of this graph will evaluate all
the attributes. The parse tree itself is not stored. The
reader is referred to Refs 18 and 22 for details of NEATS
and the AG constructor algorithm adopted.

The practical value of this algorithm has to be
investigated further; it is reasonably fast but uses a lot of
store. The algorithm adopted is not essential for the use
of EATGs; any other AG constructor algorithm could
equally well have been adopted. However, the system is
intended for experiments, so it was decided to have an
implementation accepting all non-circular AGs rather
than some more limited subclass.

The experiments to be done include the following:

(a) to test the system with some large grammars to
measure its usefulness in generating parts of a
production compiler
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(b) to use the system in teaching

(c) to modify the CF parser constructor (the BOBS-
system) to accept all LR(1) grammars, and certain
ambiguousones in order to experiment with attribute-
directing parsing

(d) tomake it possible to define a sequence of translations

(e) to investigate the possibilities and requirements for
adding new domains and thus extend the fixed set of
domains available in NEATS.

So far the results have been very promising.

6. CONCLUSIONS

We have introduced two new formalisms, the EAGs and
the EATGs, which we believe come close to reconciling
two conflicting ideals. On the one hand, these grammars
are concise and readable, and therefore may be capable
of making formal language definitions more widely
acceptable than hitherto. On the other hand, they are
also well suited to automatic compiler construction.

The advantages of EAGs and EATGs stem from their
combination of the best features of other formalisms with
some new ideas:

(a) the explicit attribute structure and the distinction
between inherited and synthesized attributes

(b) the visibility of the underlying context-free syntax

(c) generative definition of languages (like context-free
and van Wijngaarden grammars)

(d) the implicit and concise specification of context-
sensitivities by means of attribute expressions in
applied and defining positions

(e) the free choice of domain types.

We have found in practice that EAGs and EATGs are
straightforward to write. Complete definitions of real
programming languages can be found in Refs 3 and 21.

The abstract data types (partial maps, discriminated
unions, etc.) used in the example are very well suited to
describing attributes, in particular the ‘environment’
attributes in a programming language. Certainly, the
same attributes can be represented by strings, as in van
Wijngaarden grammars'® or extended affix grammars,®
but this leads to some artificiality ; compare, for example,
rule (19) in Appendix A with the corresponding syntax in
Ref. 10. Likewise, the tree structure of ‘objects’in Vienna
definition language* is not always the most natural
structure.

Evidently, the definitive power of EAGs and EATGs
rests largely on the power of the functions used to
compose attribute expressions. These functions may be
arbitrarily powerful, and their definition is not part of the
formalism itself. One could abuse this power by making
the functions do most of the work of language definition—
in the extreme case, using a single function which accepts
or rejects a complete program—but obviously this would
help no-one. We have avoided any such cheating, in our
examples, by using only well-known abstract domain
types and functions; grammatically defined predicates
(e.g. rule-group (17) in Appendix A) can be used to avoid
inventing special-purpose functions.

We have briefly described an experimental compiler
writing system which has been implemented at Aarhus.
This system accepts a large subclass of EATGs, and it

202 udy g uo 1s8nb Aq 61.001E/21 1/2/92/1014e/|uf0d/W0d"dno"oIepED.//:SARY W) PAPEo|uMOQ



EXTENDED ATTRIBUTE GRAMMARS

demonstrates the feasibility of using an EATG to
automate the construction of the analysis phase of a
compiler. It is being used to investigate the practicality
of this approach and some other open problems.

The automation of the synthesis (code-generation)
phase of a compiler has not been treated in this paper,
but AGs and EAGs have an application here too.!2

A very interesting recent development of EAGs is the
work of Paulson.?! Paulson’s ‘semantic grammars’ are
EAGs in which some of the attributes are semantic
denotations. Thus a semantic grammar can provide a
complete (syntactic and semantic) definition of a pro-
gramming language. Paulson has implemented a compi-
ler writing system whose input is a semantic grammar.
The generated compiler parses the source program and
evaluates the semantic attributes, using an evaluator very
similar to that of Madsen.?? Finally it translates the
resulting lambda-expression into code for the SECD
machine, which is subsequently interpreted. Both the

compilation and interpretation phases are much more
efficient than SIS.?® Paulson has used his system to
generate compilers for large subsets of Pascal and
FORTRAN.

One flaw of EAGs is that they tend to be monolithic.
EATGs possess a degree of modularity in their separation
of the output grammar from the input grammar. One of
us (Watt) is currently investigating how language
definitions can be made even more modular, by parti-
tioning both the input grammar and the output
grammar.>?
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APPENDIX A. A COMPLETE EXAMPLE OF AN EAG

To support our claim that EAGs are well suited to
language definition, we give here a grammar completely
defining the syntax of a small but realistic programming
language. The language chosen is a subset of Pascal
containing the following features:

(a) boolean, integer, and array data types

(b) variable declarations

(c) procedure declarations, with value- and variable-
parameters

(d) assignments, procedure calls, compound-, if- and
while-statements

(e) expressions involving integer and relational
operators

(f) the usual Pascal block structure, but no requirement
of declaration-before-use for procedures.

A.1 Domain types

Apart from certain base types, we shall use domains of
the following types, which may be recursive. They are
based on the abstract data types of Ref. 33 and the
extended domain types of Scott.

Cartesian products. If 7', , . .
f, are distinct names, then

P=(fi:Ty;...;[.:T,)

is a Cartesian product with field selectors fi, . . ., f,.
Foreverya,inT,,...,andeverya,inT,, (a,, .. .,a,)
isin P. This is the composition function for the Cartesian
product P.
Foreverypin P,and foreveryi=1,...,n,p.fisin T,
and denotes the ith field of p.

., T,, are domains and f{, . . .,

Discriminated unions. If 7,..., T, are domains (or

Cartesian products of domains) and g,,..., g, are
distinct names, then

U=(g:(T))|.. '|gn(Tn))
is a discriminated union with selectors g, , . . ., g,,. If any

T, is void, then we abbreviate g;(T}) to g;.

Foreveryi=1,.. ., n, and for every g; in T}, g(a;) is in
U. These g; are the composition functions for the
discriminated union U.

Maps. If D and R are domains, then
M=D-R

is the domain of (partial) maps from D to R.

For every d in D and m in M, m[d] either is in R or is
undefined. This is the application function for the map
M.

[ ] denotes the map defined at no point in D. If d,, . . .,
d, are distinct elements of Dand r,, . . ., r, are in R, then
[d,—>r,...,d,—r,]isin M, and denotes a map defined
at points d,, . . ., d, and nowhere else.

For each m, and m, in M, m, U m, is the disjoint union
of m; and m,: m; U m, is undefined if, for any d in D,
both m,[d] and m,[d] are defined ; otherwise

(m, Um,)[d] = if m,[d] is defined
then m,[d]
else m,[d]
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Foreachm, and m, in M, m,\m, is the map m, overridden
by m,; i.e.
(m;\m,)[d] = if m,[d] is undefined
then m,[d]
else m,[d]

Sequences. If D is a domain, then
S = D*

is the domain of sequences of elements of D.

{ > denotes the empty sequence. {d) denotes the
sequence containing the single component 4.

If sisin S and d is in D, then d" s denotes the sequence
obtained by prepending d to s.

A.2 Domain definitions

Environment = Name — (declarationdepth:Level;

mode : Mode)

Mode = (variable(Type) |
formal(Parameter) |
procedure(Plan) )

Plan = Parameter*

Parameter = ( value(Type)|var(Type) )

Type = ( boolean |integer|
array(Integer, Integer, Type) )

Operator = (equal|unequal|plus|minus )

Level = Integer

Integer and Name are primitive domains of integers and
names, respectively.

A.3 Vocabulary

Here is a list of those terminal symbols which have
attributes, showing the types and domains of their
attribute-positions. (All are synthesized and have base
domains.)

{(name { Name)
{integer number 1 Integer)

All other terminal symbols are written enclosed in quotes
(“. . .”).

Here is a complete list of non-terminal symbols,
showing the type and domain of each attribute-position,
and also the number of the rule-group defining each non-
terminal.

{actual parameter | Environment | Parameter) 10
{actual parameter list | Environment | Plan) 9
{adding operator 1 Operator) 16
{assignment | Environment) 3
{block | Level | Environment | Environment) 20
{compound statement | Environment) 5
{constant T Type) 14
{expression | Environment | Type) 11
{formal parameter | Level | Parameter

1 Environment) 26
{formal parameter list | Level { Plan

T Environment) 25
identifier | Environment  Mode) 19
(if statement | Environment) 7
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{procedure call | Environment) 4
{procedure declaration | Level | Environment

T Environment) 24
{procedure declarations | Level | Environment

1 Environment) 23
{program) 1
{relational operator T Operator) 15
{serial | Environment) 6
{simple expression | Environment | Type) 12
{statement | Environment) 2
{term | Environment  Type) 13
(type 1 Type) : 27
{variable | Environment | Type) 18
{variable declaration | Level { Environment) 22
{variable declarations | Level { Environment) 21
{while statement | Environment) 8
{where comparable | Type | Type) 17

The distinguished non-terminal is {(program).

A.4 Attribute variables
Here is a complete list of attribute variables used in the
rules, together with their domains.

ENV, DECL, DECLS,
NONLOCALS, FORMALS, VARS,

PROCS :Environment

MODE :Mode
PLAN :Plan
PARM :Parameter
TYPE, TYPEIL, TYPE2 :Type
opP :Operator
DEPTH :Level
LB, UB, VALUE :Integer
NAME :Name

A.5 Rules

Comments are enclosed in (*...*). These are used
primarily to draw attention to some of the context-
sensitive constraints enforced by the grammar.

(*Most non-terminals have an inherited attribute
representing their ‘environment’. *)

(* PROGRAMS *)

{program) : .=
(1) Cblock LOL[TLID «.”

(* STATEMENTS *)

{statement | ENV) : .=
(2a) {assignment | ENV)|
(2b) {procedure call | ENV)|
(2¢) {compound statement | ENV |
(2d) (if statement | ENV) |
(2e) {while statement | ENV)

{assignment | ENV) ;.=
3) {variable | ENV{TYPE) «“:="
{expression | ENV 1 TYPE)
{procedure call | ENV) : .=

4 (identifier | ENV 1 procedure(PLAN)>
“(” actual parameter list | ENV | PLAN)

)”
{compound statement | ENV) ;.=

%) “begin” {serial | ENV) “end”

{serial |[ENV) ;=
(6a) (statement | ENV)|
(6b) (serial | ENV) ¢;” (statement | ENV)

if statement | ENV) : ;=
@) “if” {expression | ENV 1 boolean)
“then” (statement | ENV)
“else” (statement | ENV)

{while statement | ENV) ;.=
) “while” {expression | ENV 1 boolean)
“do” (statement | ENV)

(* ACTUAL PARAMETERS *)

{actual parameter list | ENV | (PARM)) . | =
(9a) {actual parameter | ENV | PARM)
{actual parameter list | ENV | PARM"PLAN>
(9b) {actual paramater | ENV | PARM) “,”
{actual parameter list | ENV | PLAN)

{actual parameter | ENV | value(TYPE)) : .=
(10a) {expression | ENV 1 TYPE)
{actual parameter | ENV | var(TYPE)) : .=
(10b) {variable | ENV 1 TYPE)
(* The actual parameters in a procedure call must
correspond, left toright, with the formal parameters
in the procedure declaration, as summarized in the
second attribute of {actual parameter list). Corre-
sponding to a value-parameter, the actual param-
eter must be an expression of the same type (10a).
Corresponding to a variable-parameter, the actual
parameter must be a variable of the same type
(10b). *)

(* EXPRESSIONS *)

(* Each of {expression), {simple expression),
{term), {constant) and (variable) has a synthe-
sized attribute representing its type. *)

{expression | ENV1TYPE) . .=
(11a) {simple expression | ENV { TYPE)
{expression | ENV 1 boolean) : ;=
(11b) {simple expression | ENV { TYPE1)
{relational operator T OP)
{simple expression | ENV { TYPE2)
{where comparable | TYPE1 | TYPE2)

{simple expression | ENV1TYPE) : .=
(12a) {term | ENV {TYPE)
{simple expression | ENV finteger) : .=
(12b) {simple expression | ENV 1 integer)
{adding operator T OP)
{term | ENV 1 integer)

{term | ENV{TYPE) . .=
(13a) {constant T TYPE)|
(13b) {variable | ENV 1 TYPE)|
(13¢) “(” {expression | ENV 1 TYPE) “)”

{constant T boolean) : .=
(14a) “false”|
(14b) “true”
{constant { integer) . .=
(14¢) {integer number ] VALUE)

{relational operator { equal) : .=
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(l 53) ‘¢ = ”»
<relational operator T unequal) : .=

(15b) O

{adding operator ] plus) : ;=
(16a) “47

{adding operator T minus) . .=
(16b) X3 — ”»”

{where comparable | integer | integer) : .=
(17a) {empty)

{where comparable | boolean | boolean) : ;=
(17b) {empty)

(* The non-terminal {where comparable) acts as a
predicate, since all its terminal productions are
empty; it serves to enforce type compatibility. *)

(* VARIABLES AND IDENTIFIERS *)

{variable | ENV1TYPE) : .=
(18a) {identifier | ENV 1 variable(TYPE)) |
(18b) (identifier | ENV 1 formal(value(TYPE))) |
(18¢) (identifier | ENV 1 formal(var(TYPE))) |
(18d) {variable | ENV t array(LB, UB, TYPE))
“[” (expression | ENV 1 integer) “]”

(* (18b) and (18c¢) allow value- and variable-param-
eters to be used like ordinary variables. (18d) allows
a variable of array type to be subscripted by an
integer expression. *)

identifier | ENV 1 ENV[NAME].mode) : : =
(19) {name T NAME)

(* {identifier) has a synthesized attribute repre-
senting its mode, which is determined by looking
up the name of the identifier in the
“environment”. *)

(* DECLARATIONS *)
{block | DEPTH | NONLOCALS | FORMALS)

(20) {variable declarations | DEPTH { VARS)
{procedure declarations | DEPTH
| NONLOCALS\(FORMALS u
VARS u PROCS)
1 PROCS)
{compound statement | ENV
I NONLOCALS\(FORMALS u
VARS u PROCS))

(* The first attribute of (block) is its depth of
nesting. {block) also has two inherited ‘environ-
ment’ attributes, representing non-local identifiers
and local formal parameters, respectively. The
latter attribute (FORMALS) is disjointly united
with the local variable identifiers (VARS) and local
procedure identifiers (PROCS) to form the set of
local identifiers: FORMALS u VARS u PROCS;
this then overrides the non-local identifiers to form
the ‘environment’ inside the block: NONLO-
CALS\(FORMALS u VARS u PROCS). The use
of the disjoint-union operator U ensures that no
identifier may be declared more than once in the
same block. (20) makes this inner ‘environment’
apply to the local procedure declarations as well as
to the compound statement, allowing each proce-
dure to be called by any procedure declared in the
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same block ; it is this rule which implies a minimum
of two passes for attribute evaluation in this
EAG. ¥

{variable declarations | DEPTH 1 DECL) : ;=
(21a) “var”
{variable declaration | DEPTH 1 DECL)

€6,
’

{variable declarations | DEPTH 1
DECLS u DECL) : :=
(21b) {variable declarations | DEPTH 1 DECLS)
: {variable declaration | DEPTH 1 DECL)

66,99
’

{variable declaration | DEPTH
1[INAME - (DEPTH, variable(TYPE))]) : .=
(22) {name } NAME) “:” {type ] TYPE)

(* PROCEDURES *)
¢procedure declarations | DEPTH|ENV T[])

(23a) {empty)
{procedure declarations | DEPTH | ENV
TDECLS u DECL) ;.=
(23b) {procedure declarations | DEPTH | ENV
1 DECLS)
{procedure declaration | DEPTH | ENV
TDECL) “;”

{procedure declaration | DEPTH | ENV
1[INAME - (DEPTH, procedure(PLAN))> .=
(24) “procedure” (name { NAME) “(”
{formal parameter list | DEPTH + 1
1PLAN 1 FORMALS)

€6\ €6,

(block | DEPTH + 1 | ENV | FORMALS)

{formal parameter list | DEPTH 1 (PARM)
TDECL) .=
(25a) {formal parameter | DEPTH { PARM
1DECL)
{formal parameter list | DEPTH
TPARM"PLAN 1DECLSUDECL) ;.=
(25b) {formal parameter | DEPTH T PARM
1 DECL) “;”
{formal parameter list | DEPTH 1 PLAN
1 DECLS)
(* The second attribute of {(formal parameter list)
is a sequence of the modes of the formal parameters,
to be used in checking actual parameter lists. Its
third attribute is the partial ‘environment’ estab-
lished by the formal parameter list. *)

{formal parameter | DEPTH 1 value(TYPE)
1 [INAME - (DEPTH, formal(value(TYPE)))]) : .=
(26a) {name | NAME) “:” (type ] TYPE)

{formal parameter | DEPTH 1 var(TYPE)

1 [INAME — (DEPTH, formal(var(TYPE)))]) : =
(26b) “var” {(name | NAME) *“:” (type { TYPE)
(* TYPES *) :

{type 1 boolean) : .=
(27a) “boolean”

{type { integer) : .=
(27b) “integer”

{type 1 array(LB, UB, TYPE)) : :=
(27¢) “array” “[” {integer number LB «“..”

{integer number 1 UB) “]” “of ”
type I TYPE)
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EXTENDED ATTRIBUTE GRAMMARS

APPENDIX B. AN EXAMPLE OF AN EATG

Here we enhance the EAG of Appendix A to an EATG
which defines the translation of the programming
language into an intermediate language which has the
following features:

(a) expressions are in postfix form

(b) each identifier is made unique by attaching to it the
depth of nesting of the block where it was declared

(c) control structures are completely bracketed, and the
level of control structure nesting is attached to each
bracket

Much more could be done, but for the sake of simplicity
we restrict ourselves to the above.

B.1 Additional vocabulary

Here is a list of those output terminal symbols which
have attributes.

{declare | Level | Name | Mode)
{dyadic | Operator | Type | Type)
{do | Level) ‘
else | Level)

{fi| Level)

<if| Level>

(index | Integer | Integer)

(name | Level | Name)

{number | Level)

{od | Level)

{procedure | Level | Name)

(store | Type)

{then | Level)

{while | Level)

Here is a list of non-terminal symbols, showing the
type and domain of each attribute-position used in the
output grammar. Non-terminals which have no such
attribute-position are omitted.

{compound statement | Level»
<if statement | Level)

{serial | Level)

(statement | Level)

(while statement | Level)

B.2 Additional attribute variables
LEVEL:Level

B.3 Output rules

For each input rule in Appendix A we give here only the
corresponding output rule. For the sake of brevity, we
omit output rules which contain no output symbols, and
in which there is no reordering of the non-terminals, and
in which attributes are merely copied.

(* PROGRAMS *)

{program) : .=
(1) program {block) endprogram

(* STATEMENTS *)

(* Each of (statement), (compound statement), {if
statement) and {while statement) has an inherited
attribute which is its level of control structure
-nesting. The level of nesting starts at 0 in each
block—rule (20). *)

{assignment) : .=
3) {variable) (expression) {(store | TYPE)

{procedure call) ;.=
4  <(actual parameter list) (identifier> call

(if statement | LEVEL) : .=
@) if | LEVEL) {expression)
{then | LEVEL) (statement | LEVEL + 1)
{else | LEVEL) (statement | LEVEL + 1)
{filLEVEL)

{while statement | LEVEL) : .=
8) {while | LEVEL) {expression)
{do | LEVEL) {statement | LEVEL + 1)
{od | LEVEL)

(* ACTUAL PARAMETERS *)

{actual parameter) : ;=

(10a) {expression) valueparameter
{actual parameter) ; ;=

(10b) {variable) varparameter

(* EXPRESSIONS *)

{expression) ; ;=
{simple expression) {simple expression)
{dyadic |OP | TYPE1 | TYPE2)

{simple expression) : ;=

(11b)

(12b) {simple expression) {term)
{dyadic | OP | integer | integer)
{constant) ; .=
(14a) Salse|
(14b) true
{constant) : .=

(14¢) {number | VALUE)
(* VARIABLES AND IDENTIFIERS *)

{variable) : .=
{variable) (expression) {index | LB | UB)
{identifier) ; ;=
(19) (name | ENV[NAME]. declarationdepth
I NAME)

(18d)

(* DECLARATIONS *)

{block) : :=
(20) {variable declarations)
{procedure declarations)
{compound statement | 0)>

{variable declaration) ; ;=
22) {declare | DEPTH | NAME
: | variable(TYPE))

{procedure declaration) : ;=
(24) {procedure | DEPTH | NAME)»
{formal parameter list) {block)
endprocedure

(formal parameter) ; ;=
(26a) {declare | DEPTH | NAME
| formal(value(TYPE)))
(formal parameter) : ;=
{declare | DEPTH | NAME
| formal(var(TYPE)))»

(26b)
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