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The paper’s aim is to study the behaviour of 26 programmers who designed a binary search algorithm; for each of them,
we try to point out the correct or erroneous reasoning, that yielded the algorithm. To do this, we first analyse 4 typical
correct algorithms in an informal and intuitive way, discussing the probable reasons why the programmers developed
the algorithms as they did; these are, namely: (1) a uniform binary search algorithm on a monotonically increasing
sequence of 7 terms, T = 2" — 1,n > 1;(2) a uniform binary search algorithm on a monotonically increasing sequence
of T terms; (3) a binary search algorithm with ‘two-way tests’ on a monotonically increasing sequence of T terms, 7 >
1;(4) a general binary search algorithm on a monotonically increasing sequence of T terms. Then, the important errors
found in the 26 published algorithms are pointed out, with an attempt at discussing why these errors were made. Three
lessons can be drawn from the history of the binary search algorithm, which we believe are applicable to many other
algorithms, namely (1) there is a continuous progression by programmers towards a highest possible degree of

generality; (2) programs built with optimization concerns in mind have no better mean execution time than the most
general ones; (3) the distribution of errors among families of algorithms is not uniform. ’

1. INTRODUCTION

The binary search algorithm is probably one of the most
classical algorithms published in the literature. Therefore
we are able to reconstruct its history,' to study the errors
made by some designers and to try to draw some general
lessons about the behaviour of programmers.

This is the scope of our paper. In section 2, we briefly
give the algorithm’s specifications and explain the few
basic concepts underlying it; in section 3, we analyse 4
typical binary search algorithms; in section 4, the
important errors found in 4 published algorithms are
pointed out and discussed, and in section 5, we draw
some general lessons from the history of the binary search
algorithm.

2. SPECIFICATION OF THE BINARY SEARCH
ALGORITHM

2.1 Search problem specification

We restrict ourselves to the search for a number x within
asequence S. This problem can be formulated as follows :

Input Given
- a sequence S of T terms
- a number x
Function find a search method, i.e. a set of rules by

which we can determine . . .
Performance . . . as safely and quickly as possible . . .
Output ... that
—either x € S; in this case, the message
‘x € S’ is generated;
—or x¢.S; in this case, the message
‘x ¢ S is generated.

2.2 Basic idea leading to the solution

To solve this problem, one approach is to assume that the
sequence S is ordered (for instance, S is a monotonically
increasing sequence) and then to proceed as follows::

(1) Compare x with S[K],(1 < K< T)
- If x=S[K], the search is successful and the
message ‘x € S’ is generated ;
- If x < S[K], the search proceeds within the se-
quence S[1:K — 1];
- If x > S[K], the search proceeds within the se-
quence S[K + 1: 7.
(2) If the search sequence is empty, the search is
unsuccessful and the message ‘x ¢ S is generated.

Assuming that each of the T terms is equally likely to
be the number sought for, it is clear that an efficient
search method will halve the search sequence on each
iteration step. Thus a search requires about log, T
comparisons.

2.3 Underlying concepts

From this rough idea, we can define several useful
concepts for any binary search problem:

(1) search sequence: a set of consecutive terms of S[1:7]
(2) experience: the comparison between x and a term of
the search sequence;
successful experience, if x = this term
unsuccessful experience, if x # this term

(3) middle of a search sequence: the term S[K](4 < K <
B) is said to be the middle of the search sequence
S[A:B]if K = [(B — A)/2]

(4) binary search tree: any binary search method within
a sequence S[1:T] may be seen as a binary decision
tree in which the nodes are labelled with the num-
bers 1 to T (therefore, a binary tree is a possible
representation of any binary search method). For
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instance, we can construct the binary search tree
corresponding to a search within a sequence S[1:7]

(see Fig. 1).

if x<S[2]

Figure 1

2.4 General binary search problem specification

The binary search problem can be formulated as follows:

Input Given
- a monotonically increasing sequence
S[1:7]
- a number x

Function search for x within the sequence S[1: 7).

Performance it is well known that the complexity of any
search, be it successful or unsuccessful is in
logarithmic proportion to the sequence
size.

The result will be

—either the message ‘xe S’

—or the message ‘x ¢ S’.

Output

3. HISTORY OF THE BINARY SEARCH
ALGORITHM

Our analysis of 26 published binary search algorithms
led us to classify these into 4 families, which we will now
describe.

For each family, we will build a typical algorithm; the
families are described, as much as possible, according to
the chronological order of publication.

3.1 Family 1: uniform binary search algorithms on a
monotonically increasing sequence of 7 terms, T =
2"—-1,n>1

3.1.1 Chronology and references. First publication: D. D.
MacCracken, 1957.? For other members of this class, see
among others, Cherton,®> Donovan.*

3.1.2 Design of a typical algorithm

3.1.2.1 Basic idea. This family of algorithms is based on
the following convention: ‘any search sequence has
2" — 1 terms, n > 1’. This property allows us:

(1) To find a middle element S[M] which divides the
search sequence into 2 subsequences of equal length
d’ (see Fig. 2)

lengthd=2"-1,n>1

T AIIIIIT]

123456 78 9101112131415

Subsequence S’
M 2
length d’=2""1-1

Subsequence S’
length d’=2""1-1

M’ M
Figure 2

(2) To compute the middle of a subsequence from the
middle and the length d of the preceding one, as
follows

. ld21] [l =12
M*M‘FTW-M ( 2 l

d/2 2" —1)/2
PR 1) | B N (C g V)
2 2
Therefore, in order to search for x within the search

sequence, we proceed as follows:

(1) Ifd<1
then the search sequence is empty and ‘x ¢ S’;
(2) Compare x with the middle S[M] of the search
sequence;
3)- If x = S[M]
then ‘x € S’ and the search is terminated;
- If x < S[M] -
then- compute M' = M — {Mzﬂ
- and recursively apply the same process to the
new search sequence (by induction on n)

- If x > S[M] :
then- compute M” = M +l @

- and recursively apply the same process to the
new search sequence.

3.1.2.2 Specification of the algorithm. The specifications
of this binary search algorithm are the same as the
general ones (see section 2.4), with the restriction that
T=2"—1,n>1

3.1.2.3 Representation (see Fig. 3). The obvious represen-
tation conventions are:

(1) The search sequence S[1:T] is represented by the
integer array S[1:T];

(2) The position of an examined term is represented by
the variable M

(3) The number x is represented by the integer variable
X,

(4) The number d is represented by the integer variable
d.

m= [7]
d: j
No
- /xeS/) fxeS) fe S/ -
| M =/[4d—57] I M =M +F} |
d:= 5 d = (7

(sTopr)

Figure 3
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3.2 Family 2: uniform binary search algorithm on a
monotonically increasing sequence of T terms

3.2.1 Chronology and references. First publication: I. Floreés,
1965.5 For other members of this class, see, among
others, Bonnin,® Chandra.’

3.2.2 Design of a typical algorithm
3.2.2.1 Basic idea. We try to use the preceding method
without the restriction that T=2"— 1,n > 1.

To achieve this, we note that, in the preceding
algorithm, any search sequence has 2" — 1 terms, n > 1,
i.e. an odd number of terms.

Therefore, in order to generalize the preceding method,
we have two problems to solve:

(1) What is to be done when a search subsequence has
an even number of terms?

(2) What is to be done when the initial search sequence
has an even number of terms? (with 0 considered as
an even number).

The first problem is solved as follows: suppose that after
a certain number of experiences,

(1) we have a search sequence S whose length d is odd;
obviously, the middle element S[M] divides this
search sequence into 2 subsequences (S’ and S”) of
equal length d’ = d” (see Fig. 4).

d is odd

L || |

a 77
M S’ d'"iseven

N

S’ d'iseven

Figure 4

(2) the length d’ = d” of the two subsequences is even.
Then we proceed as follows:

(3) if x < S[M]
then - add one term to the right of the subsequence
S’; (see Fig. 5).

d’ is odd

L [

M
)

added term,

Figure 5

- now d' is odd and we may apply the preceding
method to the search sequence S’;
4) if x > S[M]
then - add one term to the /eft of the subsequence S”
(see Fig. 6);

d" is odd

L] ]

M

S

added
term

Figure 6
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- now d” is odd and we may apply the preceding
method to the search sequence S”;

In order to solve the problem of an initial search
sequence S with an even number of terms, we add an
artificial term S[0] whose value is ‘— 00’ to the left of S
(see Fig. 7) and we may apply the preceding method to
the initial search sequence.

S dis even
= ]
0 T
Figure 7

3.2.2.2 Specification. The specifications of the uniform
binary search algorithm are the same as the general ones
(see section 2.4).

3.2.2.3 Representation. According to the representation
conventions described in section 3.1.2.3., the above idea
leads to the same flowchart as the one described in Fig.
3. Note that 2 DIFFERENT IDEAS may lead to the
SAME FLOWCHART.

3.3 Family 3: binary search algorithm with ‘two-way tests’
on a monotonically increasing sequence of T terms,
T>1

3.3.1 Chronology and references. First publication: H. Bot-
tenbruch, 1962.% For other members of this family, see,
among others, Bartee,” Baudoin and Meyer,!® Baufay,'!
Dijkstra,'? Gear,'3 Lecharlier,!* Weinberg et al.'’

3.3.2 Design of a typical algorithm
3.3.2.1 Basic idea. We have the following basic
conventions:

(1) The search sequence contains at least 1 term.

(2) Before any experience, the positions of the first (L)
and last (U) terms in the search sequence are known
explicitly; any search sequence can therefore be
written as

S[L:U]

(3) The initial search sequence S[1:7T7] contains every
further search sequence; therefore, we have:

1<L, U<T

(4) We avoid the test for equality (x = S[M]) until the
search sequence S[L: U] contains only 1 term; in this
way, the algorithm is implemented with two alter-
natives instead of three (hence, the name ‘two-way’
tests), e.g. Fig. 8.

Figure 8

Using these conventions, we solve the search problem
by induction on the set 2[1:T] of intervals 7 such that
I = [1:T1]; this set is ordered by the set inclusion relation
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and the smallest elements of (9[1: T, <) are the intervals
of length 1.

Suppose that, after a certain number of experiences,
the initial search sequence has been reduced to the search
sequence S[L:U], 1 < L < U < T (Fig. 9).

Figure 9

The problem to be solved is then: ‘x e S[L:U]?". In
order to answer this question, we proceed as follows:

() fL=U
then - the search sequence has only 1 term;
- therefore if x = S[L]
then ‘xe S’ and the search is
terminated;
else ‘x¢ S’ and the search is
terminated;
Q EL<U
then - compute the position M of the middle of the
search sequence

o252

- compare x with S[M];
-if x < S[M]
then x has no chance of being in the sequence
S[M + 1:U]; therefore, we recursively
apply the same process to the interval
[L:M]
- If x > S[M]
then x has no chance of being in the sequence
S[L: M]; therefore, we recursively apply
the same process to the interval [M +
1:U]
In order to solve the initial problem (search for x within
S[1:T)

-letL=1,U=T,;
- we apply the same process to the interval [L: U] and the
problem is solved.

3.3.2.2 Specification. The specifications of the binary
search algorithm with ‘two-way tests’ are the same as the
general ones (see section 2.4), with the restriction that
T>1

3.3.2.3 Representation. According to the following ob-
vious representation conventions:

- the position L (resp. U) of the first (resp. last) term of
a search sequence is represented by the integer variable
L (resp. U);

- for the representation of the search sequence S, the
position M of an examined term and the number x
search for, see section 3.1.2.3.

the above idea leads to the flowchart in Fig. 10.

3.4 Family 4: general binary search algorithm on a
monotonically increasing sequence of T terms

3.4.1 Chronology and references. First publication: D. E.
Knuth, 1963.! For other members of this family, see,

L:=1
U:=T

!
!

Figure 10

among others, Aho et al.,'® Berztiss,'” Burge,'® De
Angelo and Jorgensen,'® Gear,'*> Kelly and Mac Go-
wan,”® Leeds and Weinberg,?! Leroy,?? Price,?® Stone
and Siewiorek,?* Wirth.?*

3.4.2 Design of a typical algorithm ) )
3.4.2.1 Basic idea. We have the following basic
conventions:

(1) the search sequence may be empty;

(2) the two other basic conventions are the same as
conventions (2) and (3) of the preceding algorithm
see section 3.3.2.

Using these conventions, we solve the search problem
by induction on the set &[1: 7] of intervals I such that
I = [1:T]; this set is ordered by the set inclusion relation
and the smallest elements of (§[1: T'], < ) are the intervals
of length 0.

Suppose that after a certain number of experiences,
the initial search sequence S[1:7] has been reduced to
the search sequence S[L:U], 1 < L and U < T (see Fig.
11).

L] LI 1)

Figure 11

The problem to be solved is then the following one:
‘xe S[L:U]?

In order to answer this question, we proceed now as
follows:

D) IKL>U

then x ¢ S; obviously the search sequence is empty;
Q KL<U

then -compute the position M of the middle of the
search sequence:

_|L+u _[L+uU
we|E5Y] o we[E2Y
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- compare x with S[M]
- if x = S[M]
then x € S and the search is terminated;
- if x < S[M]
then x has no chance of being in the sequence
S[M:U]; we therefore apply the method
described above to solve the problem
‘xeS[L:M-1]7
- if x > S[M]
then x has no chance of being in the sequence
S[L:M]; we therefore apply the method
described above to solve the problem
‘xe S[M + 1:.U]”

In order to solve the initial problem (search for x within
S[1:T]), we set Lto 1 and U to T and apply the method
to the interval [L: U]; the problem is therefore solved.

3.4.2.2 Specification. The specifications of the general
binary search algorithm have already been described, see
section 2.4.

3.4.2.3 Representation. According to the representation
conventions described in section 3.3.2.3., the above idea
leads us to the flowchart of Fig. 12.

yes

Figure 12

4. ERROR ANALYSIS

Four among the twenty-six examined algorithms contain
errors, namely the algorithms of Donovan,* Flores,®
Bonnin® and De Angelo and Jorgensen.'®

We will first briefly describe the errors and then
comment on their causes.

4.1 Incorrect algorithms

4.1.1 Donovan’s algorithm. Donovan’s program belongs to
family 1. The following error has been found in the
Assembler program.

L 5, LAST Set table size (2" * 14 bytes)
SRL 5,1 Divide by 2 by shifting
LR 6,5 Copy into register 6

158 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

LOOP SRL 6,1 Divide table size in half again
LA 4,SYMTBL(5) Set address of table entry
CLC 0(8,4) SYMBOLCompare with symbol
BE FOUND Symbols match, entry found
BH TOOHIGH SYMTBL entry > symbol
TOOLOW AR 5,6 Move higher in table
B TESTEND
TOOHIGH SR 5,6
TESTEND LTR 6,6
BNZ LOOP
NOTFOUND (Symbol not found)

Move lower in table
Test if remaining size is 0
No, look at next entry

FOUND (Symbol found)

We recall the semantics of the LTR Assembler
instruction: ‘LTR R1, R2:LTR moves (R2) to R1. In
doing so, it sets the condition code to indicate whether
the number moved is positive, negative or zero. If R1
and R2 are the same register, LTR simply sets the
condition code to indicate whether (R1) is positive,
negative or zero'.

The shaded instruction is therefore erroneous; the
search should be stopped as soon as register 6 has a value
less than 14, in this case, value 7 by application of the
binary shift instruction instead of the value 0 as assumed
by Donovan. As soon as the register 6 contains a value
less than 14, it means that the table is empty, since
Donovan assumed that all elements are 14 bytes long (see
comment of the first instruction of Donovan’s algorithm
above).

4.1.2 Flores algorithm. Flores’ algorithm belongs to family
2; however, his conventions are somewhat different.
Flores assumes implicitly that any searci: sequence
must have an odd number of terms.
Suppose that the search sequence has 13 terms
(S[1:13]). In order to search for x within such a sequence,
Flores proceeds as follows:

(1) x is compared with the middle, S[7], of the search
sequence;
2) -if x=S[7]
then ‘x € S’ and the search is terminated;
- if x < S[7]
then the new search sequence is S[1:6]; this search
sequence has no odd number of terms.
Therefore, Flores adds one term to its left (see
Fig. 13) (the typical algorithm of family 2 adds
this term to its right); the middle of this new
search sequence is S[3]
- The case x > S[7] is symmetrical.

T T TTT]
(i 1 2 3 4 5 6
?d(:ﬁd middle

Figure 13

So, we note that the position of the middle of the new
search sequence is obtained by adding or subtracting
some quantity d' to (from) the position of the middle of
the old search sequence; this quantity d’ may be

20z udy 01 U0 188n6 Aq ££00LE/PS |L/2/92/31014e/|uf00/W0d"dNo"oISPEDE//:SARY WO.) PAPEOUMOQ



SOME LESSONS DRAWN FROM THE HISTORY OF THE BINARY SEARCH ALGORITHM

computed from the length d of the old search sequence as

follows:
. [1d2) +1
4= (“2—1

Using this idea, the flowchart of Flores’ algorithm looks
like Fig. 14.

Figure 14

In this algorithm, the search for a number x may fall
outside the initial search sequence.

In order to visualize this, we build the binary tree
corresponding to this algorithm, for an initial search
sequence of 8 terms, i.e. S[1:8] (Fig. 15).

Figure 15

We observe that the shaded nodes are ‘impossible’,
since the initial search sequence S[1:8] does not contain
the terms S[— 1], S[0], S[9], S[10], S[11]; thus, the search
falls outside the initial search sequence.

In order to smooth away these difficulties, Flores
makes two proposals:

(i) the initial search sequence contains a term S[0], with
conventional value ‘ — o0’
(ii) ... and a term S[10] with conventional value ‘ + o0’

These naive proposals work only for the case T = 8 but
are not adequate in the general case.

4.1.3 Bonnin’s algorithm. Bonnin’s algorithm belongs to
family 2. He arbitrarily assumes that the initial search
sequence S contains 500 terms.

His flowchart looks like Fig. 16.

Owing to the absence of good documentation, the
author’s reasoning is hard to reconstruct.

So, in order to point out some of the errors, we build
the binary tree corresponding to his algorithm for an
initial search sequence S[1:8] (Fig. 17).

250
250

|

Figure 16

Figure 17

Note that:

(1) Thealgorithm never terminates: noaction is provided
when there are no more x to be input (misuse of the
COBOL verb ‘accept’).

(2) The search for a number x may fall outside the search
sequence S[1:T1.

(3) The algorithm takes only search sequences with at
least 2 terms into account; so, if we consider the
above binary tree (Fig. 17), we note that the terms
S[1], S[3], S[5], S[7] could not be tested ; therefore a
search may be unsuccessful, even though x effectively
belongs to the search sequence.

4.1.4 De Angelo’s algorithm. De Angelo’s algorithm belongs

to family 4; this algorithm makes successful search; it
looks like Fig. 18.

Figure 18

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 159

20z udy 01 U0 188n6 Aq ££00LE/PS |L/2/92/31014e/|uf00/W0d"dNo"oISPEDE//:SARY WO.) PAPEOUMOQ



R. LESUISSE

In order to point out the error, let us build the binary
tree corresponding to this algorithm, assuming again that
the initial search sequence has 8 terms: the values of the
bounds L and U of the search sequence (before the
computation of the middle M) have been attached to the
edges (Fig. 19).

Figure 19

The search thus never gives the expected result, when
x = S[8], and more generally when x = S[T], and the
algorithm may not terminate.

The following correct initialization for L and U seems
to be necessary:

L=0; U=T+1

4.3 Discussion

Among the 6 errors detected, 4 are design errors (i.e.
errors contained within the solution idea itself) while 2
are coding errors (i.e. errors made during the represen-
tation of this idea by means of some programming
language).

4.3.1 Design errors. Among the design errors, we have:

(a) two undefined searches® © falling outside the initial
sequence;

(b) one non-terminating loop'® in the case when the
searched element is the last element of the initial
sequence;

(c) oneunsuccessful search® even if the searched element
belongs to the original sequence.

All these errors have a common point; they never
appear at the first experience, but rather towards the end
of the search.

This suggests that their designers have built the
algorithm by mental simulation of its execution, from the
first comparison to the last one.

This is the way many inexperienced programmers
work. Typically, they will write an algorithm like Fig. 20.

If we build the corresponding binary tree, for an initial
search sequence with 14 terms (Fig. 21), we observe that
only the left path of this binary tree corresponds to a
binary search. This reflects the following kind of mental
simulation:

(1) first, solve the particular case where the search would
be unsuccessful because x < S[1];

160 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

Figure 21

(i) then, try to adjust this solution to a more general
case.

Design by experimentation on particular cases is of

course very often subject to failure; this is particularly
true for problems having natural solutions based on
inductive arguments.
4.3.2 Coding errors. Two coding errors* ® were detected
among the 26 algorithms considered. Both errors were
made in the description of actions to be executed when
certain exceptional events occur (cf. the misuse of the
Assembler instruction LTR and of the COBOL verb
ACCEPT).

This kind of error depends heavily on programming
language facilities for explicit exception handling.

5. SOME LESSONS TO BE DRAWN FROM THE
HISTORY OF THE BINARY SEARCH
ALGORITHM

We feel that the following discussion might be applicable
to many other algorithm designs.

5.1 The history of binary search algorithms shows a
continuous progression by programmers towards a
higher degree of generality

We may observe a difference between the behaviour of
the programmers who built typical algorithms 1, 2 and 3,
and the behaviour of the programmer who built typical
algorithm 4.
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5.1.1 Behavioural analysis of the programmers who built typical
algorithms 1, 2 and 3. In order to solve the problem, the
designers of typical algorithms 1, 2 and 3

(a) proceeded by enumerating cases and first solving a
particular case;

(b) imposed certain representation constraints directly,
in order to optimize the execution time of their
algorithm.

5.1.1.1 Behavioural analysis of the programmer who built
typical algorithm 1.

(a) This programmer makes a distinction between the
case where the search sequence contains 2" — |
terms, n > 1 (this particular case being easy to solve)
and the case where the search sequence does not
contain 2" — 1 terms, n > 1; the latter case is solved
by reducing the problem to the preceding one, e.g. by
adding artificial terms on the right of the search
sequence.

(b) Furthermore, the algorithm’s representation is im-
mediately taken into account; namely, when the
search sequence contains exactly 2" — 1 terms, n > 1,
it is possible to use binary shift instructions instead
of arithmetic instructions such as division (see Gear’s
remark'?); in doing so, the programmer believes his
program has the best possible execution time.

5.1.1.2 Behavioural analysis of the programmer who built
typical algorithm 2.

(a) This programmer makes a distinction between the
case where the search sequence contains an odd
number of terms and the case where the search
sequence contains an even number of terms; again,
the latter case is solved by reducing the problem to
the preceding one, e.g. by adding one term on the left
(right) of the search sequence.

(b) Binary shift instructions are used again.

5.1.1.3 Behavioural analysis of the programmer who built
typical algorithm 3.

(a) This programmer makes a distinction between the
case where the search sequence contains only 1 term
(the problem being then easy to solve) and the case
where the search sequence contains more than 1
term; again, the latter case is solved by reducing the
problem to the preceding one.

(b) Representation details are considered from the
beginning as well: the algorithm is explicitly designed
to run on computers with two-way tests (see Gear’s
remark'? and Baudoin and Meyer’s remark!°).

To summarize, the designers of typical algorithms 1, 2
and 3 '

(i) first found the solution to a particular case (= a less
general problem than the stated one);

(i) then found out how to generalize this particular
solution to solve the initial problem.

5.1.2 Behavioural analysis of the programmer who built typical
algorithm 4. The programmer of typical algorithm 4 works
in the opposite way; we note that

(i) the problem is first solved for a search sequence

S[L:U] where L and U have arbitrary values
(I1<L U<T);

(i) the initial problem is then shown to be a particular
case of the precedingone (L =1, U =T);

(iii) no representation details nor performance concerns,
other than logarithmic complexity, are considered a
priori.

Thus, the programmer of typical algorithm 4

(i) first found a solution to a more general problem;
(ii) then showed that the initial problem is a particular
case of the general problem which had been solved.

5.1.3 Some symptoms that show that an algorithm is not a general
one. The poor lonesome programmer does not know
anything about the history of the algorithm he is building.
Are there any symptoms to show that his algorithm is not
a general one? In the case of the binary search algorithm,
there are at least 3 symptoms which are probably more
general in application.

(1) The programmer has arbitrarily restricted the original
problem

For instance,

(a) the search sequence S[1:T]is assumed

(i) to contain at least 1 term (algorithms of
families 1, 3);

(ii) to always contain 2" — 1 terms, n > 1 (algo-
rithms of family 1);

(b) an artificial term is assumed to be added on the
left (right) of the search sequence (cf. the artificial
term S[0] in the algorithm 2);

(c) the number x searched for is assumed to have a
restricted value, e.g. Dijkstra'? arbitrarily as-
sumes that

S[0] < x < S[T]
in order to make his correctness proof easier.
(2) The algorithm is badly-structured, in that it contains
almost-identical parts
For instance, the typical algorithm 2 contains 2
almost-identical parts (see Fig. 22).

Figure 22

The typical algorithm 3 contains almost-identical
parts as well (Fig. 23).
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Figure 23

This redundancy suggests that the programmer
reasoned case by case.

(3) The algorithm makes redundant tests
For instance, assuming the initial search sequence
has 11 terms, we obtain the binary tree of Fig. 24 for
typical algorithm 2.

Figure 24

Thus, as shown by the shaded (repeated) nodes,
the algorithm performs more tests than required.

5.2 The history of the binary search algorithm suggests
that programs designed with a priori micro-optimiza-
tion concerns in mind do not yield better performances

5.2.1 Standard opinion. Many programmers believe that
the real performance of an algorithm is estimated by
measuring its mean execution time; from this point of
view typical program 1 which assumes that the search
sequences have 2" — 1 terms, n > 1 would be the best
one; in any case, it would seem that this program has
better performances than typical program 4 which is the
most general one.

5.2.2 Performance assessment. We computed the mean
execution time of these two programs on a SIEMENS
4004/151 computer, using the mean execution time of
each instruction given by the constructor and we obtained
the results in Tables 1 and 2.

5.2.3 Conclusion. The results in Tables 1 and 2 show that
the difference between the two mean execution times is
negligible; thus, contrary to general opinion, the most
general program has good performances as well.
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Table 1. Successful search

T Mean execution time (us) of Mean execution time (us) of A (ps)
typical program 1 [1] typical program 4 [2] [11-12)
23 73.46 74.03 -0.57
191 126.37 127.08 -0.71

Table 2. Unsuccessful search

T Mean execution time (us) of
typical program 1[1]

Mean execution time (us) of A (us)

typical program 4 2] [11-12]
23 97.815 98.80 -0.985

101 152.08 154.88 —2.80

5.3 The analysis of errors contained within some of the 26
algorithms considered leads us to make some further
observations

(1) Four algorithms do not Yerminate (or may not termi-
nate), i.e. 1 algorithm in every 5 considered.

Contrary to general opinion, it appears that toy-
programs designed under ideal conditions, i.e. with-
out time constraints and for publication (therefore
submitted to the refereeing process) may contain
Serious errors.

From the above observation, what might we infer
for the case of ‘everyday’ programs, i.e. large,
anonymous programs that have been designed to fit
hard, ill-estimated deadlines?

Our study thus strongly supports the opinion that
programmers underestimate the difficulty of design-
ing a program.

(2) The distribution of errors among families is not uniform.
As a matter of fact,

(i) within family 1, one algorithm* out of the three

considered is incorrect;;

(i) within family 2, two algorithms™>® out of the
three considered contain serious errors;

(iii) within family 3, the eight algorithms considered
are correct;

(iv) within family 4, one algorithm!® out of the
twelve considered is incorrect.

We note that 2 (out of 3) programs of family 2 are
erroneous. Knuth' correctly pointed out that the
design of an algorithm from the basic idea of family
2 is critical:

‘it is possible to do this, but only if extreme
care is paid to the details; simpler ap-
proaches are doomed to failure’ (p. 441).

(3) The most critical errors have been found in programs
designed by mental simulation of execution rather than
by inductive arguments.

6. SUMMARY

Our aim was to study the behaviour of programmers
designing binary search algorithms.

To this end, we analysed 4 typical correct binary search
algorithms; we showed in particular that

(1) The most general program was designed by finding
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a solution to a more general problem than the one
originally stated and then by restricting this solution
in order to fit the initial problem; moreover, its
designer did not consider the algorithm’s represen-
tation directly.

(2) Contrary to common opinion, a general program also
has good time performances.

(3) There are at least 3 indications that a binary search
algorithm is not as general as possible :

(a) the programmer has arbitrarily restricted the
stated problem;

(b) the algorithm contains almost-identical parts;

(c) the algorithm contains redundant tests.

Then, we analyse 4 erroneous binary search algo-
rithms; in particular, we showed that:

(1) Design errors occur inside algorithms probably
designed by simulation of their execution.

(2) Coding errors are made in the description of actions
to be executed when certain exceptional events occur.

We feel that the analysis of other algorithms could well
verify some of these observations.
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