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The denotational semantics of a simple language which includes Jjumps are programmed in Pascal to give an interpreter.
By concentrating on the final state of a program the semantics are directly coded in Pascal with only slight
modification to the semantic equations. The interpreter was produced as easily as the formal definition of the language
and makes a reference implementation and development testbed. By using a widespread metalanguage such as Pascal

this definition can be widely understood and executed.

INTRODUCTION

The denotational semantics definition of a language
provides a method of calculating the high order function
denoted by a program. In this paper the definition of a
simple language ‘contlang’ is coded directly into Pascal;
the result allows the denoted functions to be applied—it
is an interpreter for contlang. As the name suggests, the
semantics include continuations as the meaning of labels
and other sequencers.

Mosses' recognized that a notation for denotational
semantics which was itself formally defined was amenable
to computer processing. He produced the Semantics
Implementation System (SIS) which directly implements
the semantics of a programming language by translation
to a lambda-calculus based language and interpretation.
Bodwin ef al.? describe some experiences in using SIS.
Efficiency is improved if a formal definition is used to
generate a true compiler. Such systems—true compiler-
compilers—have been produced by Paulson,® Raskov-
sky* and Sethi.’

The use of a conventional programming language as a
meta-language which is certainly amenable to computer
processing, in particular Algol 68, has been proposed by
Pagan-both for a VDL style definition® and a denota-
tional semantics definition.’

In the latter paper the direct semantics of a language
‘loop’ are coded in an extended Algol 68 which includes
partial parameterization. Pagan argues that an execut-
able definition comparable to a formal definition is not
achievable ‘in the case of strict Algol 68 (and certainly
not in the case of other mainstream languages)’.

Here it is shown how to avoid the difficulties raised by
Pagan using Pascal—a more modest language than Algol
68. The technique is also applied to coding continuation
semantics handling full jumps.

The advantages of an executable semantic definition
are obvious. Such a definition is compiled and checked
automatically and it can be run and tested. It provides a
reference system—albeit a possibly inefficient one. The
language can be run as it is being developed! Changes to
the semantic equations can be tried, and program
examples run directly. The advantage of using a widely
available language like Pascal as the meta-language is
precisely that it is widely available, and most Pascal
compilers are ruthless in their type-checking and give
good error messages.

Finally there is a resistance among programmers to the

mathematics of, say, denotational semantics and it is
hoped that the runnable mathematics might seduce them.
It is assumed that the reader is familiar with the aims
of denotational semantics. A certain amount of its
notation is used in the paper but as the theme is to
translate it into Pascal, any strange looking formula
probably reappears in a more familiar notation nearby.
Gordon® provides a readable introduction to denotational
semantics; Milne and Strachey”® is a reference work.

CONTLANG

Contlang is not a very useful programming language but
it contains some of the more difficult language features—
goto, valof (statement), resultis (exp). It is loosely based
on the language used by Strachey and Wadsworth!° to
introduce continuations. This paper is neutral about the
desirability of various language features and it does not
extend denotational theory; it is solely concerned with
implementing formal definitions.

Contlang operates only on integers but 0 can be used
for false and 1 for true; a reasonable set of operators is
provided.

The structure of contlang programs is specified by
abstract syntax given in BNF in Fig. 1. This grammar
happens to be ambiguous if used to parse linear strings,
representing programs but it gives the shape of parse
trees and, as is usual, the semantics are given in terms of
it. In order to parse linear strings, concrete syntax for

(statement) . .= {labely{stat) | {stat)

{stat) L= Lid) = {exp)|
if {exp) then {statement) else (statement) |
while {(exp) do {statement) |
skip |
{statement) ; {statement |
({statement)) |
resultis {exp) |
goto {/abel)

exp) 2= (exp) {op) {exp)|
Cid) |
Cint |

valof (statement)

Cid) ;= A|B|C|...
label) Li=int)
<op> D=t <> 2] =2

Figure 1. Abstract syntax.
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PROGRAMMING DENOTATIONAL SEMANTICS

(statement) . .= {label) : {stat) | {stat)

{stat) 1= d)y = {exp) |
if (exp) then {statement) else (statement) |
while (exp) do {statement) |
skip |
({statementlist)) |
resultis {exp) |
goto {label)
statementlist) . .= {statementlist) ; {statement |
{statement)
{exp) I = (sexp) (relop) {sexp)|{sexp)
(sexp) 1= (sexp) {addop) { factor) | factor)
{ factor) s .= (factor) * (unity | unit)
{unit) o= —<unit)y | {opd)
opd) L= dy|Kinty |
(Cexp))| valof {statement)
id)y .i=A|B|C]|...
{labely Li=int)
{addop) =4 =
(relop) =<2 =]#

Figure 2. Concrete syntax.

contlang is given in Fig. 2; the interpreter includes a
recursive descent parser based on this latter grammar.
The parser builds a tree corresponding to the abstract
syntax.

The rather few context sensitive restrictions of cont-
lang, such as the correct declaration of labels, are
presumed to be satisfied, although a production inter-
preter would have to check them.

SEMANTICS

The semantic equations of contlang are modelled as
closely as possible on those in Ref. 10. Contlang has no
notion of a location or a reference so a state is a mapping
of identifiers to current values; e.g.

o € state = id — value

so that o(‘x’) is the current value of x. In assignment, it
is necessary to update the state function for the new value
of an identifier

olv/i] (y) = if y = i then v else a(y)

An environment provides an interpretation of objects
which have scope. Only labels have scope in contlang, so
an environment maps a label to its meaning. The
meaning of a label is a continuation, that is to say a state
transformation, or a computation from the label until the
program stops, e.g.

p € env = label — cont
p(99) € cont = state — state
(0(99)) 6 = ¢’ € state

For ease of parsing, labels are Pascal-style integer labels.

The notion of a continuation is not as mysterious as is
often suggested—it is simply a more general variety of
composition. Where for composition (fog)(x), f is
applied to the result of g applied to x, we can have
(¢'(/))(x) in which fis a parameter to g'; f is given as a
continuation to g'. The way that continuations are used,
we can think of g’ acting on x and then normally calling
/. but it has the option not to, and this escape is used
when modelling jumps. A return address to a procedure

is a form of continuation—normally the procedure will
execute or carry on from the return address when
finished, but it has the option to goto somewhere else.
An expression produces a value and possibly a change
of state so the idea of an expression kontinuation (sic) is
introduced to specify what to do with the value, e.g.

K € Kont = value — cont

this is particularly clear in structured statements where
a controlling expression selects a continuation out of
alternatives.

The meaning of statements is given by

P: Cmd — env — cont — state — state

which can be read as the meaning of a command, given
an environment to interpret labels, and given a contin-
uation to carry out afterwards, is a state transformation.
The meaning of expressions is given by

&: Exp — env — kont — state — state

or, the meaning of an expression, given an environment,
and given a kontinuation which will use the value of the
expression and finish the program, is a state trans-
formation.

The various function domains are summarized in Fig.
3.

g€ state = id — value

fe continuation= state — state

K € expression kontinuation= value — state — state
peE environment = (label — cont) x kont
& 1exp — env — kont — state — state

P :cmd — env — cont — state — state

Figure 3. Semantic domains.

The semantic equations for expressions are given in
Fig. 4. As an example, the meaning of an identifier
expression given an environment, a kontinuation and a
state is the given kontinuation applied to the value of the
identifier in the state.

E[<int) ] px = r(value({int)))
E[<idy] pro = k(a({id)))e
&l valof s] px = P[s] pli/reslabel){ fail}
&lel + 2] px = &[lel]p {Ax, a-8[e2] p{Ay, 0’ -K(x + y)d’}o}

Figure 4. Expression semantics.

The equations for statements are given in Fig. 5. To
understand the equation for the if statement, note that

Plid = E] pbo = S[E] p{Arhs, a-6(alrhs/id])}o

P[if E then 51 else 2] pf = &[ E] p{cond (P[s1] pb, P[s2] p6)}
P while E do s]p6 = Y(A0'. [ E] p{cond (P[s]pb, 6)})
P[skip]p6 = 6

P[s1; s2]p0 = P[s1]p{P[s2] pb)

Plab, : s,; lab,: s, . . .; laby: syS)] 0 = 6,

where (6,,0,, . ..,04) =
YAO,, 0. .., 0y). 6, =P[s,]06,
On = Psy]p'0
p =pl0,...0x/lab, . ..laby]
Plresultis E] p0 = S[ E] p! p(reslabel))
Plgoto 1]pd = p(/)

Figure 5. Statement semantics.
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COND builds a pair {meaning of s1, meaning of s2)
which is the kontinuation for the expression E. The value
of E causes one of the pair to be selected—one can think
of executed.

Note that a compound statement containing labels
causes the environment to be updated, as does &[valof
statement]. P[goto L] drops the given continuation and
is the meaning of L in the given environment.

SEMANTICS TO INTERPRETER

Strictly speaking, when a denotational definition is
applied to a particular program one calculates the
function that the program denotes. One can then apply
that function to an initial environment, continuation and
state, but the meaning of the program is the function not
its application. However, with an interpreter it is the
result of application of a program/function that is of
interest.

A stack-based language such as Algol 68 does not allow
a procedure p to return a procedure g as a result if g
depends on local objects of p. As pointed out by Pagan’
this prevents a direct coding of the semantics. Pascal is
even more restrictive in that p cannot return any
procedure result at all. Only in a language with very
general scope rules can an ‘interpreter’ P be written to
return the function denoted by a statement.

Note that when

fiA-B->C
and
g:(4AxB)-C

are related by (f(a))(b) = g(a, b), f is called the curried
version of g. The functions in denotational semantics are
curried to make the equations simpler—f(a): B — C is
meaningful but g(a,?) is not. f(a) can be considered as g
partially parameterized and Pagan’s final coding of
semantics’ requires Algol 68 extended in this way.

Because an interpreter is to apply the meaning of a
program the approach taken here is to uncurry the
denotational functions and concentrate on the final state
of the program. This enables semantics to be coded in a
very ordinary language such as Pascal or Algol 68.

This partly solves the problems of lack of partial
parameterization and of the limited scope of procedure
results. Remaining instances of partial parameterization
can be solved by writing new (small) procedures. This is
illustrated in the next section.

As a last resort a data-structure can be introduced to
program around partial parameterization or scope prob-
lems. In the interpreter presented in the appendix a data-
structure is used to represent a state. It is this state
returned by P that is the result of the interpreter applied
to a contlang program. It is in principle possible to
remove this last data-structure as discussed later.

THE INTERPRETER

Brief examples will illustrate the general construction of
the interpreter.

166  THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

The meaning of statements (Fig. 5) is given by
P: emd — env — cont — state — state
this can be uncurried to
P: (emd x env x cont x state) — state
or closer to Pascal

function P(cmd; function en(. . ) . . .;
function cont(. . .) . . .;
state): state

P forms the main routine of the interpreter. The body
of P has one case for each form of statement, for example
S1; S2. The denotational equation for S1; S2 is

P[S1; S2] p0 = P[S1] p{P[S2] 6}
p € env = lab — cont
0 € cont = state — state

that is to say the meaning of S1; S2 given an environment
p and continuation 6 is the meaning of S1 with
environment p and continuation {the meaning of S2 with
environment p and continuation 6}. The state has been
cancelled out as it is the same on both sides of the
equation.

Only the given environment is used but a new
continuation, let us call it ‘s2¢’ is constructed. This
continuation can be programmed as

function s2c¢(s: state): state;
begin s2¢ = P(s2, env, cont, s) end

and the meaning of s1; s2 is
P(s1, env, s2c, s)

Note that env, cont and s are parameters to P and are
accessible to s2¢ which is a local function of P.

The final Pascal is only slightly bigger in having full
parameters and types, in accessing the program tree and
in Pascal’s way of returning a result

P = P(cmd?1- left, env, s2c, s).

In fact s2¢ is not in final form. Due to the resultis
statement for returning a value from a valof{statement)
expression, the environment must contain an expression
kontinuation

K: value — cont
for the resultis to invoke. Conventionally
env = (label — cont) x kont

In Pascal it is necessary to turn continuations into
expression kontinuations which ignore the value.
We now program

cont = kont = (value x state) — state

The lazy approach from Ref. 10 of having a hidden
resultis-label in the environment is adopted

env = (label x value x state) — state

The rest of the semantics are programmed in this way.
Even the construction of a new environment for a block
is a direct translation of the semantic equations. If a label
is to be evaluated in the new environment, we look at the
last label in the block; if that does not match the rest of
the block is searched. If there is no match at all, the old
or outer environment is tried. The complete parser and
interpreter are given in the appendix.
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COMMENTS

As an example to support the claim that the semantics
can easily be changed and run, the changes necessary to
implement the BCPL-style break and continue statements
are shown in Fig. 6.

Example: v |
while B do
[ GO break; . ....... ,continue;, . . . .. .. )T
Interpreter:

function P(cmd, env, c, s): astate:
function whileenv(L : labtype; v: value; s: astate): astate;
begin if L = contlab then
whileenv = again(v, s) [ again: copy that
{in loop }
else if L = breaklab then
whileenv = c(v, s5)

else whileenv = env(l, v, )

end;

begin (7]

.a.)r.ttinue: P = env(contlab, 9, s);
break: P = env(breaklab, 9, s);
while: P = E(cmd 1 - left, whileenv, loop, s);

end (P}
Figure 6. BCPL-style break & continue.

It is possible to remove the state data-structure to more
closely model

0 € state = id — value

To do this it is necessary to further uncurry P (Fig. 7), &
and so forth. A function representing the final state
cannot be returned—scope rules forbid it in Algol 68 and
it is out of the question in Pascal—but an identifier can
be passed in and its final value can be passed out. This
would imply ‘running’ a program once to inquire the
final value of each identifier! This is only sensible if there
is a special component of the state for ‘output’—possibly
with a rather complex value. In passing, note the
similarity between updating the state on assignment and
the environment on block entry. On balance it seems
reasonable to keep the state data-structure; in this form
P({statement)) is reminiscent of the single state transition
per major computation of Backus’ AST systems.!!

The interpreter P is an entirely functional program.
Thisis no surprise as denotational semantics is concerned
with the functions denoted by programs. (The only
variable in P is to get around assigning to fields in a
record that function update returns a pointer to.)

One irresistibly compares the result with the definition
of Lisp.'? Similarities are due to the common influence
of A-calculus. It is not clear if this is a little more evidence
that Lisp is just right or that denotational semantics is
just right.

The interpreter bears a similar relationship to the
semantics of contlang as does the recursive descent parser
to the syntax—maybe it is recursive descent semantics.

The interpreter is not the fastest but this is not an

state: id — value

Semantics: P: emd — env — cont — state — state
Uncurried for

interpreter: P: (emd x env x cont x state) — state
Further

uncurried: P: (cmd x env x cont x state x id) — value
function startstate(I: idtype): value;

begin if / = ‘output’ then startstate ="
else srartstate '= undefined

end;

function P(cmd;
function env(/ab; value, function state(. . .). . .; id): value;
function cont(value; function state(. . .). . .; id): value;
function state(id): value
id): value;

function update(vv: value,
function ss(id): value;
id): value;
function newstate(id): value
begin if id = cmd 1- left 1-ident then
newstate = vv
else newstate = ss(id)
end;
begin  {update)
update = cont(0, newstate, id)

end;
begin {P}

;zgshign: P = E(cmd 1 - right, env, update, state, id);
end P!

To parse and run:
print (P(statement, nilenv, nilcontin, startstate, ‘output’))

Figure 7. Removal of ‘astate’ datastructure.

objective. In particular the environment within a block
may be reevaluated each time that the block is executed.
To prevent this it is necessary to (be able to) store a
procedure in the program data-structure or to represent
continuations by a data-structure. It is not clear to the
author what should be done with such static semantic
parts.

The interpreter is not so slow as to be totally hopeless
and it could find a place as more than just a definition of
contlang. It slows execution by 20 to 100 times over
compiled code whereas conventional interpreters are
reckoned to lower speed by 5 to 10 times; the state lookup
is one easily reprogrammed inefficiency. The lack of side-
effects in the interpreter may make it a good candidate
for program transformation, or for execution by a data-
flow machine.

THE METALANGUAGE

The major drawback in the use of Pascal as a metalan-
guage is certain weaknesses and inconsistencies in its
datatypes and function parameters and results. A
datatype must be named before a parameter of that type
can be specified but function and procedure are not
datatypes so procedure formal parameters must be
specified in full. Algol 68 is more concise here but not
essentially more powerful. Pascal’s lack of a disjoint
union of types except through variant records is some-
times inconvenient.

Pascal seems powerful enough to program the seman-
tics of procedures; the meaning of a procedure is not
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L. ALLISON

dissimilar to that of a label. However to handle variables
of type procedure or type label it is necessary to store
procedures in the state data-structure, if there is one, and
Algol 68 would have the advantage here.

CONCLUSIONS

Pascal, a very ordinary and widespread language, has
been used to code and run the continuation-denotational-
semantics of a simple programming language without
much difficulty. It would be reasonable for a language

designer to work with such a definition for experimental
purposes and for distribution as a reference. The
definition, expressed in Pascal, has been checked by the
Pascal compiler in a sense more rigorously than the
original denotational semantics. In fact this has already
uncovered minor slips in early versions of the semantics
of the simple language.

The call P (statement, —, -, -) turns any
program/statement into a functional program ‘P’ applied
to some data ‘statement’. Although the interpreter is not
efficient—that is not an objective—it might be a good
candidate for program transformation or for execution
on a data-flow machine.
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APPENDIX: CONTLANGUAGE PROGRAM

program contlanguage( input,

label 99; {error "recovery"}

const nolabel=-1;
reslabel=-2;

type value=integer;

idtype=char;
labtype=integer;

output );

alfa=packed array[1..10] of char;

nodetype =(id, int,
ne,eq, le,lt,ge,gt,
plus,minus,
times,
valof,

gOtO,resultis,assign,iff,wile,skip,semi,block);

tree="anode;

anode=record lab:labtype;
case t:nodetype of
id:(ident:idtype);
int:(v:value);
skip:();
g0t0, resultis,
ne,eq, le,lt,ge,gt,

valof,

block :(son:tree);

plus,minus,times,assign,wile,semi:
(left,right:tree);

iff:(sl1,s2,s3:tree)

end;
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astate="avar;
avar=record ident:idtype;

v:value;
next:astate
end;
var prog:array[1..200]of char;
ptr:integer;
R it ikl bty }

procedure error(message:alfa);
begin writeln('*** error ', message); goto 99
end;

procedure show( s:astate );
begin if s<>nil then
begin writeln( s~.ident, ' = ', s*.v:3 );
show( s”.next )
end end;

function buildleaf(tt:nodetype; ii:idtype; vv:value):tree;
var p:tree;
begin new(p); buildleaf:=p;
with p~ do
begin t:=tt;
if tt=id then ident:=ii else v:=vv
end end;

function buildnode(tt:nodetype; ssl,ss2,ss3:tree):tree;
var p:tree;
begin new(p); buildnode:=p;
with p~ do
begin t:=tt;
§1:=ss1; s2:=ss2; s3:=ss3
end end;

funetion word(s:alfa):boolean;
var i,j:integer;
begin while proglptr]=' ' do ptr:=ptr+1;
j:=ptr; i:=1;
while (s[i)=proglj]) and (s[il<>' ') do
begin i:r=i+l; j:=j+1 end;
if (s[ilJ=" ') and ((progljl<'a')or(progljl>'z'))
and((progljl<'0')or(prog[ji>'9')) then
begin while progljl=' ' do j:=j+1;
ptr:=j; word:=true
end
else word:=false
end;

function matchstring(s:alfa):boolean;
var i,j:integer;
begin while proglptr]=' ' do ptr:=ptr+1;
je=ptr; i:=1;
while (s[il=progl[jl]) and (s[i]<>' ') do
begin i:=i+l; j:=j+1 end;
while progl[jl=' ' do j:=j+1;
if (s(ilJ=' ') then
begin ptr:=j; matchstring:=true end
else matchstring:=false

{expression syntax}
function statement:tree; forward;
function exp:tree; forward;
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funetion identifier:tree;
var ch:idtype;
begin ch:=progl(ptr];
if (ch<'a')or(eh>'z') then error('ident----- '),
ptr:=ptr+1;
identifier:=buildleaf(id, eh, 0)
end;

function nteger:tree;
var ch:char; i:integer;

begin ch:=prog[ptr];
if (eh<'0")or(eh>'9') then error('int------- ')
i:=ord(ch)-ord('0'); ptr:=ptr+1;
while (proglptr]>='0') and (proglptr]<='9') do
begin i:=i*l0+ord(proglptrl)-ord('0');

ptr:=ptr+1

end;
nteger:=buildleaf(int, '2' i)

’

end;

function opd:tree;
var ch:char;
begin ch:=proglptr];
it matehstring('( ') then
begin opd:=exp;

if not matehstring(') ') then error('exp )

end
else if word('valof ') then
opd:=buildnode(valof, statement, nil, nil)
else if (eh>='a') and (ch <='z') then
opd:=identifier
else opd:=nteger
end;

funetion unit:tree;
begin if matchstring('- ') then
unit:=buildnode(minus,buildleaf(int,'?',O),unit,nil)
else unit:=opd
end;

function factor:tree;
var p:tree;
begin p:=unit;

while matchstring('* ') do
p:=buildnode(times, p, unit, nil);
factor:=p

end;

function sexp:tree;
var p:tree; ch:char;
begin p:=factor; ch:=prog(ptr];
while (ch='+') or (eh='-') do
begin ptr:=ptr+1;
if ech='+"' then
p:=buildnode(plus, p, factor, nil)
else
p:=buildnode(minus, p, tfactor, nil);
ch:=proglptr]

end;
sexp:=p
end;
function exp {:tree forward-ed} ;

var p:tree; tt:nodetype;
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begin p:=sexp; exp:=p; tt:=int{a sort of null};
if matchstring('= ') then tt:=eq
else if matehstring('<> ') then tt:=ne
else if matchstring('<= ') then tt:=le
else if matchstring('< ') then tt:=1t
else if matehstring('>= ') then tt:=ge
else if matehstring('> ') then tt:=gt;
if tt<>int then

exp:=buildnode(tt, p, sexp, nil)

{statement syntax}
function assignment:tree;
var p:tree;
begin p:=identifier;

if matchstring(':= ') then
assignment:=buildnode(assign, p, exp, nil)
else error(':= ")

end;

function ifstatement:tree;
var pl, p2 :tree;
begin pl:=exp;

if word('then ') then
begin p2:=statement;
if word('else ') then
ifstatement:=buildnode(iff, pl, p2, statement)
else error('else------ ')
end
else error('then------ v)

end;

function whilestatement:tree;
var pl:tree;
begin pl:=exp;

if word('do ') then
whilestatement:=buildnode(wile, pl, statement, nil)
else error('do-------- ")

end;

function compoundstatement:tree;
var p:tree;

begin p:=statement;
while matehstring('; ') do
p:=buildnode(semi, p, statement, nil);
if not matehstring("') ') then error('cpmd stat)');
compoundstatement := buildnode( block, p, nil, nil )
end;

function gotostatement: tree;
begin gotostatement:=buildnode(g0t0, nteger, nil, nil)
end;

function statement {:tree forward-ed};
var p:tree; l:labtype;

begin while proglptr]=' ' do ptr:=ptr+1;
if (proglptrl>='0') and (proglptrJ]<='9') then
begin p:=nteger; l:=p~.v {Pascal!!!};

if not matehstring(': ') then error('label : ')

end
else l:=nolabel;
if word('if ') then p:=ifstatement
else if word('while ') then p:=whilestatement
else if word('goto ') then p:=gotostatement
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else if word('resultis ') then p:=buildnode(resultis,exp,nil,nil)
else if word('skip ') then §:=buildnode(skip,nil,nil,nil)
else if matehstring("'( ') then p:=compoundstatement

else p:=assignment;
p~.lab:=1;
statement:=p

{semantics}
function undefined:value;
begin error('undef val.')
end;

function applystate( s:astate; ii:idtype):value; {(apply)state: id->value}
var found:boolean;
begin found:=false;
while (s<>nil) and not found do
if s".ident=ii then
begin found :=true; applystate:=s”.v end
else s:=s".next;
if s=nil then applystate:=undefined
end;

funetion nilcontin(v:value; s:astate):astate;
begin nilcontin:=s end;

function emptyenv(l:labtype; v:value; s:astate):astate;
begin error('empty env.') end;

function p( cmd:tree;
function env(ll:labtype; vv:value; ss:astate):astate;
function ce(vv:value; ss:astate):astate;
s:astate):astate; forward;

funetion e(exp:tree; funetion env(l:labtype;vv:value;ss:astate):astate;
funetion k(vv:value;ss:astate):astate;
s:astate):astate;
function fail(v:value; s:astate):astate;
begin error('valof.....")

end;
function resenv(thelab:labtype; vv:value; s:astate):astate;
begin if thelab=reslabel then resenv:=k(vv,s)

else resenv:=env(thelab, vv, s)
end;

function opd2(vl:value; s:astate):astate;
function opr(v2:value; s:astate):astate;
begin case exp”.t of
plus: opr:=k(vl+v2, s);
minus:opr:=k(vl-v2, s);
times:opr:=k(vl*v2, s);

eq: if vli=v2 then opr:=k(1, s) else opr:=k(0, s);
ne: if vl=v2 then opr:=k(0, s) else opr:=k(1, s);
1t: if vi<v2 then opr:=k(1, s) else opr:=k(0, s);
ge: if vi<Kv2 then opr:=k(0, s) else opr:=k(1, s);
gt: if vi>v2 then opr:=k(1, s) else opr:=k(0, s);
le: if vi>v2 then opr:=k(0, s) else opr:=k(1, s)
end{case}
end{opr};
begin{opd2}
opd2 := e( exp~.right, env, opr, s)

end{opd2};
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begin {e: exp->env->kontinuation->state->statel}
case exp”~.t of

id: e:=k(applystate(s,exp”.ident), s);
int: e:=k(exp~.v, s);
valof: e:=p(exp~.son, resenv, fail{if drop out}, s);
ne, eq, 1t, le, gt, ge, plus, minus, times:
e:=e(exp”.left, env, opd2, s)
end{case}
end;
function p; { proc(emd, env, cont, state)state forward-ed }

function s2c(vv:value; s:astate):astate;

begin s2c:=p(emd”.right, env, c, s)

end;

function update(vv:value; s:astate):astate;
var p:astate;

begin new(p);

with p”~ do
begin ident:=emd”.left”.ident; v:=vv; next:=s
end;
update:=c(0, p)
end;
function cond(vv:value; s:astate):astate;
begin if vv=1 then cond:=p(emd”~.s2, env, ¢, s)
else cond:=p(emd”.s3, env, c, s)
end;

function loop(vv:value; s:astate):astate;
function again(vv:value; s:astate):astate;
begin again:=p(emd, env, c, s)

end;
begin if vv=0 then loop:=c(0, s)
else loop:=p(emd”.right, env, again, s)
end;

funetion rescontin(vv:value; s:astate):astate;
begin rescontin:=env(reslabel, vv, s)
end;

function newenv{block}(thelab:labtype; vv:value; s:astate):astate;
function search(emd:tree;
function c(vv:value; ss:astate):astate;
s:astate):astate;
function cat(vv:value; s:astate):astate;
begin cat:=p(emd”.right, newenv, e, s)
end;
begin {search}
if emd*.t=semi then
if emd”.right~.lab=thelab then
search:=p(emd”.right, newenv, e, s)
else search:=search(emd”.left, cat, s)
else
if emd”.lab=thelab then
search:=p(emd, newenv, e, s)
else search:= {old}env(thelab, vv{resultis}, s)
end{search};
begin newenv:=search(emd”.son, e, s)
end;

begid\{ p: cmd->env->continuation->state->state }
case cmd”~.t of

assign: p:=e(emd”.right, env, update, s);
iff: p:=e(emd”.s1, env, cond, s);
wile: p:=e(emd”.left, env, loop, s);
skip: p:=c(0, s);

semi : p:=p(emd”.left, env, s2e¢, s);
block: p:=p(emd”.son,newenv,c, s);
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resultis: p:=e(emd”.son, env, rescontin, s);
guto0: p:=env(emd”.son”~.v, 0, s)
end{case}
end{p};

begin
ptr:=U;
while not eof do
begin ptr:=ptr+1; read(proglptr])

end;
proglptr+1]:='.";
ptr:=1;

show( p( statement, emptyenv, nilcontin, nil{empty state}) );

99:
end.
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