Short Notes

A Note on Computing the Square Root of an
Integer

The method of successive subtraction for finding
the square root of an integer or fixed-point
number is particularly well-suited for implemen-
tation on a binary computer, and was in common
use on first-generation machines. The method
requires shifting but no division, and its execu-
tion time is dependent only on the precision
required. A brief description of the method, a
Pascal implementation, and some performance
results are presented.

Introduction

The advent of pocket calculators has virtually
abolished the need for mechanical calculation
of square roots, with the result that the pencil-
and-paper methods which formed the basis of
the first computer algorithms may not be
widely known to the present generation of
computer scientists.

An early description of the subtraction
method, one of the most widely used pencil-
and-paper techniques, was given by
Richards,' who commented on its suitability
for computer implementation. The method is
also referred to by Knuth,? Carberry et al.?
and Gosling.* A report by the present authors®
includes a full mathematical derivation. Horn®
presents an alternative square root algorithm
for integers, based on the conventional New-
ton-Raphson approach.

The subtraction method

The aim is to find the largest integer p say
whose square does not exceed a given positive
integer y. If b is the radix to be used for
computation, y may be expressed in base b° as
a sequence of digits x;x, ... x,, say where
x; > 0 (unless y = 0). Suppose p; is an approx-
imation to the square root of y;,, where y; =
X)Xy ... X, l.e.

pP<yi<(p+1)
and the residue d; given by
di=y—p}

is known. A corresponding approximation
Pi+ to the square root of y;, , may be written
as

Piv1=pb+r
where 0 < r < b, and it is not difficult to show

that r is the largest integer such that the
quantity

db* + x;., — Qpibr + %)
is positive.

If the quantities 2p;b + 1, 2p;b + 3, etc, are
subtracted from dib* + x,,, until the result is
negative, the number of subtractions is r + 1,
and the final subtrahend is 2p;,, + 1. Also,
adding back the last subtrahend to render the
residue positive again yields the value

divi =y _pi2+1

© Wiley Heyden Ltd, 1983

This provides the basis of an iterative process
for generating p in n steps. Suitable initial
values are p, =0 and d, = 0.

The computational cost of the method is
clearly proportional to the number of digits of
output generated, and only shift, add and
subtract operations are involved. When b = 2
the algorithm takes a particularly simple form,
because at most one subtraction is needed, the
output digit r being either 0 or 1.

Implementation

In machine code the most convenient method
of generating db’ + x;,, from d, is usually to
use a double-length register with d; in the top
half and the remaining digits x;., ... x, of y
left justified in the bottom half. A double
length left shift by 2 places then has desired
effect.

For a high-level language representation it
is simpler to work from the most significant
end downwards, using a mask to extract the
bit pairs. The following Pascal function illus-
trates the approach:

function isqurt (operand : integer): integer;
const ONEBIT = |; TWOBITS = 2;
TWOBITMASK = 3;
WORDLENGTH = 32; (* typically *)
type bitaccess =0 ... WORDLENGTH,
var residue, newresidue, twiceroot : integer ;
position: bitaccess
function nextbitpair
(word: integer; location: bitaccess): integer;
(* extracts bit pair whose left bit is location
places from right of word *)
begin (* next bit pair *)
nextbitpair = logicaland (rightshift (word,
location), TWOBITMASK)
end (* next bit pair *);
begin (* isqurt *)
position= WORDLENGTH,;
residue = 0; twiceroot = 0;
while position > 0 do
begin (* process next bit pair *)
position = position — TWOBITS,
residue = leftshift (residue, TWOBITYS)
+ nextbitpair (operand, position);
twiceroot = leftshift (twiceroot, ONEBIT)
+1;
newresidue = residue — twiceroot
if newresidue > = 0 then
begin (* next result bit is 1 *)
residue = newresidue,
twiceroot = twiceroot + 1
end (* next result digit is 1 *)
else (* next result digit is 0 *)
twiceroot = twiceroot — |
end (* process next bit pair *);
isqurt = rightshift (twiceroot, 1)
end (* isqurt *),;

In Pascal the functions leftshift, rightshift and
logicaland must be implemented using integer
arithmetic with powers of 2, or provided as
external machine code routines. Other lan-
guages have infix operators for shifting and
masking.

A simple extension of the method permits
the fractional part of the square root to be
generated, to a precision limited only by the
integer word length.

Performance

The running time will be a constant times half
the word length, more or less independent of
the operand. Provided masking and shifting
are done efficiently, the constant factor will be
a small multiple of the subtraction time.

The method has been implemented on a
PDP 11/45 in the C programming language’
as part of an integer-arithmetic conic-drawing
package.®® An average of 156 s per square
root was measured. This compares with a
figure of 197 ps reported by Horn® for a PDP
11/70, using a rational-arithmetic version of
the Newton-Raphson method. R. Hutchings
of ICL has implemented a floating point
version of the subtraction method in the
microcode of the PERQ personal computer,'®
which offers improved performance compared
to the Newton-Raphson version. '’

Conclusion

The subtraction method for finding the square
root of an integer offers an attractive alterna-
tive where hardware floating point operations
are not available. It is particularly suitable for
use on microcomputers, or for implementation
in microcode or hardware.

C.J. PROSSER

Rutherford and Appleton Laboratory
Chilton

Didcot

Oxfordshire OX11 0QX

UK

A. C.KILGOUR

Department of Computing Science
University of Glasgow

Glasgow G12 8QQ

UK

References

1. R. K. Richards, Arithmetic Operations
on Digital Computers. Van Nostrand,
London (1958).

2. D. E. Knuth, Seminumerical Algo-
rithms. Addison-Wesley, Massachu-
setts (1969).

3. M. S. Carberry, H. M. Khalil, L. S.
Leathrum and L. S. Levy, Foundations
of Computer Science. Pitman, London
(1979).

4. J. B. Gosling, Design of Arithmetic
Units for Digital Computers. Macmillan
Press, London (1980).

5. C. J. Prosser and A. C. Kilgour, A fast
integer square root algorithm, Report
CSC-82-R2, University of Glasgow
Computing Science Department
(1982).

6. B. K. P. Horn, Rational arithmetic
for minicomputers, Software—~Practice
and Experience 8, 171-176 (1978).

THE COMPUTER JOURNAL, VOL. 26, NO. 2,1983 187

20z UoSe\ €1 uo 1sanB Aq G/001.€/281/2/92/9101E/|uf00/W00"dNno"oIapED.//:SARY WO.) PAPEo|UMOQ

7. B.W.Kernighan and D. M. Ritchie, The
C Programming Language. Prentice-
Hall, New Jersey (1978).

8. C.J.Prosser, Graphical output methods
and their relation to display systems
design, M.Sc. thesis, University of Glas-
gow (1981).

SHORT NOTES

9. C. J. Prosser and A. C. Kilgour, Gener-
ating conic sections using integer arith-
metic, Report CSC-82-R1, University
of Glasgow Computing Science De-
partment (1982).

10. F. R. A. Hopgood and R. W. Witty,
PERQ and advanced raster graphics

workstations, Computer Graphics and
Applications 2 (No. 7), 9-15 (1982).

11. R. Hutchings, Private communication
(1982).

Received July 1982

Comment on ‘The Explicit Quad Tree as a
Structure for Computer Graphics’

Woodwark' has proposed an indexing scheme
for representing a complete quad tree without
using pointers. The resulting data structure may
be used to store pictorial information with pixel
values stored in leaves. We propose the use of an
alternative indexing scheme which is more
suitable for machines having virtual memory. In
addition, we propose that average intensity
values should be stored in higher level nodes.
Storage and processing efficiency are
considered.

The quad tree or exponential pyramid data
structure has been proposed as a mechanism
which records various resolution versions
(from fine to coarse) of a picture.®? The
structure may be viewed as a balanced 4-ary
tree defined as follows: the root of the tree or
‘father’ node contains information about the
entire picture. The father node is partitioned
into 4 (sub)quadrants or ‘son’ nodes which
contain information about the subquadrants.
By viewing each son node as a father node and
repeating the process, previously defined quad-
rantscan be further partitioned into 4 subquad-
rants up to the level where the ‘leaf’ nodes or
pixels contain the information obtained by
‘raster-scanning’ devices.

Woodwark' has proposed an indexing
scheme for representing a complete quad tree
without using pointers. We have found that an
alternative indexing scheme, described on
p. 401 of Knuth,® offers several advantages
over the scheme proposed by Woodwark.

In describing this alternative indexing
scheme, we will assume that the original
picture contains N x N pixels, where N is a
power of two. It is easy to show by induction
that a complete quad tree contains (4N? —1)/3
nodes. The values associated with these nodes
may be stored in an array of length (4N —
1)/3 as follows. The value associated with the
root is stored in the first array element. For
other nodes, the children of the node associated
with location i are associated with locations
4i —2,4i — 1,4iand 4i + 1. The father of the
node associated with location / is associated
with location [(/ + 2)/4]. Hence the children of

the root are associated with the second to fifth
elements of the array, the grandchildren are
associated with the next sixteen array ele-
ments, and so forth.

As with Woodwark’s scheme, each level of
the pyramid is stored as a block in consecutive
storage locations. However, with the scheme
proposed here, the entire quad tree is treated
as asingle array and indices are of fixed length.
Index calculations can be performed easily in
a high level language without bit manipulation
facilities.

The top levels of the quad tree are stored
together, which is useful in the case of a virtual
memory machine. In addition, all descendants
at a given level of a given node are located
together. (Forexample, all great grandchildren
of a given node are located together.) If there
is at least one page available for each of the
lower levels of a deep tree (recalling that the
higher levels can share a single page) then
page turns may be considerably reduced when
traversing a quad tree. Page turns also are
likely to be reduced in local operations, such
as following a boundary between two regions.

The overheads of storing and using a quad
tree rather than just the bottom level pixels are
small when the above indexing scheme is used.
Storage requirements are increased by just
under 4 (since there are (4N? — 1)/3 array
elements rather than N pixels).

We have found it useful to store in each
non-leaf node the average intensity of the four
children of the node. In this way, we can
obtain different versions of a picture, having
different resolutions, by going to different
depths in the quad tree. We may optionally
use an additional bit to indicate that a node is
the root of a constant subtree. (Woodwark
used a special value, called transparent, for all
nodes which were not roots of constant
subtrees.)

The proposed data structure has a clear
advantage over a pixel array when many
picture operations may be performed on low
resolution approximations to the original
picture. In these cases, only the upper levels of
the quad tree need be considered.

In many cases it may be reasonable to
attempt to solve a problem by first considering
alow resolution approximation and then going
on to higher resolution approximation if

188 THE COMPUTER JOURNAL, VOL. 26, NO. 2, 1983

necessary. The number of nodes in the top
levels of a quad tree is (4* — 1)/3. If k=1 +
log, N, as is the case with the full tree, then
(4 —1)/3 = (4N* — 1)/3.) Hence, if we look
at the top level, then the top two levels, and so
forth until we traverse the entire quad tree,
then we must examine 1 + 5+ - -+ (4N? —
1)/3 = 16/9N? — 7/9 — (log.N)/3 < 16/9N?>
nodes. So if we examine the picture at every
possible resolution down to and including the
resolution at which we are able to solve the
problem, and traverse the entire tree down to
the particular resolution in each case, then the
number of array element accesses is less than
16/9N2. Looking at all lower resolution ap-
proximations increases our work by only about
3. This is because the vast majority of nodes in
a quad tree are leaves. If there is a reasonable
chance that we can solve a problem with a low
resolution approximation to a picture, it is
often worth trying since the cost of failure is
small relative to the cost of inspecting the
entire picture.

F. WARREN BURTON
School of Computing Studies
University of East Anglia
Norwich NR4 7TJ

UK

J. G. KOLLIAS

Department of Computer Science
National Technical University of Athens
9 Heroon Polytechniou Ave

Genikes Edres

Zografou

Athens (621)

Greece

References

1. J. R. Woodwark, The explicit quad tree
as a structure for computer graphics. The
Computer Journal 25 (2), 235 (1982).

2. A Klinger, Regular decomposition and
picture structure. Proceedings 1974 IEEE
Systems, Man and Cybernetics Confer-
ence, pp. 307-310 (October 1974).

3. D. E. Knuth, The Art of Computer Pro-
gramming, Fundamental Algorithms, Vol.
1. Addison-Wesley, Reading, Massachu-
setts (1968).

Received September 1982

20z UoSe\ €1 uo 1sanB Aq G/001.€/281/2/92/9101E/|uf00/W00"dNno"oIapED.//:SARY WO.) PAPEo|UMOQ

