A Fast Algorithm for Computing Order-K

Fibonacci Numbers

M.C. Er

Department of Computing Science, The University of Wollongong, PO Box 1144, Wollongong, NSW 2500, Australia

A fast algorithm for computing order-k Fibonacci numbers in O(k? Ig n/2k) units of time is presented. Furthermore
the time complexity of the algorithm is O((k — 1)n) below threshold when 7 is small and k& is large. Finally, the space
complexity of this optimal algorithm is better than that of most other reported algorithms for doing the same task.

1. INTRODUCTION

Gries and Levin,’ Pettorossi,? Urbanek?> and Wilson and
Shortt* repeatedly formulate almost identical algorithms
for computing order-k Fibonacci numbers in O(lg n)
units of time, using matrix or non-matrix methods.
Wilson and Shortt’s algorithm is the only one among the
many mentioned above using a non-matrix method
which necessitates the establishment of complex identity
equations. This algorithm has a time complexity of
O(k? 1g n), using O(k?) multiplicative and O(k°) additive
operations, respectively, per loop. Pettorossi’s algorithm
has a time complexity of O(1.5k>1g n) using O(1.5k>)
multiplicative and O(1.5k>) additive operations, respec-
tively, per loop because the second matrix multiplication
has a probability of 0.5 of being activated. Urbanek’s
algorithm has a time complexity of O(k* 1§ n), with
multiplicative and additive operations at O(k> + 0.5k?)
per loop because the second matrix multiplication
involves a 1 x k matrix and a k x k matrix, which has a
probability of 0.5 of being carried out. Gries and Levin
give no detailed coding but their arguments together with
Refs 5 and 6 for exponentiation algorithms establish that
the time complexity of their algorithm is O(1.5k? 1g n). It
uses O(1.5k?) multiplicative and O(3k?) additive opera-
tions per loop, again because of the 0.5 probability of
executing the second matrix multiplication. The connec-
tion between Wilson and Shortt’s formulation and the
matrix approach is discussed in Ref. 2.

The non-matrix formulation, and hence the resulting
algorithm, are unduly complex, leaving very much to be
desired. In contrast, the matrix approach offers a
conceptually simple algorithm, but it suffers from the
penalty of a second matrix multiplication. Moreover,
when n— 0 and k— oo, the matrix approach turns out to
be even slower than the conventional linear approach.
We show that all such deficiencies can be repaired, and
present an improved algorithm for computing order-k
Fibonacci numbers, which is faster than any known
algorithms for doing the same task.

2. THEORY

Tr?ditionally the order-k Fibonacci series is defined
by!™

k

Up, k=) Un—i 1 fOrn>k>1
i=1

=0, forj=1,2,.. k-1 0)

and
uk, k= 1

where u, ;, is the nth term of the order-k Fibonacci
sequence. We deviate from the tradition by defining k
sequences of the order-k Fibonacci series as follows:
k 3
foi= Y famijp forj=1,2,.. ., k,andn>0

1=1

1,j=1-n
f...,~={ J

0, otherwise
forn=1—-k2—k%,...,0,and
fii=1, forj=1,2,.. .k J

where f, ; is the nth term of the jth sequence of the order-
k Fibonacci series. Here, it is understood that & > 1;
when k = 2, the order-k Fibonacci series is the standard
Fibonacci series.

This definition has distinct advantages over the
traditional definition, and will be used throughout this
paper.

Let M be a k x k matrix, such that

> (1)

Al'l = (au)
where)
@i =fo+1-i,j }
By induction, it can be shown that
Mn=Mn—lM1 =M1Mn—l (3)
So, in general, we have
Mr+c — MrMc (4)

where r and c are positive integers. Let R" be the first row
of M". Thus, from Eqn (3), we have

Rr+1 — Rer (5)
or in general
Rr+c = RrMc (6)
From Eqn (5), we establish
Joi=ta-1,j+1 oot

and

fn,k =fn-1,1
both forn > 0.

Equations (6) and (7) form the theoretical basis for
optimizing an algorithm for computing order-k Fibonacci
numbers using the matrix method.

forj=1,2,...,k—1
™

3. ALGORITHM

The basic idea in computing an order-k Fibonacci
number using the matrix method is to first of all compute

CCC-0010-4620/83/0026-0224 $02.00

224 THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

© Wiley Heyden Ltd, 1983

202 udy 60 U0 158n6 AQ 08E¥9Y/¥ZZ/€/92/1014e/|UfL00/W0d"dNO"oILSPEDE//:SARY WO.) PAPEOUMOQ

A FAST ALGORITHM FOR COMPUTING ORDER-K FIBONACCI NUMBERS

M"and then extract f, ;. Therefore, starting from M, an
efficient algorithm should compute M" in the shortest
time. This is equivalent to saying that the exponent of M
should be increased to n as quickly as possible. One well-
known technique is to double the exponent each time by
means of squaring the matrix. However, as Eqn (6)
implies, R% can be computed when M is known:

R2i — Ri Mi (8)
If R% is assigned to the bottom row of the new matrix, we
can compute M***~! by using Eqn (7) to generate its
rows from the (k — 1)th to the first. Thus the exponent n
can be reached in a much shorter time without paying
any penalty at all. In general, any positive integer n can
be rewritten using the following formula which corre-
sponds to the increments of the exponents:

n=0..((MW2+k-1+x*2+k
—1+x*2..)2+k-1+x (9)

where x is either O or 1, and y > 1. When x is 1, Eqn (7)
is applied while assigning R* to the last row of the new
matrix; otherwise, R% is copied straightaway to the last
row.

Assuming that k is a constant and the following type
definitions,

size =1...k;
vector = array [size] of integer;
matrix = array [size] of vector;

and the global array
M : matrix;
the detailed algorithm may be described as follows.

function Fibonacci (n: integer): integer;

{ This function computes order-k Fibonacci numbers
by calculating M" and then extracting f, ,, where
n>0.}

vari,j: size;
x: integer;
T: vector;
begin
if n < 3*k then
begin
InitM ;
ifn—k+1<O0theni=k+1—nelsei=1;
for j =1 to k do M[k][j] = M[il[,];
for x =2ton — k + 1 do IncRow (M[k], M[k])
end
else begin
Fibonacci = Fibonacci (n — k + 1) div 2);
fori=1tokdo
begin
Tl =0;
forj=1tokdo
dT [l = T[] + MO[T*MI5][E]
end;
if (n — k + 1) mod 2) = 1 then IncRow (T, M[k])
else for j =1 to k do M[k][j] = T[]
end;
FillMatrix;
Fibonacci = M[1][1]
end { Fibonacci };
The procedure InitM initializes the global array M to
M when activated, and may be described as follows.

procedure nitM
{ This procedure assigns M" to the global array M. }
varj: size;

for j =1 to k do M[k][j] =0;
Mlkllk—-1]=1,;
FillMatrix

end { InitM };

Note that the procedure FillMatrix is called in turn to
fill in rows k — 1 to 1 of the array M, and the details are
described in the following algorithm.

procedure FillMatrix, ;

var i: size

begin for i = k — 1 downto 1 do IncRow (M[i + 1], M[i])
end { FillMatrix };

The procedure IncRow is simply an application of Eqn
(7) and may be stated as follows.

procedure IncRow (var A, B: vector),;

{ This procedure computes the next level of row entries
and assigns to the array B from a given row storing
in the array A using Eqn (7). The arrays A and B need
not be distinct. }

var Al : integer;
Jj: size;

Al = A[1];
forj=1tok — 1doB[jl=A[j+ 1]+ Al;
Bik] = Al

end { IncRow };

All of the cited algorithms for computing order-k
Fibonacci numbers using the matrix method suggest that
M" be computed starting from M. This is undesirable
because these algorithms spend unnecessary time doing
matrix multiplications for gaining initially limited incre-
ments of exponents. Our solution uses Eqn (7) to compute
M, 1 <i< 3k initially, which is much faster than the
approach involving matrix multiplications as it involves
no multiplication at all. Since the recursion of Fibonacci
is discontinued when n is reduced to less than 3k, the
smallest starting value of the exponent of M is k. Since
each starting value between k and (3k — 1) is equally
likely, the average starting value is (4k — 1)/2. That is,
y = (4k — 1)/2.

4. ANALYSIS

From Eqn (9), we have
n=y"Q"+z (10)
where

m-1

z=k—-1+x) 2

i=0
Rearranging it, we derive

m=lg(n;z> 1)

Since y and z are positive integers greater than 1,
m < lgn. Asmindicates the number of looping operations

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 225

202 udy 60 U0 158n6 AQ 08E¥9Y/¥ZZ/€/92/1014e/|UfL00/W0d"dNO"oILSPEDE//:SARY WO.) PAPEOUMOQ

M. C. ER

(or the number of recursive calls), the algorithm thus
results in fewer cycles than those best algorithms claimed
by others in computing order-k Fibonacci numbers.

Furthermore, we observe that, during each cycle, the
algorithm performs k? multiplicative operations involv-
ing a 1 x k matrix and a k x k matrix, and ((k — 1)? +
k?) additive operations for filling (k — 1) rows of a matrix
and for doing partial sums during matrix multiplications.

Putting them to§ether, the time complexity of the
algorithm is O(k*lg ((n — z)/y)), or simplifying it,
bounded by O(k? Ig n/2k). In summary, the algorithm is
faster than any reported algorithms for computing order-
k Fibonacci numbers.

5. REFINEMENT

As remarked in Section 1, when » is small and £ is big,
most of the cited algorithms are slower than the naive
approach using Eqn (0), which requires only O(kn)
additive operations. Clearly there must be a threshold
beyond which the matrix approach will run faster than
the naive approach. Let ¢ be such a threshold. Further
assume r to be the ratio of the cost of multiplication to the
costof addition. Equating the running times of algorithms
using matrix and naive approaches at threshold, we have,

(K + (k — 1)* + &) lgi — ke

After differentiation and simplification, we derive
t=144(+ 2k 12)

Notice that the algorithm uses Eqn (7) to compute M"
when 7 is small. An application of Eqn (7) requires only
(k — 1) additive operations. Therefore, the computation
of the nth order-k Fibonacci number takes O((k — 1)n)
units of time, which is marginally faster than the naive
approach. If the threshold guard of Fibonacci is replaced
by n < 1.44 (r + 2)k, we achieve an optimal algorithm
for computing order-k Fibonacci numbers. On the one
hand, it is marginally faster than the naive approach and
significantly faster than other matrix approaches, when
n is small. On the other hand, it is faster than all other
reported algorithms for doing the same task, when n is
large.

6. FURTHER IMPROVEMENT

It may be suggested that the algorithm discussed above
is not flexible enough. For instance, having computed
the 520th order-k Fibonacci number, if the next required
Fibonacci number is 521st, the algorithm knows no
better than to start again right from the beginning. Now
we show that the algorithm can be modified fairly easily
to cater for such an application.

To remember the old exponent of M, a global variable
of type integer, oldn, is introduced. The modification is to
make the algorithm starting from oldn instead of from 1
when appropriate, and the modified fragment may be
described as follows.

function Fibonacci2 (n: integer): integer;
{ This function computes order-k Fibonacci numbers
starting from M**ifn > oldnor from M' otherwise. }
var i, j: size;

226 THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

x: integer;
T vector,
begin
if n — oldn < trunc (1.44*(r + 2)*k) then
begin
if (n < oldn) or (oldn = 0) then
begin
InitM ;
oldn'=1
end;
ifn—k+1<oldntheni=k—(n—oldn)elsei=1;
for j =1 to k do M[K][;j1= M[il[,];
for x =oldn + 1 ton — k + 1 do IncRow (M[k],
MIk])
end
else { as per the function Fibonacci }
FillMatrix;
Fibonacci2 = M[1][1]
end { Fibonacci2 };

To activate the procedure Fibonacci2, a proper context
must be set up; and a possible sequence of instructions is
suggested in the following procedure.

function Fib (i: integer ; var firsttime : boolean): integer ;

if firsttime then oldn = 0;
Fib = Fibonacci2 (i),
firsttime = false;
oldn'=i

end { Fib };

The function Fib should be called with firsttime set to true
initially, and it need not be reset in the subsequent calls.

7. REMARKS

The various analyses discussed above show that an
optimal algorithm for computing order-k Fibonacci
numbers is indeed possible. The algorithm uses only a
k x k matrix and a 1 x k matrix. The space complexity
is better than the algorithms reported by Gries and
Levin' and Pettorossi,” and equal to that reported by
Urbanek.?

Furthermore, the recursion used in the algorithm can
be trivially converted to iteration without introducing
stack. For clarity’s sake, this was not carried out.

The order-k Fibonacci numbers arise in many inter-
esting computer applications. For instance, they are used
in polyphase sort for achieving optimal merging involving
several magnetic tapes.” They are also used in solving
linear homogeneous difference equations with constant
coefficients.!"3

It may be suggested that the recurrence relation Eqn
(1) be solved to yield a general closed-form equation
which is then used for computing the order-k Fibonacci
numbers. An experiment was carried out but it did not
produce satisfactory results. The main obstacle was the
rounding error involving floating point arithmetic. For
instance, the closed-form equation of order-2 Fibonacci
number is

fu WLS((‘%ﬁ)— (1 _2%)")

When n is sufficiently large (> 26), the cumulative

202 udy 60 U0 158n6 AQ 08E¥9Y/¥ZZ/€/92/1014e/|UfL00/W0d"dNO"oILSPEDE//:SARY WO.) PAPEOUMOQ

A FAST ALGORITHM FOR COMPUTING ORDER-K FIBONACCI NUMBERS

rounding errors start to affect the accuracy of Fibonacci
numbers with a 32-bit machine. It seems that some
numerical analysis techniques are needed to overcome

this problem, which are beyond the scope of this paper.

Acknowledgements

The author would like to thank the referee for his constructive
comments. This research was supported by RGC under grant 05-143—
105.

REFERENCES

1. D. Gries and G. Levin, Computing Fibonacci numbers (and

similarly defined functions) in log time. /nformation Processing
Letters 11, 68-69 (1980).

. A. Pettorossi, Derivation of an O(k? log n) algorithm for com-
puting order-k Fibonacci numbers from the O(k® log n) matrix
multiplication method. /nformation Processing Letters 11, 172-
179 (1980).

. F. J. Urbanek, An O(log n) algorithm for computing the nth
element of the solution of a difference equation. /nformation
Processing Letters 11, 66-67 (1980).

4. T.C. Wilson and J. Shortt, An O(log n) algorithm for computing

general order-k Fibonacci numbers. /nformation Processing
Letters 10, 68-75 (1980).

. R. Conway and D. Gries, An Introduction to Programming,

Winthrop, Cambridge, 3rd edn (1979).

. E. W. Dijkstra, A Discipline of Programming, Prentice-Hall,

Englewood Cliffs, NJ (1976).

. M. C. Er and B. G. T. Lowden, The theory and practice of

constructing an optimal polyphase sort. The Computer Journal
25,93-101 (1982).

Received September 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 227

202 udy 60 U0 158n6 AQ 08E¥9Y/¥ZZ/€/92/1014e/|UfL00/W0d"dNO"oILSPEDE//:SARY WO.) PAPEOUMOQ

