A Graphically Interacting Program Monitor

B. E. J. Clark

Gould SEL Computer Systems Ltd., Raffety House, 2—4 Sutton Court Road, Sutton, Surrey, UK

S. K. Robinson

Dept of Computer Science, Brunel University, Uxbridge, Middlesex, UK

This paper describes the implementation of a graphically interactive program monitor. It discusses the concept of
control flow monitoring, and shows how this may be enhanced by the use of a graphic interface. It specifies the form
of the graphic representation, and describes how the graphic display is derived from the program being monitored. It
shows how the level of detail displayed may be controlled by the user to produce an optimum display.

1. INTRODUCTION

Sutherland’ first proposed the use of graphics to display
to a programmer the mechanisms of his program as it
ran. Flowcharts have, for a considerable time, provided
a static means for showing the flow of control through a
program. Dijkstra’ and a succession of structured
methodologists have formalized the concept of program
control mechanisms and described numerous chart
representations of control flow mechanisms. Until re-
cently, however, the high cost of both the graphic
terminal and the large data storage needed ta hold a
graphic representation of a program have combined to
prevent the realization of Sutherland’s suggestion.

The sections that follow describe an attempt to exploit
the rapidly falling cost of hardware in the production of
a monitor with a graphic interface. Section 2 shows how
the flow of control through a program is represented, and
how a user is able to control the amount of detail he sees.
Section 3 gives a brief description of the first implemen-
tation of these ideas using PASCAL as the host language,
whereas Section 4 assesses its effectiveness by showing
and discussing photographs of the output of the system.
Section 5 concludes the paper by reviewing the initial
system, and makes suggestions for future work in this
field.

2. CONCEPTS

Plattner and Nievergelt,® in their review of execution
monitoring systems, showed that the basic mechanisms
have remained unchanged for over 20 years. The
techniques, including breakpointing and trace state-
ments, have been used to determine the flow of control
through a program by implication rather than by direct
observation. The object of the system described in this
paper is to provide a user with a dynamic display of the
flow of control through his program, rather than a series
of monitor output statements. To achieve this aim the
monitor process derives a pictorial representation of the
program from its control structure. This is drawn at run-
time, and the current locus of control is marked to
indicate the progress of control through the program.
The diagrams used to represent the control structure
are based on those defined by Nassi and Schniederman,*

THEN ¥ ELSE
SEQUENCE
la 1b
FOR CASE
le 1d
THEN IF ELSE

GOTO

le

Figure 1. Flowchart symbols.

and are shown in Figs 1(a)-1(¢). These symbols are
combined to form an overall chart for a program such as
is shown in Fig. 4. The rectangular shape of the overall
chart is particularly suited for display on a graphic
monitor. The method of constructing an overall chart by
adding symbols within already existing symbols allows
the monitor to define its maximum dimensions at the
outset of processing, and to then fit the internal detail
within known limits.

Control over the amount of detail shown on the screen
is exercised by considering each statement as existing
within a context. This context is determined by the
surrounding statements; for example an assignment
statement might exist in the simple context of a program
or within the complex context of a conditional statement.
At run-time the statement context is compared with the

CCC-0010-4620/83/0026-0235 $02.00

© Wiley Heyden Ltd, 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 235

202 udy 01 U0 158nB AQ BBEYIT/SEZ/E/9Z/B10MIE/UMLOD/W0Y"dNO"OILEPEDE//:SARY W) PAPEOUMOQ

B. E. J. CLARK AND S. K. ROBINSON

user selected context to determine if the statement detail
should be added to the diagram being shown. Four basic
user levels of context are defined, namely:

0. No internal detail of a block

1. Structure only

2. Structure plus control statements (e.g. interative
control)

3. All statements.

A call statement at level 3 will produce a level 0 display
of the called procedure. Further increase in context level
will result in the internal detail of the called procedure
being displayed as a fresh display on the monitor screen.

3. MONITOR SYSTEM DESIGN

The system comprises a preprocessing analysis stage,
followed by a compilation, after which the revised object
program is able to call the monitor process. Communi-
cation between the analysis and monitor processes is via
the data sets described in Section 3.1 below. In describing
the monitor system design it is appropriate to first
describe the nature of the data passed between the two
processes, before discussing how it is generated and used.

3.1. Data design

Three sets of data are set up by the analysis process.
These are the statement data set, the graphic data set and
the global reference data set. Taking these in order, the
statement data set is a compressed representation of the
source statements used to create the other two data sets.
It is used by the monitor process to add detail to the
graphic representation in response to a user demand for
increased detail.

LABEL |STATEMENT| STATEMENT | STATEMENT CALL
NUMBER TYPE CONTEXT

STATEMENT | STATEMENT|
NAME START LENGTH

Figure 2(a). Graphic data record.

Figure 2(a) shows the layout of a record in the graphic
data set. Each of these records represents a single
statement in the source program, and supplies the
information necessary to draw that statement as a
graphic symbol. Within each record the individual fields
have the following significance:

The ‘LABEL’ field states whether this statement was
labelled either as the target of a jump or as a component
of a switch construct. In both cases this knowledge allows

the monitor process to assess the scale of a control’

construct.

The ‘STATEMENT NUMBER’ field provides a
unique key to the record, by referring it to the relative
position of the source statement in the source program.

The ‘STATEMENT TYPE’ field provides specific
information to the monitor about the form of the graphic
symbol to be drawn for this statement.

The ‘STATEMENT CONTEXT field provides con-
trol information by indicating the level of context
encompassing the specific statement.

236 THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

The ‘CALL NAME’ field is used when control is
passed to a procedure. It identifies the target of the
transfer, allowing the monitor to search for the target
block by using the global reference data set described
below.

The ‘STATEMENT START’ and ‘STATEMENT
LENGTH’ fields are used by the monitor to locate the
character string representing the statement in the
statement data set described above.

The third data set maintained by the analyser is a fixed
length table of global reference records. The format of

PROGRAM NAME | ENTRY POINT ENTRY TYPE

NAME

Figure 2(b). Global reference data record.

these records is shown in Fig. 2(b). The records are used
to associate a ‘NAME’ with a particular ‘ENTRY
POINT’ in a specific ' PROGRAM NAME’. Each entry
in this table represents the target statement of a call
within the program. The reference data from all programs
analysed is set into this single reference table. This
enables the monitor not only to trace control flow
movement within a single program, but also to trace flow
through independently analysed and compiled modules.

3.2. Analysis process

The analysis process takes the input source file and parses
it to derive the data necessary to generate the data sets
outlined above. The action of the analyser is similar to
that of a compiler in that a search is made for specific
syntactic tokens that delimit the structured constructs
illustrated in Figs 1(a)-1(e).

In the system implemented, Pascal was chosen as the
source language, firstly for its well defined structured
constructs and secondly for the ease with which the
structural significance of a statement may be established.
To further simplify the design it was decided to assume
that the input source programs were free from syntax
errors. Under these conditions it was only necessary to
consider the ‘PROGRAM’, ‘BLOCK’ and ‘STATE-
MENT’ definitions of the language® to ascertain the
necessary information to create the graphic and global
reference data sets. Analysis is completed in a single pass
over the source program, with all data generated on a
statement by statement basis.

As well as deriving data from the source program, the
analysis process also inserts into the source program calls
to the run-time monitor process. A call is inserted
following each executable statement in the source,
referencing the statement number of the statement just
parsed. Care is taken to ensure that the syntax of the
inserted calls is correct. The revised program source is
then submitted to the system Pascal compiler.

3.3. Monitor process

The monitor process is activated by a call inserted at the
beginning of the revised source program. This initiates a

202 udy 01 U0 158nB AQ BBEYIT/SEZ/E/9Z/B10MIE/UMLOD/W0Y"dNO"OILEPEDE//:SARY W) PAPEOUMOQ

A GRAPHICALLY INTERACTING PROGRAM MONITOR

two stage analysis of the graphic record set. The first pass
estimates the scale of a program block when displayed on
a monitor screen. The second uses this scaling data to
create a structure of linked circular lists, each entry being
graphic data representing a program block in which the
positions of each symbol on the screen are absolutely
defined. Each element in an entry describes the attributes
of a symbol on the screen. The lists themselves are linked
together to allow the monitor to follow the transfer of
control between blocks.

Once this structure has been established, control
reverts to the program being monitored. At each
statement a call is made to the monitor. This identifies
the current statement number. The monitor checks the
user keyboard to ascertain whether any changes to the
display are required. If there are, these are actioned, and
then a marker is placed over the symbol representing the
last statement to show the passage of control through it.

Despite its experimental nature the design of the
monitor system has proved very flexible. The use of data
sets for communication has removed any knowledge of
the source language from the monitor process. Given a
change in the analysis process one could monitor any
high level language in which the control structures were
identifiable.

control through the program is marked at each statement
encountered.

The control flow now encounters a call to a procedure
(‘linedraw’ in the example). The result is to draw the
procedure at a context level of 0.

Figure 3(c)

Further increases in the context level result in increasing
detail of the internal structure of the procedure being

4. ASSESSMENT

There are two aspects to be considered when assessing
the performance of the monitor system. The first is its
accuracy in converting a source program into the
specified graphical representation. The second is a more
subjective examination of its effectiveness as a program-
ming tool.

The accuracy of the monitor system has been estab-
lished by comparing the output produced, in response to
a given input source program, to a manually derived
diagram of the same program. These checks highlighted
the human ability to perceive the whole context of a
diagram, and to make adjustments to produce a more
balanced representation than can be produced by a
purely mechanical process.

As has been stated, the assessment of the monitor as a
software tool is far more subjective. Some idea of the
effectiveness of this technique may be gained by the
examples of monitor output taken at a graphic terminal.
These examples are given as Figs 3(a)-3(c).t The
following notes explain the display at each point in terms
of the user requests to the monitor process.

Figure 3(a)

The context level has been set to 1 and the skeleton of the
control chart is shown. The user can observe control
passing from statement to statement.

Figure 3(b)

Context level 3 has been selected and shows the whole of
the program in terms of its statements. The flow of

t Please note that owing to printing difficulties Figs 3(a)-(c) and Fig. 4
have been reversed out. The monitor background is in fact black and
shows white lettering.

(a)

Tinedraw (xa . x(. ys . uf ?

p €63 1 oy (¢

FTE I v chr (Calf div 320 ¢ 30

o)
Figure 3 (

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 237

202 udy 01 U0 158nB AQ BBEYIT/SEZ/E/9Z/B10MIE/UMLOD/W0Y"dNO"OILEPEDE//:SARY W) PAPEOUMOQ

B. E. J. CLARK AND S. K. ROBINSON

Te . Tile. udd)C86I0C larkratets - date

Figure 4

displayed. When control reverts to the calling process,
the diagram of that process is redrawn at the context
level current at the time of the procedure call.

These diagrams give a flavour of the control one can
exercise over the monitor system. The more complex
display, shown in Figure 4, illustrates the ability of the
monitor system to show the structure of a more realistic
program, in this case an undergraduate programming
exercise. It should be stressed that, at this time, the
system described is viewed as an addition to, rather than
a replacement for, existing execution monitors.

5. CONCLUSIONS

The successful implementation of a graphic interface to
a running program has added a new dimension to
program monitoring techniques. The initial system,
implemented at Brunel University, has been demon-
strated to a number of potential users, from differing
computer backgrounds. They have all found the diagrams
easy to comprehend, and have been quick to relate the
use of the system to their own environment.

Experience gained during the development of the
system leads us to conclude that the structural analysis of
the source program should be carried out in the compiler.
The information required for monitoring is all extracted
during compilation, albeit for a different purpose. By
incorporating this analysis with already existing tech-
niques for the extraction of monitoring data one can
produce the data required in a single process. Also, the
incorporation of analysis at the compiler stage would
allow a finer level of monitor tracing to be established, by
allowing analysis to take place at a level below that of a
statement.

The effectiveness of the monitor process can be judged
by the output shown in Figs 3 and 4. The Nassi-
Schniederman symbols provide an ideal mechanism for
using the graphic representation. Some minor adjust-
ments could be made, but overall the chosen technique
proved successful. Future development of the monitor
process is likely to concentrate on a refinement of the
display in terms of context and the application of the
technique as a whole to other languages such as Ada.

REFERENCES

1. 1. Sutherland, Computer graphics—ten unsolved problems.
Datamation 12, 22-27 (1966).

2. E. W. Dijkstra, Notes on structured programming. EW249,
Technical University Eindhoven (1969).

3. B. Plattner and J. Nievergelt, Monitoring program execution—a
survey. /[EEE Computer 14, 76-93 (1981).

4. |. Nassi and B. Schniederman, Flowchart techniques for struc-
tured programs. S/IGPLAN Notices 8, 12-26 (1973).

5. K.Jensen and N. Wirth, Pascal. User Manual and Report, Second
Edition, Springer-Verlag, 116-118 (1978).

Received October 1982

238 THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

202 udy 01 U0 158nB AQ BBEYIT/SEZ/E/9Z/B10MIE/UMLOD/W0Y"dNO"OILEPEDE//:SARY W) PAPEOUMOQ

