Short Notes

A Control Structure for a Variable Number of
Nested Loops

A recent paper by Skordalakis and Papakon-
stantinou proposed a new control structure with
a variable number of nested loops and suggested
three possible methods of implementation. Here
we propose an alternative programming tech-
nique which is capable of solving this class of
problem in an extremely efficient manner.

Recently Skordalakis and Papakonstantinou’
proposed a new control structure for a variable
number of nested loops. This control structure
enables a large class of combinatorial type
algorithms to be written in a simple non-
recursive manner. Basically their structure
allowed for a variable number of nested
FORTRAN:-type DO loops to be coded by
means of arrays of loop variables, initial
values, step sizes and final values. In their
paper they suggested three possible implemen-
tation strategies:

(a) modifying the compiler of the host pro-
gramming language to incorporate the
new control structure,

(b) developing a preprocessor to translate the
augmented programming language into
the host programming language,

(c) implementing the new control structure
through subroutine calls.

program generator ;
var
n, k. integer;

procedure declare (n: integer) ;
procedure initialization (n: integer) ;
procedure precode (k, n: integer) ;
procedure corecode (n: integer) ;
procedure postcode (k, n: integer) ;

begin

writeln (output, ‘Supply the depth of nesting required’) ;

readin (input, n) ;

writeln (output, ‘program nest,’) ;
writeln (output, ‘var il, bl, el, sI’) ;
fork =2tondo

writeln (output, ‘", k:1, ‘b’ k:1, e, k:1, s, k:1);

writeln {output, ‘. integer,’) ;
declare (n) ;
writeln (output, ‘begin’) ;
initialization (n) ;
fork=1tondo

begin

writeln (output, ', k1, =bk:1,*;’);
writeln (output, ‘while i',k : 1, < = e’ k : 1, ‘do begin’) ;

precode (k,n) ;
end;

corecode (n) ;

for k = ndewnto / do
begin
postcode (k,n) ;

writeln (output, 7, k:1, ‘=i k:1, + s k:1,°;’);

writeln (output, ‘end;’) ;
end;
writeln (output, ‘end.’) ;
end.

Figure 1. The Pascal program generator (this version assumes a

separate compilation facility).

282

They implemented (c) with FORTRAN as the
host programming language.

The purpose of this note is to propose an
alternative approach which is substantially
more efficient than (c) and yet does not require
the complexity of (a) or (b). We propose the
use of a program generator, coded in a language,
X say, that generates a program in the host
programming language containing the re-
quired number of nested control structures. In
our experiments both X and the host language
were Pascal, but the method is applicable to a
wide range of current programming languages.

In our method the user is required to provide
three procedures precode(k ,n), corecode(n), and
postcode(k, n). These are required to generate
Pascal code for the kth precode etc. given a
maximum depth of nesting n. When the
program generator is executed and the user
supplies the depth of nesting required, a Pascal
program is automatically generated. Our im-
plementation, given in Fig. 1, also accepts
procuedures that declare and initialize any
extra variables required. The nested loop
structure generated has the format of Fig. 2.
While loops are generated because of Pascal’s
limitations on the for loop step size.

To enable timing measurements to be
performed, we considered the example given
in Ref. 1: that of finding all combinations of ¢
elements from a given set of p elements. The

extern;
extern;
extern;
extern;
extern;

ik = bk ;
while ik < = ek do begin
{precode for loop k'
{loop for k + 1 or corecode ifk = n}
{postcode for loop k|
ik =ik + sk;
end;

Figure 2. Basic loop structure of generated
program.

procedures supplied by the user for this
problem are given in Fig. 3 and an example of
a generated program in Fig. 4. The depth of
nesting, g, is supplied by the user when the
program generator is run. The value p is read
by the generated program in its initialization
phase. Toprevent file transfer time dominating
the measurements, the generated program was
edited to sum rather than print the combina-
tions produced.

The results of our timing measurements are
summarized in Fig. 5 for values of p = 20 and
g = 10. The table contains cpu times for:

(i) the program generator method consid-
ered in this note

(i) a recursive Pascal program based on the
Algol 60 program in appendix A of Ref.
1

(iii) a Pascal implementation of the subrou-
tine method (c) based on the FORTRAN
code of appendix B in Ref. 1

procedure precode (k, n: integer) ;

if kK < n then writeln (output, b', (k +1):1, ‘=i k:1,"+ 1;);

end;

procedure corecode (n: integer) ;

var k :integer ;
begin

write (output, ‘writeln(il’) ;
for k = 2to ndo write (output, *, ",k : 1) ;
writeln (output,) ;") ;

end;

procedure postcode (k, n: integer) ;

begin
{empty}
end;

procedure declare (n: integer) ;
begin writeln (output, ‘p : integer;’) ; end;

procedure initialization (n : integer) ;

var k : integer;

begin writeln (output, ‘readin(p);’) ;
writeln (output, ‘bl = 1,");

for k = 1to ndo writeln (output, ‘e’ k:1, =p;s k:1,‘=1;");

end;

problem.

THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

Figure 3. User supplied procedures for solution of combination

© Wiley Heyden Ltd, 1983

202 udy 01 U0 188n6 AQ ZGH9t/282/€/92/1014e/|uf00/W0d"dNo"oIWePEDE//:SARY W) PAPEo|UMOQ

program nest
varil, bl el, sl
,i2,b2,e2, 52
,i3,b3, 3,53
integer
p:integer;
begin
readin (p) ;
bl=1;
el=p;sl=1;
e2=p;s2=1;
e3=p;s3=1;
il'=bl;
while i/ < = e/ do begin -
b2=il+1;
i2=5b2;
while i2 < = e2 do begin
b3=i2+1;
i3=053;
while i3 < = e3 do begin
writeln (il,i2,i3) ;
i3=i3+s3;
end;
2=i2+s2;
end;
il'=il +sl;
end;
end.

Figure 4. Generated program for combi-
nations program (q = 3) (the code has been
manually indented for clarity).

(iv) as for (iii) but with the procedure calls
replaced by in-line code.

SHORT NOTES

(1) Program generator method

Time to execute program generator 0.45

Time to compile and load generated program 297

Time to execute generated program 3.01

6.43

(i) Recursive program method

Time to execute program 35.96
(ii1) Subroutine method of Ref. 1 _

Time to execute program with procedure calls 92.41
(iv) Subroutine method of Ref. 1

Time to execute program with procedure calls

expanded ‘in-line’ 32.98

Figure5. Timings for combinations problem with p = 20 and g = 10. Times are cpu seconds
on a Prime 750, using the Pascal compiler running under Primos.

As can be seen, the program generator
method proposed in this note is significantly
more efficient than recursion or subroutine
implementation methods. A major contribu-
tion to this efficiency results from the absence
of procedure calls and array references. A
further advantage over recursive implemen-
tations results from the omission of any test
for the depth of recursion to decide between
execution of the corecode or entering another
loop. We conclude that program generation
provides an efficient, flexible implementation
method that is readily available in current
programming languages without resort to
language extensions.

B. J. MCKENZIE

Department of Computer Science,
University of Canterbury,
Christchurch, New Zealand.

TADAO TAKAOKA

Department of Information Science,
Ibaraki University,

Hitachi, Japan

Reference

1. E. Skordalakis and G. Papakonstantinou,
A control structure for a variable number
of nested loops. The Computer Journal
25 (No. 1), 48-51 (1982).

Received December 1982

Taxonomic Studies on Current Approaches to
Systems Analysis

Recently Wood-Harper and Fitzgerald' have
presented a taxonomy for current approaches to
systems analysis. This note examines the funda-
mental paradigms on which their scheme is
based. Some changes are proposed and a major
problem of such classification methods is identi-
fied.

Taxonomy deals with the classification of
entities into groups dependent on the posses-
sion of a set of characteristics distinctive of
the group. A mark of a good taxonomic scheme
is, that on being presented with an entity we
can, from its characters, place it unambigu-
-ously into a recognized taxon. In the more
usual context of classification of plants and
animals deciding what constitute distinguish-
able taxa may be difficult.’

Wood-Harper and Fitzgerald' introduced a
taxonomic scheme for systems analysis meth-
odologies expressed in terms of two paradigms,
which they describe as a systems paradigm
and a science paradigm, as described by
Checkland.® The use of this latter term-implies
a commonality of approach of the paradigm
with that of natural science. Checkland’s
definition is open to severe criticism on
technical philosophical grounds as a charac-
terization of science. There is no consensus
among philosophers of science about what
constitutes the ‘science paradigm’. Check-
land’s definition is not one which would gain

Paradigm Holistic Holistic Reductionist
Systemic Humanistic Rationalistic
Model Value Systems Fuzzy People Processes Data ' Tools/
Soft Techniques
Objective Analysis Problem Problem Problem Analysis Analysis
Solving Solving Solving
Approach General Human Participative Traditional Data Structured
Systems Activity Analysis
Theory

Figure 1. Revised taxonomy of systems analysis approaches (after

Ref. 1).

universal assent; rather, use of the term
‘science paradigm’ introduces an additional
highly contentious element into the discussion.
This is particularly unfortunate, since there is
no reason to invoke the term science in this
context. A description of this paradigm which
would present none of the problems of the
current one would be ‘rationalistic/
reductionistic’. For this description Check-
land’s definition would be acceptable.

The second paradigm identified by Wood-
Harper and Fitzgerald is also problematical.
As they state, the systems paradigm is difficult
to characterize, which excludes it as a basis
for a taxonomic classification. One of the
fundamental necessities for an acceptable
taxonomy is that taxa can be unambiguously
defined. An obvious alternative can be found.
What characterizes general systems theory,

human activity systems and participative

designs is their holistic approach to system -

study, that is to say that they deal with
problems in terms of ‘wholes’ rather than using
an ‘atomistic/reductionistic’ approach. The
various methods differ in the aspect of system
study on which they lay particular emphasis.
Two holistic approaches can be discerned;
humanistic and systemic. All the methods
discussed are systemic in a general sense, but
general systems theory gives primacy to an
abstract theory of systems, hence it may be
characterized as systemic. The humanistic
approach is a primary characteristic of parti-
cipative design and human activity systems.
A revised taxonomy is presented in Fig. 1.
A particular problem with taxonomic
schemes is that frequently they fail to take into
account significant characteristics. Figure 2

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 283

202 udy 01 U0 188n6 AQ ZGH9t/282/€/92/1014e/|uf00/W0d"dNo"oIWePEDE//:SARY W) PAPEo|UMOQ

