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The definition of comma-free codes is extended to be more comprehensive and include codes with variable length
codewords and codes with an unlimited number of codewords. Finite state recognizers are used to represent comma-
free codes in a compact form, making available the well established methods of manipulating and analysing finite state
models. An efficient algorithm is presented to test the comma-freeness of any given code represented by a finite state
recognizer. It is well known, that any maximal comma-free code with codewords of odd fixed length can be achieved.
Although upper limits have been given for even fixed length it has not been established which comma-free codes of this
nature can achieve the upper limit. Compact representations of comma-free binary1 codes are given for variable length
codewords with maximum even fixed lengths (6,8 and 10) and in one case (length not greater than 6) it is seen that the
corresponding upper limit for fixed lengths can be exceeded.

1. INTRODUCTION

1.1 Synchronizing codes

A synchronizing code consists of a directory of code-
words, from a fixed size alphabet, such that, on receipt
of a sequence of symbols from the alphabet, it will be
possible after some delay to synchronize and identify the
first symbol of a valid codeword. Thereafter the receiver
will remain in synchronization and all subsequent
codewords can be identified without delay, assuming that
the message is error free and only valid codewords are
received.

The delay before synchronization is achieved may
have a finite maximum (Example 1.1.1) or it may be
unlimited (Example 1.1.2). There are codes which are
not synchronizing. For the code directory of Example
1.1.3 it can be shown that, for any sequence of symbols
received there are at least two alternative interpretations
and that synchronization is not possible without external
intervention.

1.1.1 Example of a code with finite synchronizing delay

S = (xyyxy, yxy}

Consider the sequence ...xyxyyx... which could
be interpreted as . . . x / y xy / y x . .. or . . . x y /
x y y x. . .. The next symbol received will enable the
receiver to resolve the ambiguity. It can be shown that
this is the worst case and that synchronization can always
be achieved within 7 symbols for this example.

1.1.2 Example of a code with unlimited synchronization delay

S = (xxyx, xyx, yxy}

Consider the sequence . . . x y x (y x)3n x . . . for n > 0,
which could be interpreted as . . . (xy x /y xyf j xy x/
x . . .or. . . xy I (xy x /y xy)n / x x . . .Thenextsymbols
must be xyx or yx, after which the start of trie next
codeword will be received. Synchronization is achieved

after 6n + 7 symbols, where n is a positive unlimited
integer.

1.1.3 Example of a code which cannot be synchronized. Consider
the set of codewords from the alphabet (x, y}, which
contain any number of occurrences of x and exactly two
y symbols one of which must be the last of the codeword.

S = (yy, xyy, yxy, xxyy, xyxy, yxxy,... )

or
= (x"yx"y\n> - 1)

It can be shown that for any possible sequence of valid
codewords there are at least two possible alternative
points of synchronization.

1.2 Comma codes

A comma code is a directory of codewords in which one
(or more) symbols of the alphabet is designated as a
codeword delimiter or separator and cannot occur within
a codeword. A generalization of a comma code can be
designed in which one (or two) groups of symbols, the
prefix, acts as separator between codewords and the set
of codewords is designed such that the sequence of
symbols corresponding to the prefix(es) cannot occur
within a codeword or in the concatenation of a prefix and
a codeword as in the example:

S = (xxx, yxy | prefix = xxy).

Guibas and Odlyzko1 discuss the choices of prefixes to
maximise the number of codewords in a fixed length
prefix code.

1.3 Comma-free codes

A comma-free code is a directory of codewords such that,
for any sequence of symbols, synchronization can be
achieved within at most (2 x longest codeword — 1)
symbols.
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Expressed alternatively: as a code in which a complete
codeword can be identified as soon as its last symbols is
received. To achieve this, the set of codewords must
satisfy the condition that a set of symbols corresponding
to a valid codeword cannot occur within another
codeword nor within the concatenation of two valid
codewords.

The formal definition, for fixed length codewords by
Golomb et al.2 has been used as the basic definition by
most authors in the field:

A set D of A:-letter codewords is called a
comma-free dictionary if whenever (aua2,. • •
ak) and (bu b2, • • • bk) are in D, the overlaps
(a2, a3, . . .ak, bx), (a3, . . . ak, bu b2), . • . (ak,
by,. . . i t_!)are not in/).

This can be extended to include code directories
containing other than fixed length codewords:

A set of codewords, from a finite alphabet
{at | / < n + 1} is a comma-free dictionary if:
(i) whenever (au a2, . . . ak) is a codeword

then the sequences (a,, a2, . . . ap\p < k),
\

2. PREVIOUS WORK

ap+u
ak\ (ap, a

p+i,p p p p

aq 11 < p,q <k) are not valid codewords:
(ii) whenever (a,, a2, . . ., ak) and (bu b2, . . .,

bm) are codewords then the sequences {ap,
. . ., ak, bu. . ., bq\0<p<k, 1 <q<m)
are not valid codewords.

1.3.1 Example of a fixed word length comma-free code. The set
of codewords consisting of n binary symbols such that a
codeword contains at least one of each symbol and all 0
symbols precede all 1 symbols. E.g. for n = 5 the 5 bit
codewords are defined by

S = (00001, 00011,00111, 01 111)

1.3.2 Example of a variable length comma-free code. The set of
codewords consisting of a starting symbol a, ending with
symbol c and one or more b symbols between the a and c
symbols.

S = (abc, abbe, abbbc, etc.)

1.3.3 Example of a code which is not comma-free.

S = (010101, 100111, 110011,000001,011001)

The example illustrates three types of situation which
violate the requirements for comma-freeness.

(a) A codeword is contained within the string obtained
by concatenating two codewords.

011001 is contained in 000001 100111

(b) The special case in which a codeword is contained
within the string obtained by concatenating two
copies of a codeword; this corresponds to a cyclic
shift.

100111 is contained in 110011 110011

(c) The special case in which a codeword is contained
within the string obtained by concatenating two
copies of itself; this corresponds to a repeated
subsequence of symbols.

010101 is contained in 010101 010101

The concept of comma-free coding was first discussed in
the literature by Crick3 in connection with the coding of
amino acid chains in genetic coding. Golomb, Welch
and Delbruck4 develop the ideas further and lay a
foundation for the formal development of comma-free
codes and Golomb et al.2 establishes that the maximum
number of codewords in a fixed length comma-free
directory has an upper limit defined by:

where the summation is over all divisors, dof k and U(d)
is the Mobius function defined by:

(l if</= 1
U(d) __ J 0 if rf has a square factor

1 ( - 1 ) if d = ptp2 . . . pr where py, p2,. . ., pr are
Idistinct primes.

Upper limits for the sizes of binary comma-free codes
with fixed length codewords are shown in the following
table:

word length 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
directorysize 1 2 3 6 9 18 30 56 99 186 335 630 1161 2192 4080

Jiggs4 reports a theorem by Jewett to show that the
upper bound cannot be achieved for certain classes of
codes with even fixed codeword lengths and Eastmann6

demonstrates that the upper limit can be achieved for
codes with odd fixed codeword lengths, presenting an
algorithm to generate such codes. Taylor and Green7

gives restrictions on the selection of codes from non-
degenerate equivalence classes in order to achieve
maximal comma-free codes. To date, whether the upper
limit can be achieved for comma-free codes of even fixed
length is unsolved, although it has been shown that in
certain cases the upper limit cannot be achieved.5 Yoji8

demonstrates that the upper limit can be achieved for a
binary comma-free code with codewords of length 10,
but abandoned the investigation of length 12 as too
exhausting.

Examples will be given later in this paper in which the
upper limit is achieved by also including codewords of
length less than the 'fixed codeword length'; and in fact
the upper limit is exceeded in one case. Scholtz9 presents
algorithms to generate codes with variable word lengths,
but allows the possibility of shorter codewords occurring
within the longer codewords of a set. In this paper, this
will not be allowable and the definition of comma-
freeness will be much stricter, as defined in the previous
section. Stiffler,10 in a comprehensive treatment of
synchronous communication theory, presents a summary
of comma-free codes and further development, including
error correction properties.

Finite state machines, regular grammars, regular
algebra and the interrelation between them have been
extensively studied. There are many texts which
introduce and develop the subject.11"14 The purpose of
this paper is to show how comma-free codes can be
represented economically by the use of finite state models
and how well established techniques can be used in the
analysis of those models. In particular an efficient
algorithm is presented which will establish if a code is
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FINITE STATE MODELS IN THE STUDY OF COMMA-FREE CODES

comma-free or not, and it is demonstrated that the model
can be used as the basis for the design of a decoding
system. Variable length binary codes, which it is believed
have not previously been published, are presented as
illustrations of the use of finite state models.

3. FINITE STATE RECOGNIZERS

3.1 Representation of code directories

To define a code directory, referred to simply as a code
in what follows, it is required to specify the alphabet of
symbols and the set of combinations of the symbols
which make up the codewords which are valid for the
code under consideration. A code can be specified in
many ways. Examples 1.3.1 and 1.3.2 are used as
illustrations in the following.

(i) As a list of valid codewords, possibly with some
method of generalization for directories which are
large or of unlimited size.

Dl = {00001,00011,00111,01111} or
(05-fc lfc|0 < A: < 5}

D2 = (abc, abbe, abbbc,. . ., etc) or (abkc\0 < k}

(ii) As a set of rules which define the structure of the
code; a grammar which in the codes considered will
be a regular grammar (classified as Chomsky type
3).

Gl=S^0A, A^OB, A-*\C
B-+0D, B^IE, C->IE
D^OF, D->IF, E-+IF, F->1

G2 = S-*aA, A->bB, B-+bB, B-+c
(iii) As an algebraic formula which defines the strings of

the 'language' of the code; in this case using regular
algebra.

R\ =00001 +00011 +00111 +01111
= 0(00(0+1)+ (0+1)11)1

R2 = abb*c = ab*bc (* is the closure operator).

3.2 Concept of states, alphabets and recognizers

A finite state machine (Moore type) is an automata model
defined by

(i) a finite state alphabet
(ii) a finite alphabet of input symbols

(iii) a finite alphabet of output symbols
(iv) a function defining the next state for each input/

state pair
(v) a function defining the output symbol for each state.

An alternative representation of a finite state machine
(Mealy type) differs only in that the output function is
defined for each input/state pair. It can be shown that
the two types of model are equivalent and there are
standard techniques for converting between the two
types of model.

A finite state recognizer is a Moore type model in
which one (or more) state is designated as an 'accept'
state, in which the output is implicit. Given a 'start' state,

any sequence of symbols which causes transition from
the start state to an accept state is said to be accepted by
the machine. The next-state function, which defines the
set of strings from the input alphabet which are accepted
by the machine in question, can be represented in the
following ways:

(a) in formal terms as a set of'triples'
(b) in tabular form as a rectangular finite state table
(c) in diagrammatic form as a finite state graph.

The set of strings or codewords making up a code
directory can be specified by means of a finite state
recognizer.

A finite state model to control a sequence of actions on
an environment, which is external to the finite state
model itself, can be represented by either a Mealy or a
Moore type machine, in which the outputs are signals to
initiate the appropriate action, and any such sequences
of initiated actions are assumed not to overlap in time.
In the design of a decoding device, the external
environment could be the required decoded message and
the called actions the arithmetic or logical operations on
that message in the course of its reconstruction. An
example is shown in sections 5.1 and 5.5.

3.3 Minimal forms of finite state recognizers

There is a well established body of knowledge on the
analysis and minimal representations of finite state
machines. Any completely defined finite state machine
can be shown to be equivalent to a unique (except for
state labelling) form with a minimum number of states.
There are well established efficient algorithms for
achieving the unique canonical form. Finite state
machines which are not completely defined may corre-
spond to models which have 'don't care' situations, or
there may be sequences of inputs which cannot possibly
occur. A unique minimal form may not always be
possible, but there are techniques available for identifying
possible redundant states and producing compact 'com-
patible' representations.' '•'2

3.4 Deterministic and non-deterministic recognizers

In a deterministic finite state machine, for every state/
input combination there is a unique successor state.
There is also a unique output signal, associated with
every state/input combination for a Mealy machine and
associated with every state for a Moore machine. In a
non-deterministic machine, there may be more than one
possible successor state: as in a recognizer, when the
model is not prescribing a required set of behaviours, but
rather specifying a set of possible behaviour patterns
which are acceptable. In the case of a Moore machine
there are standard techniques available for converting
into an equivalent deterministic finite state machine,
except that in some cases there may be some non-
deterministic output inherent to the problem itself. For
example in constructing a recognizer for the two
sequences {abc, abeb}, when the sequence abc has been
received, it will not yet be clear whether to output an
'accept' signal or not. A technique to eliminate non-
determinism (except for output situations alluded to) is
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based on the concept of a composite state: 'the model is
in state 1 orstate2

Subsequent states are defined in a similar manner, and
it can be shown that the number of possible composite
states is strictly limited, resulting in a finite state machine.

When constructing the finite state machine represent-
ing the reverse of a (deterministic) recognizer, for every
state and input combination it is required to define the
'predecessor state'. In general there will be more than
one predecessor state resulting in a non-deterministic
recognizer for the reverse machine. The model can be
converted to deterministic form using standard algo-
rithms.

3.5 Code directories as finite state recognizers

A code can be represented by a finite state recognizer,
together with an identification of the 'start' and 'accept'
states.

3.5.1. The code presented in the example of Section 1.3.1
and represented by D1, G1 and R1 above can be expressed
precisely and concisely as follows: The start state is 1 and
the accept state is 8.

(a) Set of triples: (1,0,2) (2,0,3) (2,1,4) (3,0,5)
(3,1,6) (4,1,6) (5,0,7) (5,1,7) (6,1,7) (7,1,8)

(b) Finite state table:

inputs

0
1

states

1

2
-

2

3
4

3

5
6

4

_

6

5

7
7

6

_

7

7

_

8

(c) Finite state graph:
1—0-2—0- 3 — 0-5 — 0 , 1 - 7—1-8

| J l
6—i4—1

(d) Finite state model for the reversed code: The start
state is 8 and the accept state is 1.

replace

5/6 by 6
3/4 by 4

inputs

0
1

inputs

0
1

states

8

_

7

7 5

5 3
5/6 -

states

8

_

1

7 6

5 3
6 4

5/6

3
3/4

5 4

3 2
- 2

3/4

2
2

3

2
-

2

1
-

3

2
-

2

1
-

3.5.2. The code presented in the example of section 1.3.2
and represented by D2, G2 and R2 above can be expressed
precisely and concisely as follows: The start state is 1 and
the accept state is 4.

(a) Set of triples: (1, a, 2) (2, b, 3) (3, b, 3) (3, c, 4)
(b) Finite state table:

inputs

a
b
c

states

1

2
-
-

2

_

3
-

3

_

3
4

(c) Finite state graph:
- 1— a-* 2— *r»3—jjC-4

(d) Finite state model for the reversed code: The start
state is 4 and the accept state is 1.

inputs

a
b
c

states

4

_

-

3

3

_

2/3
-

2

1
-
-

2/3

1
2/3

-

replace

2/3 by 5

inputs

a
b
c

states

4

_

-

3

3

_

5
-

5

1
5
-

3.6 Codeword sequences

When a sequence of codewords is represented as a
continuous sequence of symbols, the start state will also
be the accept state. The set of codewords making up a
code can be represented as a deterministic finite state
recognizer, except when the code is not instantaneous—
i.e. a valid codeword is the prefix of another valid
codeword, in which case the model will be inherently
non-deterministic.

A finite state recognizer can be used as the basis of a
'table driven' parser. Once synchronization has been
achieved the model will be in the start/accept state at the
beginning of a codeword. Successive states are selected
from the table according to the symbols input. A sequence
of symbols is recognized as a valid codeword, i.e. a
comma can be inserted into the symbol sequence,
whenever the start/accept state is entered.

4. COMMA-FREE CODES

4.1 Conditions and tests for comma free codes

4.1.1. On receiving a sequence of symbols the recognizer
will be in start state, S, at the beginning of a valid
codeword. It will pass through a sequence of states,
including states T and U (say) and then return to accept
state S after the last symbol of the n symbol codeword.

—a, . aj+k
U—aj+k+

If there is a k symbol codeword in the code which is
contained within the original codeword, then there will
be a sequence of symbols, say aj+l . . . aJ+k, which will
result in transition from the start state 5 to the accept
state S:

S—aJ+]

In this case the code does not satisfy the criteria for
comma-freeness and there exists a sequence aj+l . . . aj+k
which gives rise to two corresponding sets of transitions,
with initial states Sand T, represented by:

The case j = 0 corresponds to a non-instantaneous code
in which a valid codeword is the prefix of another valid
codeword. The case j = n — k corresponds to a code in
which a valid codeword occurs as the suffix of another
valid codeword.
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4.1.2. Consider a code in which there are codewords as
follows, for which S is the start/accept state and T, U and
Kare intermediate states:

(a) A codeword a , . . . afli+1. . . an for which correspond-
ing state transitions are:

S—a, . . . aj -* T—aj+, . . . an -» S

(b) A codeword with suffix a!. . . a, for which correspond-
ing state transitions are:

U—ai...aj^S

(c) A codeword with prefix aj+i ... an for which
corresponding state transitions are:

S—a,*, . . .an-* V"j+l

In this case the code does not satisfy the criteria for
comma-freeness and there exists a sequence ax . . . an
which gives rise to two corresponding sets of transitions,
with initial states S and U,

S
Tr—al'a2'

T

s'
4.1.3. In each of the cases considered in 4.1.1 and 4.1.2 it
is seen that if the code is not comma-free, then there is a
sequence of symbols representing a codeword giving rise
to two sequences of transitions:

Start state
State 1

— <symbol sequence)
Start/accept state

State 2

where State 1 is an initial state, other than the start state.
Conversely, for a finite state recognizer which repre-

sents a comma-free code, there is no such sequence of
transitions, for any possible initial state other than the
start state.

4.2 Algorithm to determine if a code is comma-free

The previous section gives the basis of a test to determine
if a finite state recognizer represents a comma-free code,
or alternatively, a proof of comma-freeness for a given
code.

4.2.1. Define:

(So, Si,. . ., S,i): states of the recognizer
SQ: start state
A: input symbol string
H: successor state to So with respect to A
G: set of successor states to Sx,..., Sn with respect to A.

It is required to determine, in order to establish comma-
freeness, that there is no sequence of input symbols
which satisfies the above condition for all possible start
states Si, S2, • • •, Sn, i.e.

H=Sn
:—A-*:

where G" is not the empty set.
This can be expressed as a recursively called procedure

which is initially called CFtest (So, (S,, S2) . . ., SJ,
NULLSYMBOL), and will set the global variable
Commafree (initially set true) to false on establishing a
symbol string A which violates the condition required of
commafree codes.

Procedure CFtest (//, G, A)
{H: successor state to So w.r.t. symbol string A.}
{G: set of successor states to Si, S2, • • ., Sn w.r.t. A.}
{Initially H = So and G = (Su S2,..., SJ.}
if {(H = So) and (A not NULLSTRING)}
then if {G not NULLSET}

then set COMMAFREE to false
else for A'inrange {code alphabet) repeat

replace H by {successor state ofH w.r.t. symbolX)
if {H not NULLSET}
then replace G by {set of successor states w.r.t.}

{symbol X, of states of set G}
if {G not NULLSET}
then set A to {concatenation of A and X}

CFtest {H, G, A).
until {last of code alphabet}

4.2.2. Suppose that it is not required to identify the precise
input string which violates the condition for comma-
freeness. Then G can be replaced by the union of the
successor sets G for input strings leading to the corre-
sponding successor of the start state, H. This gives rise to
a more efficient algorithm, eliminating needless duplica-
tion of computation. The finite state recognizer is
effectively extended by including an extra parameter
with each state, the set of states, G, which is the set of
successor states to Si, S2, . . ., Sn for all input strings
leading to that state from the initial state. This is
illustrated in tabular form in Example 4.2.3 together with
the corresponding tree diagram.

4.2.3 Example to show that the code (baaa, baab, bacc, bbac) is
not a comma-free code. The corresponding finite state
recognizer with state set (S, 1, 2, 3, 4, 5), where S is the
start/accept state, is represented:

inputs

a
b
c

states

S

_

1
-

1

2
3
-

2

4
-
5

3

5
-
-

4

s
s
-

5

_

-

s

The sequence of H/G when calling CFtest (S, [1, 2, 3,
4, 5], NULL) is:

S . I 2
1,2,3,4,5 3 , S ^ '

The sequence bbac results from suffix b and prefix bac.
In tabular form, with an extra column for the set of

successor states G:

«-states

s
1
2
3
4
5
S

inputs

Successor states

_

2
4
5
S
-

1
3
_
-
S
-

as above

a b

_
-
5
-
-
S

c

G-sets

1 , 2 , 3 , 4 , 5
3,S
5
1
-
5,2
5
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The non-null set {5}, in the row corresponding to the
accept state S, shows that there is a sequence:

and consequently the code is not comma-free.

5. EXAMPLES OF COMMA-FREE CODE
DIRECTORIES

The first three examples illustrate binary comma-free
codes in which some codeword lengths are shorter than
the 'fixed length' assumed in calculating the upper limit
to the size of the code. They have been designed using
finite state recognizer generating methods based on the
construction methods of Scholtz.9 All are assumed to
have start/accept state 1. The G-sets, demonstrating
comma-freeness, are given alongside the finite state
recognizer.

5.1 Example of a comma-free code directory of size 10

Although 9 is the upper bound for the size of a binary
comma-free code with codewords of length 6,5 by
considering variable length codewords with maximum
length 6, a code can be designed of size 10 (Table 1).

Table 1.
state 0 G-sets

1
2
3
4
5
6
7
8
1

2
-
4
6
6
8
8
1
2

-
3
5
-
7
1
8
1
_

2 3 4 5
1 4 6 8
1
2
-
—
—
_
_

6 7 8

The null G-set associated with accept state 1 shows
that the recognizer represents a comma-free code. The
set of codewords is: {01001, 01101, 010000, 010001,
011000,011001,011100,011101,011110,011111}.

This example also illustrates how the finite state model
can be used to recognize codewords and convert them
into decimal values. The transducer shown in Table 2 is
obtained directly from the finite recognizer representing

Table 2.
inputs 1 States

Next state
function

Output
function

Procedures acting on external variable D:
No action pE Error, not yet synchronized

pO SetDtoO p\ Set£>to1
p2 Replace D by D + 1 p3 Set D to 3
p4 Output value of D p5 Output value of 20
p6 Output value of 20 + 1

0
1

0
1

2
1

-

pE

2
3

pE
-

4
5

-
-

b
3

pO
PE

6
7

p1
p3

8
1

P2
pA

8
8

P2
-

1
1

P5
P6

the comma-free code. It takes a binary sequence as input
and when a valid code is recognized evaluates the
corresponding decimal value in the external variable D.
If an error occurs, the transducer will output an error
signal and synchronize in at most one wordlength.

5.2 Finite state recognizer for a binary comma-free code
with codewords not longer than 8 binary symbols

There are 24 codewords of length 8 and 6 codewords of
length 7 (Table 3).

Table 3.

0

1
2
3
4
5
6
7
8
9

10
11
12
13
1

2

4
6
6
8
8

11
13
11
12

1
-
2

1

_

3
5
-
7
9

10
12
-

11
12

1
12

-

G-sets

2
1 4 6 8 11
1 9 12
1 2 13
1
2

4
-

13
12 13

The set of codewords is represented by the regular
expression:

01 [(00 + 1(0 + l))(01 + 00(0 + 1))
+ ((0+ 1)0101 + 111(0+l)(0+ l))](0+ 1)

5.3 Finite state recognizer for a binary comma-free code
with codewords not longer than 10 binary symbols

There are 78 codewords of length 10 and 20 codewords
oflength9(Table4).

Table 4.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

0

2

4
6
6
8
8

11
13
11
15
17
19
15
20
21
19
19
_

22
1
1
-
2

1 G-sets

_ -

3
5
-
7
9

10

7

4
9
2

18
2

12 2
;

14
16
18 :
16 L
15
20
22
20 i

_ i

23 t
22
22

1
1 £
-

i 23

5
1

\

)

23
6 8 11 13 15 17 19 20 21 22

12 16 20 22 23
13 17 21 22
22
19
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This is to be compared with the maximal comma-free by Yoji.8 The finite state recognizer in Table 5 represents
code, with 99 binary codewords of length 10, presented the reversal of the code presented by Yoji.

TableS.

0 1 G-sets

1 - 2 2 64
2 3 4 1 4 6 8 10 13 15 17 20 22 24 26 33 35 40 41 43 44 47 49 50 51 52 53 55 57 58 59 61 62 63 64
3 5 6 1 7 11 14 18 23 25 28 31 34 37 39 46 48 53 54 56 59 60 62 63 64
4 7 8 1 2 8 15 24 26 35 43 49 53 55 59 61 62 64
5 9 10 1 12 19 25 29 36 38 45 53 62 64
6 11 - 1 2 13 17 20 41 47 50 52 58 59 62 63 64
7 12 13 1 3 14 25 37 39 48 54 60 62 63 64
8 14 15 1 2 4 15 26 49 53 59 62 64
9 16 17 1 21 30 38 42 62
10 18 - 1 2 22 43 51 57 62
11 19 20 1 3 23 28 31 59 60 62 64
12 21 22 1 5 25 38
13 23 24 1 2 6 17 50 52 59 62 64
14 25 17 1 3 7 25 39 60 62 64
15 25 26 1 2 4 8 26 59 62 64
16 27 - 1 32 41 54
17 28 - 1 2 6 13 33 44 51 52 55 64
18 29 - 1 3 34 54 64
19 30 - 1 5 36 45 64
20 31 - 1 2 6 41 64
21 32 33 9 38
22 34 35 2 10 51
23 36 - 1 3 11 28 60 64
24 37 - 1 2 4 55 64
25 38 - 1 3 5 7 12 14 38 39 64
26 39 - 1 2 4 8 15 64
27 40 40
28 - 41 3 11 23 46 56 63
29 42 43 5
30 41 44 9
31 45 41 3 11
32 - 40 16
33 46 43 17 51
34 - 47 3 18
35 48 49 4 61
36 - 43 5 19
37 - 50 3 7 63
38 - 51 5 9 12 21 25
39 - 52 3 7 14 25
40 53 53
41 - 53 6 16 20 58 63
42 54 55 9
43 54 53 10 61
44 56 53 17
45 - 57 5 19
46 53 58 28
47 59 53 6
48 - 59 7 63
49 60 59 8
50 60 55 6 13
51 - 61 10 17 22 33
52 - 55 6 13 17
53 62 62
54 - 62 16 18 63
55 63 62 17 24
56 62 63 28
57 64 62 10
58 62 - 41
59 64 64 11 13 15
60 - 64 11 14 23
61 63 - 35 43
62 1 1 -
63 1 - 2 8 37 41 48 54
64 - 1 17 18 19 20 23 24 25 26
1 - 2 -
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Table 6.

W-states

0 < i< k

S
1
2
3/
3/ +
3/ +
3*
3* +
3k+
S

1
2

1
2

0

1
-
3
3/ +
3/ +
3/ +
3k +
S
S
1

1
3
3
1

J.

1

_

2
3
3/
-
3/
3*
—
S
-

A. LLEWELLYN

(

+ 2

+ 3
+ 2

3-sets

1,2, (3/ ,3/+1,3/4
'(3/!3/+i'
(3/+2
(3/ \i<j<
(3/+ 1| /</<
(3/ + 2 | / < / <
S
1
-

-

- 2 | 0 < / < * +
jo </<* +
\0<j<k +

k+ 1},S
*+ 1}, 1
*+ 1}

1}
1}
1}

5.4 A class of fixed length binary comma-free codes of odd
length which approach the maximum for smaller
codeword lengths.

The virtue of this class of codes is the conciseness with
which they can be represented.

As a regular expression: xy (x or y) (xx or xy or yyf.
For example, with k = 2, there are 18 codewords of
length 7:

(xyxxxxx, xyxxyxx, xyxyyxx, xyyxxxx, xyyxyxx, xyyyyxx}
(xyxxxxy, xyxxyxy, xyxyyxy, xyyxxxy, xyyxyxy, xyyyyxy}
(xyxxxyy, xyxxyyy, xyxyyyy, xyyxxyy, xyyxyyy, xyyyyyy)

As a finite state recognizer, where S is the start/accept
state (see Table 6).

The proof of comma-freeness can be illustrated
graphically as follows:

1,2,

—x-*

—y

1
{3/,3/+l|O<y<Jfc+l},S

2
{3/ + 2|0<y<ifc+l}

—x,y-

In general:

for / < k
3i

—x
3i + 3

•—y-
3/+2

2\i<j<k +

—x,y-<
3i+3

, . . 3*
for, = * T-

3k + 1
—

3k+ 2

x--

Since there is no string such that S/H —string -* S/G, i.e.
the G-set corresponding to the accept state S is the null
set, the code, for any k is comma-free.

The sizes of the codes are:

k
length, 2k + 3
size
max size

1
5
6
6

2
7

18
18

3
9

54
56

4
11

162
186

5
13

486
630

6
15

1458
2182

7
17

4374
7710

8
19

13122
27594

5.5

The variable length code represented by the regular
expression:

01(0+ 11*) 00*1

is comma-free and represents an infinite set of binary
codewords, with length distribution: k codewords of
length {k + 3) for all k > 1. The finite state recognizer,
with the G-set justification of comma-freeness is:

1
2
3
4
5
6
1

0

2
-
4
6
6
6
2

1

_

3
5
-
5
1
-

G-sets

2 •••
4 6
1
-
_
-
null

6

The finite state recognizer can be readily converted into
a transducer which reads a binary sequence of comma-
free codewords and outputs the corresponding ordinal
integer x whenever a codeword is received. The parame-
ters x, y are external to the finite state model which calls
appropriate procedures to operate on x, y by means of
output signals (Table 7).

Table 7.

inputs 1

No action
pO SetxtoO
py SetytoO
p3 Output results x

States

Next state
function

Output
function

pE Error, not yet synchronized
p1 Set x to 1
p2 Replace f by / + 1,xbyx + /
pA Replace/ by y+ 1,xbyx + y+ 1

0
1
0
1

2
1

PE

CM
 CO

PE
PY

4
5

PO
P1

toco

P2
PE

to in

P2
P4

6
1

P2
P3
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FINITE STATE MODELS IN THE STUDY OF COMMA-FREE CODES

6. CONCLUSIONS

It has been demonstrated that comma-free codes can be
represented concisely and compactly as finite state
recognizers, providing, not only a conceptual alternative
to the more frequently used sets of symbol strings, but
also a sound theoretical base and a set of well developed
manipulation techniques. In particular, an efficient
algorithm to test for comma-freeness has been presented
and its use demonstrated for sets of binary comma-free
codes. These include codes with variable codeword
lengths, one of which has a greater number of codewords

than the theoretical maximum for the corresponding
fixed length code, and a code with an infinite number of
permissible codewords. The maximal comma-free code
with binary codewords of length 10, presented by Yoji,
has been represented as a finite state recognizer, the
reverse of the code being significantly more compact
than that originally given. By using finite state manipu-
lation techniques an alternative code has been developed
which has one less codeword (98 codewords compared
with the maximal 99) but which can be represented
considerably more compactly, requiring 23 states com-
pared with the original 64 states.
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