
On Scheduling with Ready Times to Minimize
Mean Flow Time

J. S. Deogun
Department of Computer Science, University of Nebraska, Lincoln, Nebraska 68588, USA

An algorithm for sequencing jobs on a single processor with the objective of minimizing the mean flow time, when the
jobs may have unequal ready times, is developed. The procedure involves partitioning the problem into subproblems,
and solving the subproblems by applying branch and bound techniques. Experimental evaluation shows that the
resulting procedure when the partitioning scheme is applied is more efficient than existing algorithms.

1. INTRODUCTION

The problem of sequencing n jobs on one processor or
machine has been studied extensively under different
assumptions and objective functions. One of the most
constraining assumptions many researchers have made
in their studies of sequencing problems is the equality of
the ready times of the jobs. The ready time of a job is the
time at which the job is released to the shop by some
external job generation process.1 It is the earliest time
that the job can be made available for the machine to
start processing it. In the simple problem of sequencing
n jobs with equal ready times and no imposed due dates
with the objective of minimizing the total flow time, it
has been shown1 that the Shortest Processing Time (SPT)
rule provides an optimal solution. According to this rule,
jobs are sequenced from beginning to end on the basis of
an ascending order of their processing times.

In general, it is conceivable that the job ready times
may not be identical. The inequality of the ready times
has been recognized in the literature on scheduling
problems.2"5 Dessouky and Deogun6 studied the se-
quencing problem with unequal ready times to minimize
mean flow time (or equivalently, to minimize mean
completion time), and presented an optimal branch and
bound scheduling procedure. Later, Bianco and
Ricciardelli7 presented a branch and bound algorithm
for the same problem with generalized objective function
to accommodate weighted completion times.

One approach to improve the efficiency of a branch
and bound procedure is to employ partitioning. A
procedure employing partitioning consists of a scheme
for dividing the problem into subproblems, a branch and
bound procedure for solving the subproblems, and a
method of combining the solutions of the subproblems to
form the solution of the original problem. In this paper
we develop such a partitioning scheme for the problem
considered by Dessouky and Deogun.6

2. PRELIMINARIES AND PROBLEM
FORMULATION

A set N of n jobs, N = {i |i= 1, 2, . . ., «}, is to be
processed, one job at a time, on a single processor
(machine). For each job i, the processing time,/?;, and the
ready time, r{, are given. The ready times ri are assumed

to be given as offsets from an origin, denoted by tQ, such
that th the point in time at which job / is ready, is given
by U = to + rt. Therefore, ready time r, implies that job i
arrives ri time units after t0. Ready times rt are
independent of processing times pt. Completion of all
jobs requires establishing a sequence S = (su s2,.. ., sn),
where sy is the index number of the job in position y.
When a job parameter or variable is identified by the
job's position in a given sequence rather than its index
number, the position is indicated as an underlined
subscript to the parameter or variable. Thus, r4 = rs ,
means the ready time of the job in position 4 in the
sequence considered.

Suppose that a sequence is constructed by adding one
job at a time, starting from position 1. At any point, we
have a partial sequence SK of a job set K^ N, SK = (slt
. . ., sk). The earliest start time of a job ieN, 7?,(SK) or
simply Rh and its earliest completion time, Q(SK) or
simply Q, are given by:

Ri = } max (ry,

[max fa,
,Cy_i)

Q)

i f /= 5,
if / = 5j

if/e£:= N-K

(la)
(lb)
(lc)

O| = J(j + p(-. ^ /

Note that, in eqn (2), if job / has been sequenced (that is,
ieSK), then Q denotes its actual completion time,
otherwise C, denotes the earliest possible completion
time based on SK.

Another concept used in this paper is that of idle
machine time, or simply idle time. The idle time of a job
/ in a sequence S(N), of a set of jobs, N, is the sum of all
the intervals, prior to starting / and measured from t0,
during which the machine is not engaged in the processing
of a job. Thus, the idle time, /j(5) or simply /,, of job i = sy
is given by:

^ , 0} (3)Ii = Ii = Itzl + max {ry -

where 70 = 0 and Co = f0- The idle time preceding sy as
measured from a zero origin, will be tQ + 1^. The idle
time gap between two consecutive jobs sy-i and sy is
given by:

7y_! y = /j, — 7j,_! = max {ry — Cy_ j , 0} (4)

The completion time of the job sy may thus be expressed
as:

, — C y _ [Iy- l,y + Py (5)

CCC-0010-4620/83/0026-0320 $04.50

3 2 0 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 I Wiley Heyden Ltd, 1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

ON SCHEDULING WITH READY TIMES TO MINIMIZE MEAN FLOW TIME

For any job i the flow time Ft and the waiting time Wt
are defined as follows: Fi = Ci — ri and Wi = Ri — ri.
For a sequence S, the total completion time C(S) =
£"= i Ct(S), the total flow time F(S) = £?= 1 HS), and the
total waiting time W(S) = £"= j H^(5). Conway, Maxwell
and Miller1 show that a sequence 5* which minimizes
COS) will also minimize F(S) and W(S). In addition, the
mean values, C, F and W, are also minimized. The
purpose of this paper is to present a procedure for
determining S* such that C(S*) = mins C(S). This prob-
lem, with equal or unequal ready times, iscommonly
called the n/l//Fproblem1 or simply the n/l/F problem.6

3. THE OVERALL APPROACH

The proposed procedure consists of two phases: Phase
I—Partitioning, and Phase II—Branch and Bound
procedure. In Phase I, the problem is set up and
partitioned into subproblems. The optimal subproblems
are identified, and Phase I initializes Phase II for every
non-optimal subproblem. Thus, Phase I also provides the
overall framework for the algorithm. The overall Phase I
approach is flow-charted in Fig. 1. Phase II applies
implicit enumeration techniques to find the optimal
solution for each individual subproblem. The implicit
enumeration scheme involves a branch and bound search
conducted along the branches of a tree in which a node
at level k represents a partial sequence SK of a set K of k
jobs. For each node SK, we compute a lower bound
C(5* | SK) and an upper bound C(S* | S*) on C(S* 1£*),
the minimal total completion time of any sequence
starting with SK, that is, conditional on SK.

A node at level k + 1 is formed by selecting a job
ieK = N — K and adding it to SK in position k + 1 to

SETUP
JOB SET

PARAMETERS

PARTRITION JOB SET
N=Nbb=l,2,...,B

<

b=b+l

NO ^s

b=l

!K
OPTIMAL?

\JTES

| N U

CALL
BAB-SPT
FOR Nb

A
b=B

x<,

Figure 1. The overall approach.

form (SK, i). At each iteration, the node being expanded
is called the current node and has the current lowest lower
bound. A closed (fathomed) node is one whose correspond-
ing partial sequence has been found dominated, and,
hence, is eliminated from consideration. Dominance is
tested between nodes generated from the same parent. A
partial sequence (SK, j) is dominated if another partial
sequence (SK, i) exists and_C(S* | (SK,i)) < C(S* \ (SK,j));
it is strictly dominated if C(S* | (SK, /)) < C(S* \ (SK, /)).
We apply a number of tests (pruning rules or elimination
criteria) to identify dominated nodes. The set D contains
all active nodes ordered by non-decreasing lower bounds,
with the current node placed at its beginning. An active
node is one which has not been found dominated.

4. PARTITIONING, OPTIMALITY AND
DOMINANCE PROPERTIES

In this section, we present relevant partitioning, optimal-
ity and dominance properties of the n/l/F problem. We
state the properties as theorems with proofs given in the
appendix. These properties are useful in developing
partitioning and branch and bound procedures. In
Section 4.1 theorems relevant to partitioning procedure
are presented and a partitioning scheme is described.
Properties relevant to the development of the branch and
bound procedure: computation of lower bound, testing a
sequence for optimality, and elimination criteria, are
presented in Section 4.2.

4.1 Partitioning procedure

In a sequence S, define a block b £ S as a set of
consecutive jobs with the first job su having ru > CU_!(S)
and all other jobs swe b having r^ < Ci!Lzii(5).~

Theorem 1. Given a set N of n jobs and an SPT sequence
of iV, SF, the completion time of the last job in S is an
upper bound on the completion time of S*, the optimal
sequence of A7.

Following Ref. 7, a sequencing problem can be
partitioned into two problems if a partition (Nt, N2) of
the set N exists such that if S%, S^t, and S%2 are optimal
sequences with respect to mean flow time F on AT, Nu

and N2, respectively, then S% = S*t S%2. The following
theorem is immediate.

Theorem 2. If 5V = (SK, S^) is a sequence of a job set N,
where K and K = N — K are two disjoint subsets of N,
and SK and SK are such that: (i) CS(5K) > Ck(S$), that is
the completion time of the last job in SK is an upper
bound on the completion time of the last job in the
optimal sequence 5J, and that (ii) rh > Q(5K), where
rh = minxeSKrx, then AT can be partitioned into K and K
such that an optimal sequence of N is obtained by
optimizing K and K separately.

Corollary 2.1. In an SPT sequence S = S^, if a block b
exists such that the first job in b, sh, has r6 = min,,.^^
/•£,then Af can be partitioned into two disjoint subsets: K,
containing all jobs preceding sh, and K= N — K, such
that anpptimal sequence of A îs obtained by optimizing
K and K separately.

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 321

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

J. S. DEOGUN

Theorem 3. A sufficient condition for the optimality of a
block is that the first job in the block has the smallest
ready time of any job in the block, and that all jobs in the
block are sequenced according to SPT.

The above theorems lead to the following partitioning
scheme:

Partitioning scheme. The following procedure is applied to
SN to partition the job set into blocks and identify optimal
blocks:

(1) In a forward pass, identify each job which starts a
block.

(2) In a backward pass, calculate rm> y = m.mySxStt r£ for
each sy, 1 < y < n and classify each block according
to the status of its first job, say h, as follows:

(a) Optimal block: when rh = rm> h. This follows from
Theorem 3.

(b) Non-optimal block: when rh > rm> h.

4.2 Development of branch and bound procedure

4.2.1 Lower bound computation. A lower bound on the value
of an objective function, in a problem of minimizing an
objective function under constraints, is given by the
minimum value of the objective function of a modified
problem in which some or all of the constraints are
relaxed. It has been shown1 that Shortest Processing
Time (SPT) rule provides an optimal solution for the
problem under consideration if inequality of the ready
times is relaxed to make all jobs available at the same
time. The approach followed in this paper defines the

'modified problem by constructing a relaxed job set
N' = K KJ_K', where K' is identical to K except that r, = 0
for ally e K'. The conditional optimal sequence is obtained
by ordering K' according to the SPT rule, yielding S%. =
Sg-, where the superscript P indicates that processing
time is the sequencing criterion. Therefore,

(6)

(7)

For each y satisfying k + 1 <y <n,

Cy(S') = + t Px
x=k+l

From eqns (6) and (7) and the definition of C(S),

C(S\SK) = Cz+ (Ck+ £ px
y=k+l V x=k+l

or

(n-k)Ck (8)
y=l

Consider now a job i = sheK', and suppose that / is
pulled from its position h > k and placed in position k +
1, with all jobs 5ye5g. preceding i (i.e. k < y < h) shifted
one position later. As / is placed in the new position, it
becomes part of the front sequence (SK, /), and its original
ready time r, is restored to it. The earliest start time
RI(SK) = Rh(Sid and the earliest completion time
Q(SK) = Cf,(SK) are given by eqns (1) and (2). A lower
bound on the new partial sequence similar to eqn (8) may

be derived as follows, where the position subscripts refer

,i»= £ ct
y=l

/ l - l

y=k+l

+ I (0(5*)+
x=k+l

or

C{S\(SK, 0) = £ q + (n - Ar)C,(SK) - (« - h)Pi

+ i i p*- i h
y=k+\ x=k+l y=k+l

From eqns (8) and (9) it can be shown that
Q(S\(SK, 0) = C(S\SK) + (n - WQCSx) - Q)

(10)

Substituting eqn (5) in eqn (10) we obtain the
expression:

as\{sK,0) = as\sK) + (n-k)ikti + (h-k- I)A

Pa

which is a computationally efficient expression and allows
us to compute a new lower bound corresponding to each
job i that is eligible for placement in position k + 1 after

4.2.2 Optimality test. The following test is applied to the
initial SPT sequence Sjj: If in every block the first job
has the smallest ready time and all jobs follow an SPT
order, then the sequence is optimal.

Application of this test will obviate the need for
performing the branch and bound procedure whenever
the sequence passes the test. This optimality test is based
on the following lemma:

Lemma 1. A sufficient condition for the optimality of a
sequence is that in every block the first job has the
smallest ready time of any job in the block, and that all
jobs in the block are sequenced according to SPT.

4.2.3 Elimination criteria. The elimination criteria em-
ployed in the branch and bound procedure are based on
the dominance properties presented below. Theorems 4-
6 are stated here for completeness, their proofs can be
found in Ref. 6. The proof of Theorem 7 is given in
Appendix 1. We will identify R, and Q by the sequence
in question whenever it is not clear from the context.

Theorem 4. Given a job set N and a partial sequence SK,
K <= N, if a job 16 K = JV - K has pt < p,, all ye K, and a
job heK has R^SR) > R,{SK), then i dominates h in
position k + 1. If Rh(SK) > R^SK), then (SK, i) strictly
dominates (SK, h).

ZZZ THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

ON SCHEDULING WITH READY TIMES TO MINIMIZE MEAN FLOW TIME

Corollary 4.1. If a job set JVcan be divided into two subsets
Ni and N2 such that for every /eiV, andye N2, rt < /j and
Pi < Pj, then an optimal solution exists in which Nt
precedes iV2.

Theorem 5. Consider a job set N of n jobs, and a partial
sequence SK of k)6bs,_Kc: N, and let job isR. have
Q(S,d < C/5J, all jeK. A partial sequence (SK, j) is
strictly dominated if r, > C.OSK).

Theorem 6. Given SK, K <z N, and two jobs UjeK, if p} <
Pi and CJ(SK) > C,{Sid then (SK, i) dominates (SK,j).

Theorem 7. Given 5 = (SK, S£) and a job ieK in position
h{h > k) such that C{{S^ - Q > Ih=x - 4 , (SK, i) domi-
nates (SK, j) for any ye £ if pt < pj and R&S'K) < /?/£*).

The implication of the condition C[— C4 > /,,_! — /fc
is that when / is placed in position k + 1, no idle time will
exist between / and s^-^. Theorem 7 stated above is
similar to corollary 2 (theorem 5) of Bianco and
Ricciardelli.7 However, neither reduces to the other by
simple substitution of general as opposed to equal
weights.

5. THE ALGORITHM

Phase I (Partitioning)

A. Initialization

(1) Let # be the set of n jobs {i\i = 1, 2, . . ., n).
Define values r{ and pt for all / e N.

(2) Arrange the job set N according to SPT and let

B. Partitioning and optimality test

(3) Partition job set A' into B blocks, and let
N={Nb\b=l,2,...,B}.

(4) Apply the optimality test of Section 4.2.2. If the
sequence is optimal, go to step (9), otherwise,
proceed to step (5).

(5) SetZ>=l.
(6) If Nb is a non-optimal block go to step (7),

otherwise, increment b = b + 1. If b > B, go to
step (9), otherwise, repeat step (6).

(7) Initialize Phase II to optimize Nb.
(8) Increment b = b+ 1, and go to step (6).

C. Computation of optimal values

(9) Let S* denote the resulting optimal sequence.
Compute the optimal completion time COS*) and
the optimal flow time F{S*).

Phase II (Branch and Bound)

This phase assumes that a job set Nb of nb jobs and their
ready times r, and processing times p, for all ieNb have
been passed to it by Phase I.

A. Initialization

(1) Set k = 0, K = 0, SK = 0 and K=Nb-K. Initial-
ize Ri(SJ<) = ri for all ieNb. Set COS*), the
completion time of the partial sequence SK, at
zero.

(2) As jobs in Nb are already sequenced according to
SPT, let Sb = (SK, S£). Compute C(Sb) = £&,
C,(5b) and set the upper bound C(S?) = C(Sb).

(3) Define a relaxed set ÂJ, such that r'x = 0 and
Px = Px, all xeK and set O,St) = C(Sb), where
Sb. = (SK,Sg),andsetZ> = 0.

B. Branching and pruning

(4) Let the eligible set E = K. Compute
Cm(Sid = mmxeK CX(SK) and eliminate ally from
E for which /) > Cm(5x) (Theorem 5).

(5) Compute the lower bound C(Sb \ (SK, /)) from eqn
(12) for all 1 e E, and eliminate / from E if its lower
bound violates the upper bound constraint.

(6) If eE and = min, Rj (S*), jeE,
Ethen eliminate all jobs from E except s!i±± and

go to step (8), otherwise, proceed to step (7)
(Theorem 4).

(7) Eliminate all jobs; from E, if for 1, jeE, Pj < pt
and CJ(SK) > Q(SK) (Theorem 6).

(8) Eliminate ally from E, if for i, jeK, p{ < pj, i.e. /
precedes j in 5 a R,(5K) < Rj(SK) and C,(5X) -
Ck(Sid S Ih-x — h, where Sf, = / (Theorem 7).

(9) For each ieE, compute the total completion
time C(Sb | (SK, (j), and update the upper bound
C(S*) as follows: C(5*) = min {£(£*), min(SK 0
C(Sb\(SK,i)),ieE}.

D. Updating set D

(10) Add node (SK, i) for each ieE to the set D,
except those which violate upper bound con-
straints, that is, for which C(5*|(5K, /)) >

Remove the node corresponding to SK from D.

E. Determination of current node

(11) Identify the node in D that has the lowest lower
bound. Let SQ be this node. Set K = Q, K = Nb -
K and, if K = 0 or LB = UB, return to Phase I,
otherwise let Sg = Sg.

(12) Update Ri(SK) = max{ri, C{SK)} and
H) + Pi for all ie K. Go to step (4).

6. AN EXAMPLE

In this section the procedure is illustrated by the following
example. The example is specially constructed to dem-
onstrate most of the features of the procedure in one
example. For simplicity the given set of jobs is assumed
to be in SPT order.

Detailed computation up to the first iteration of phase
II for block No. 3 is given below, where numbers in
parentheses identify step number and phase of the SPT
algorithm, e.g. (I, 3) denoted step (3) in phase I.

(I, 1) n = 20, and values of r; and/>, for i = 1, 2,..., 20 are
given in Table 1.

(I, 2) The jobs are already in an SPT order.
(I, 3) The job set iV is partitioned into 6 blocks as shown

in Table 2. Beginnings of blocks are marked by <—
in Table 1.

(I, 4) The optimality test of Section 4.2.2 fails, therefore,
proceed to step (I, 5).

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 3 2 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

J. S. DEOGUN

Table

Job
index
i

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

17
18
19
20

1.

Ready
time
'i

0
2
6

16

17
73
60
40

37
90

190
107

212
337
218
467

470
550
551
586

Processing
time
Pi

3
5
7
8

11
13
18
20

29
35
40
43

57
60
68
80

93
93
94
98

Earliest start
time
Hi

0
3
8

16

24
73
86

104

124
153
190
230

273
337
397
467

547
640
733
827

Earliest
completion
time
C,

3
8

15
24

35
86

104
124

153
188
230
273

330
397
465
547

640
733
827
925

New
block

<_

« -

«_

<_

4—

(II, 12) Locate the node in D which has the lowest lower
bound, k = l,K=(8),K = (6,7,9,10), LB = 499
and UB = 501. Neither # = 0, nor LB = UB.

(II, 13) RgiSx) = 73, R^SK) = 60, RJiS^ = 60 andg
Rs(SK) = 90. C^SK) = 86, (^(S*) = 78,
C4(5x) = 80, and CS(SK) = 115, and go to step
(II, 4).

This completes the first iteration in Phase II for block
A 3̂. The complete tree of optimal solutions generated is
shown in Fig. 2. After Â 3 has been optimized, the control
returns to step (8) in Phase I. Block N4 is again optimal,
so the procedure moves to block iV5, which is not optimal,
and thus Phase II is again initialized. The tree of solutions
generated is shown in Fig. 3. Block N6, the last block, is
again optimal, so the solution procedure is terminated.
The optimal sequence is, therefore, (1, 2, 3, 4, 5, 8, 7, 6,
9, 10, 11, 12, 13, 15, 14, 16, 17, 18, 19, 20) and minimum
value of total completion time is 5950.

= (6,7,8,9,10)
E = (8,9)

K M9)

(1,5) Set 6 = 1.
(I, 6) Nt is optimal, therefore, increment b = 2, and

repeat step (1,6).
(I, 6) N2 is optimal, therefore, b = 3, and repeat step (I,

6).
(I, 6) JV3 = (6, 7, 8, 9, 10) is non-optimal, therefore

initialize Phase II.
(II, 1) Set k = 0, K = 0, SK = 0 and K = (6, 7, 8, 9,

10). Set C(SK) = 0, RJXSK) = 73, R^S*) = 60,
MSK) = 40, R±(SK) = 37 and Rs(SK) = 90.

(II, 2) S = S£ = (6, 7, 8,9,10), and C(§) = 86 + 104 +
124+153 + 188 = 655.

(II, 3) C(5*) = 13 + 31 + 51 + 80 + 115 = 290.
(11,4) E=(6, 7, 8, 9, 10) and C2(S*) = 60 is the

minimum. Because R^SR) = 73, RgiSx) = 60,
/?^(5K) = 90 are all > 60, therefore, removing
jobs 6, 7, and 8 from E, E = (8, 9).

(II, 5) C(S* | (SK, 8)) = 499 and C(S* \ (SK, 9)) = 539.
(II, 6) Pruning rule No. 1 does not apply.
(II, 7) Pruning rule No. 2 does not apply.
(II, 8) Pruning rule No. 4 does not apply.
(II, 9) C(S | (SK, 8)) = 499 and C(51 (SK, 9)) = 539.
(II, 10) C(S*) = min (655, 504, 539) = 504.
(II, 11) Only the node corresponding to job 8 is added

to the set D, because C(S* | (SK, 9)) = 539 >
C(S*) = 504.

Table 2.

JOB 7 DOMINATES JOB 6
(RULE 3) AND JOB 9 / ,
(RULE 4) K=(8)

K =(6,7,9,10)
E = (6,7,9)

, o .

LB=539
K"= (6,7,8,10.)

JOB 6 DOMINATES JOB 9 AND JOB 10 (RULE I)

K = (8,7,6) LB = 504

K = (9,10) UB = 5O4

(AS LB = UB, THEREFORE, PHASE I I TERMINATES.)

Figure 2.

K = <£ LB = I28

K = (14,15) UB = 862

E= (14,15)

Block
number

1
2
3
4
5
6

Type

Optimal
Optimal
Non-optimal
Optimal
Non-optimal
Optimal

Job subset

1
4
6

11
14
16

2
5
7

12
15
17

3

8
13

18

10

19 20

K= (15) LB= 633

K = (I4) UB= 683

E= (14)

4) K= (15,14) LB=683

E = 6 UB = 683

Figure 3.

3 2 4 THE COMPUTER JOURNAL. VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

ON SCHEDULING WITH READY TIMES TO MINIMIZE MEAN FLOW TIME

7. EXPERIMENTAL EVALUATION

The algorithm was programmed and tested on a Cyber
175, using a FORTRAN G compiler. Two tests were
conducted. The first test consisted of 220 job sets
(problems), generated randomly from independent prob-
ability distributions of r, and pt. Four distributions for r(
and eleven forp, were combined to produce 44 distribution
pairs, and each distribution pair used to generate five
problems. Each problem in this test consisted of 20 jobs.
For the second test one job set was generated from each
of the forty-four distribution pairs, except that each
problem in this test consisted of 50 jobs. The probability
distributions were chosen to be uniform to avoid biasing
particular values within their ranges, and to eliminate
the need for truncation. They are specified by the upper
and lower limits of their ranges. The experimental design
and the parameters used to generate problem sets for
both tests conducted on the algorithm presented in this
paper are exactly the same as those used by Dessouky
and Deogun.6 Thus, the two algorithms, Dessouky and
Deogun's (existing) algorithm and the (new) algorithm
presented in this paper, were tested on the same job sets
using the same machine, which makes the comparison of
the two algorithms objective.

For the new algorithm, Tables A. 1 and A.2 in Appendix
2 show detailed experimental results for the first and
second tests, respectively. Detailed experimental results
for the existing algorithm can be found in Ref. 6. Table 3
summarizes the comparative performance of the existing
and the new algorithms.

Table 3.

Test
number

1

2

Limit on
computation
time

2.0 s

none

none

Performance
measure

No. of
problems
solved
Computation
time

Mean
Max

Computation
time

Mean
Max

Computation
time

Mean
Max

Existing
algorithm

217

0.057
1.880

0.112
4.610

0.960
8.470

New
algorithm

217

0.049
1.830

0.083
3.470

0.804
7.690

Percentage
improvement

14.8
2.6

25.8
24

16.2
9

As evident from Table 3 the new algorithm presented
here is more efficient as compared to the existing
algorithm. Mean computation time for test one showed
14.8% improvement under a two-second limit and 25.8%
improvement under no time limit. For test two, mean
computation time, for all problems, showed 16.2%
improvement. Though the new method is more efficient,
the storage requirements, as evident from the number of
nodes generated, are higher for the new method as
compared to the existing method. Mean and maximum
numbers of nodes generated for both existing and new
algorithms are given in Table 4.

The effectiveness of the partitioning method employed
is demonstrated by the fact that the maximum and
average number of partitions generated by the procedure
were 4 and 1.4 for the first test and 6 and 1.8 for the
second test. As no partitioning scheme can be defined for
the algorithm presented by Dessouky and Deogun,6 we
note the possibility that problem partitioning may not
only depend on the structure of the problem but also on
the structure of the procedure employed.

Table 4.

Test number

1 mean
max

2 mean
max

Number of nodes generated

Existing
algorithm

13
514

47
540

New
algorithm

34
899

81
783

8. CONCLUSIONS AND RECOMMENDATIONS

This paper presents a procedure for solving the n/l/F
problem with unequal ready times. The procedure
involves partitioning the problem into subproblems, and
solving the subproblems by applying a branch and bound
technique. Experimental results obtained are compared
to those obtained by Dessouky and Deogun6 for the same
problem. The comparative performance analysis shows
that the new algorithm presented here may be 16 to 25%
better depending upon the size of the problem and the
distributions from which problem sets are generated.
However, storage requirements for the new algorithm
may be higher as compared to those of the existing
algorithm. Therefore, the existing method is recom-
mended where computer storage is a critical factor.
However, if computational efficiency is the consideration,
the new method should be the choice.

REFERENCES

1. R. Conway, W. Maxwell and L. W. Miller, Theory of Scheduling,
Addison-Wesley, Reading, Massachusetts (1967).

2. S. P. Bansal, Minimizing the sum of completion times of n jobs
over m machines in a flowshop—a branch and bound approach.
A/IE Transactions 9 (3), 306-311 (1977).

3. P. Bratley, M. Florian and P. Robillard, On scheduling with earliest
start and due dates with application to computing bounds for the
(n/m/G/Fmax) problem. Naval Research Logistics Quarterly 20,
57-67(1973).

4. M. I. Dessouky and C. R. Mergenthaler, The one-machine
sequencing problem with early starts and due dates. AIIE
Transactions* (3),214-222 (1972).

5. J. K. Lenstra, A. H. R. Rinnooy Kan and P. Brucker, Complexity
of machine scheduling problems. Annals of Discrete Mathematics
1 (4), 343-362 (1977).

6. M.I. Dessouky and J. S. Deogun, Sequencing jobs with unequal
ready times to minimize mean flow time. SIAM Journal on
Computing 10 (1), 192-202 (1981).

7. L. Bianco and S. Ricciardelli, Scheduling of a single machine to
minimize total weighted completion time subject to release dates.
Naval Research L ogistics Quarterly 29,151 -167 (1982).

Received November 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 325

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

J. S. DEOGUN

APPENDIX 1. PROOFS OF THEOREMS

Proof of Theorem 1

The theorem states that C£ > Q . Note that for any
sequence, the idle time preceding job sk, Ik, is given by

* Si Y L y H ~ i hh = Ct - Since =-H-i~pi, the state-
ment is"equivalent to 7£ > I*. The theorem is proved by
induction. For position 1, lf< Ip otherwise rf > rf and
from theorem 4, sf dominates sf in position 1. Assume
that 7* < IP; it will be shown that 7?+^ < Ip+i.

Two possibilities exist: (i) 7?+j_ = 7?. This implies
It±± = IZ<IP<IP+x. (H) It+x > If.Jhil implies Ttf+j,

Locate within the set of jobs J = {j\j e (S£, sf+i)> j 4
(S%, 5?+ 0}, a job /such that A = minjejPj. Note that since
ie (S£, Jfc+1), rf > rl+j_ and from the SPT property p, < pi,
k + 1 < x < n. Therefore, 7?j(S£) = max {rh C%) < r*+i
< 7 ? ^ , and from Theorem 4, / strictly dominates s*+l
in position k + 1 in S*, contradicting the assumption of
optimality of S*. Therefore, 7?f+, < Rp +,. Since for the
SPT property

K k

— R*+1 —

By induction 7* < IP, and C* < Cj. I

Proof of Corollary 2.1

Let rs = mint &x&y rx. From eqn (1) and the definition of
a block, rh > C^-^S). Denote the sequence of K in 5 by
SK and its optimal sequence by S*. Theorem 1 states that
Ch-^iSZ) < Cf^iSx), thus Ch-^SZ) < rh. Therefore, the
conditions of Theorem 2 are satisfied. |

Proof of Theorem 3

In any block be S, in the given sequence, the first job has
the smallest r, and Pj of any ye B, hence from Theorem 4
it is optimally placed in its position within the block.
From Theorem 4, the same is true for each succeeding
job i in b, since / will have the smallest Rt and pt of the
remaining jobs. Therefore, jobs are optimally placed
within b. From the definition of a block and the conditions

on the ready times stated in the theorem, the ready time
of any job in a block will be greater than or equal to the
completion time of any job in a preceding block.
Therefore, according to Theorem 5 a job in any block is
not eligible for a position in a preceding block and no job
shifts between blocks in 5 will reduce the total completion
time of S. Since shifts within and between blocks will not
improve 5, S is optimal. |

Proof of Lemma 1

Lemma 1 follows directly from corollary 2.1 and Theorem
3. |

Proof of Theorem 7

From the statement of the theorem Cj(SK) = /
Pj > RiiSt) + Pi — Q(SK), which means that the condition
on idle times also applies toy. Lety = sx in S, where x >
h. Consider the sequence S\ wherey is placed in position
k + 1 and all syeS, k+l<y<x— 1 are shifted one
position later. The jobs now in positions k + 2 to x,
including i, are ordered according to SPT and each one
starts at the completion of the preceding one. Therefore,
each one is ordered optimally, conditional on the
preceding sequence. Consequently, an optimal sequence
conditional on (SK,j), say Sj*, will contain the first x jobs
in SJ as a front sequence with i in position h + 1. Now
switch / and/ to form 5'. The inequality Ci(SK) < C/5/j)
implies that 0^+^(5') < Cfe±i(SO. Furthermore, since all
sy, k + 2 < y < h, are identical in both S' and Sj, and no
idle time gaps exist between sk+1 and sh in S', Cj,(S') <
Ci,(5

J>), all y such that k + 2 < y < h. Since the partial
sequence of jobs between positions k + 1 and h + 1
inclusive is the same in S' and SJ*, except that the first
and last jobs are switched, and since R^^S') <,
RkjLi{Sj') and no gaps exist within any partial sequence,
C^+iiS1) < C^S-*) . From this and the fact that the set
of jobs succeeding sh+, is the same in both S' and Sj*, we
conclude that

y=h+2 y=h+2

where S'* is the optimal sequence conditional on a front
sequence S\ Therefore, C(S1*) <, (Sj*), which by defini-
tion means that (SK, i) dominates (SK,j). |

3 2 6 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

ON SCHEDULING WITH READY TIMES TO MINIMIZE MEAN FLOW TIME

APPENDIX 2

Tables A.1 and A.2 show detailed experimental results for the first
and second tests, respectively.

Table A.I. Summary of results: branch and bound—SPT procedure for njl/F

Range of ready
times

Range of processing times

1-25 26-50 1-75 51-75 1-125 76-100 1-175 101-125 1-225 126-150 1-275

0-200 23 5 19 4 3 0 30 4 1 0 4 1 2 0 2 0 1 0 3 0
******** 12 2 36 8
155 46 3 1 148 37
217 54 6 2 15 4
112 37 4 1 25 4
Min 37 Min 1 Min 4
Max 54 Max 5 Max 37 Max 1 Max 12 Max 1 Max 3 Max 1 Max 3 Max 0 Max 1 Max 54

Mean 45 Mean 2 Mean 11 Mean 0 Mean 5 Mean 0 Mean 1 Mean 0 Mean 1 Mean 0 Mean 0 Mean 4

2
2
2
4
n

0
1
0
1
0

76
9
5

38
Min

12
2
1
6
1

1
1
1
2

Min

1
0
0
0
0

22
6

CJ
l

1
Min

3
1
0
1
0

2
2
1
1

Min

0
1
0
1
0

27
6
2
9

Min

3
1
0
2
0

1
1
1
1

Min

0
0
0
0
0

4
5
1
1

Min

1
1
0
0
0 Min

25-175

50-150

75-175

280
295
171
130

272
Min

Max
Mean

215
12
36

7
7

Min
Max

Mean

249
301

240
20

Min
Max
Mean

Min
Max

Mean

r

64
71
21
23

175
21

175
70

48
2
8
1
1
1

48
12

66
183

67
3
3

183
75

1
183
51

4
6
2

CJ
l

3
Min
Max

Mean

2
2
1
9
3

Min
Max

Mean

1
4
o
o
3
2

Min
Max

Mean

Min
Max

Mean

1
1
1
1
1
1
1
1

0
0
1
1
0
0
1
0

0
1
1
I

0
1
0
1
0

0

CJ
l

1

dumber of Jobs

14
49
25
10
11

Min
Max

Mean

7
31

6
19
8

Min
Max

Mean

8
8
c
o
9
9

Min
Max

Mean

Min
Max

Mean

; = 20

2
8
4
2
1
1
8
3

1
5
1
2
1
1

CJ
l

2

2
1

1
2
1
2
1

1
37

4

2
2
3
1
1

Min
Max

Mean

1
2
1
2
1

Min
Max

Mean

1
0
A

1
1

Min
Max

Mean

Min
Max

Mean

Minimum computation time
Maximum computation time
Mean computation time
Number exceeding J second
Number exceeding 1 second
Maximum number of partitions

1
1
1
0
0
0
1
0

1
0
1
0
1
0
1
0

0
0
n

1
0
0
1
0

0
1
0

=
=
=
=
=

52
6
3
8

CJ
l

Min
Max

Mean

3
2
2
4
4

Min
Max

Mean

12
7
A

CJ
l

J

3
Min
Max

Mean

Min
Max

Mean

0
183

4
12
9
4

7
1
1
2
0
0
7
2

1
0
1
1
0
0
1
0

1
1
n
\j

1
1
0
1
0

0
12

1

2
2
2
1
1

Min
Max

Mean

1
0
2
1
1

Min
Max

Mean

1
0
1
i

1
1

Min
Max

Mean

Min
Max

Mean

0
1
0
0
0
0
1
0

0
0
0
0
0
0
0
0

0
1
p.

1
0
0
1
0

0
1
0

7
7
4
4
4

Min
Max

Mean

1
3
2
3
2

Min
Max

Mean

2
13

i
•

4
3

Min
Max

Mean

Min
Max

Mean

1
1
1
1
0
0
1
0

0
0
0
1
1
0
1
0

1
3
nV
1
1
0
3
1

0
3
0

1
2
1
1
1

Min
Max

Mean

1
1
1
0
2

Min
Max

Mean

1
1

1
1

Min
Max

Mean

Min
Max

Mean

0
1
0
0
0
0
1
0

0
1
0
0
0
0
1
0

0
1
n

0
0
0
1
0

0
1
0

8
3
2
2

10
Min
Max

Mean

3
3
1
1

CJ
l

Min
Max

Mean

1
1
2
1
2

Min
Max

Mean

Min
Max

Mean

Minimum number of iterations
Maximum number of iterations
Average number of iterations

1
0
0
1
2
0
2
0

1
0
1
0
1
0
1
0

0
0
n\j
0
0
0
0
0

0
3
0

1
1
2
1
1

Min
Max

Mean

1
1
1
0
1

Min
Max

Mean

1
1

1
1

Min
Max

Mean

Min
Max

Mean

=
=
=

Minimum number of nodes generated =
Maximum number of nodes generated =
Average number of nodes generated =

0
0
1
0
0
0
1
0

0
0
0
1
0
0
1
0

1
0
o
0
1
0
1
0

0
1
0

8
3
1
2

14
Min
Max

Mean

3
3
1
1
1

Min
Max

Mean

2
2
c

2
2

Min
Max

Mean

Min
Max

Mean

0
301

15
1

899
34

1
1
0
0
2
0
2
0

1
1
0
0
1
0
1
0

0
0
1
1

1
0
0
1
0

0
2
0

Min
Max

Mean

Min
Max

Mean

Min
Max

Mean

0
175

7

0
48

1

0
183

6

Average number of partitions = 1.4
Note: For each box, the first column is the number of iterations and the second column is computer time in centiseconds. The 's in columns one
and two imply that the corresponding problem was not solved in 2 seconds.

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 327

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

J. S. DEOGUN

Table A.2.

Range of ready
times

0-200

25-175

50-150

75-175

Summary of results: branch and bound—SPT procedure for N/1IF(5O jobs in each set)

Range of processing times

273

482

267

427

Min
Max

Mean

1-25 26-50

453 7

632 17

374 1

769 2

374
769
557

82

37

5

25

5
82
37

37

33

26

18

1-75

128

41

54

57

41
128
70

51-75

2

1

4

2

4

6

15

17

4
17
10

1-125

45 61

28 57

15 35

17 21

21
61
43

76-100

2 9

7 15

18 37

0 4

4
37
18

1-175

4 39

13 27

6 17

10 53

17
53
34

101-125

1 5

2 17

4 21

17 37

5
37
20

1-125

4 17

17 63

11 43

5 21

17
63
36

126-150

2 39

3 16

5 37

11 23

16
39
28

1-275

23 48

7 21

4 27

13 21

21
48
29

Number of jobs = 50
Minimum computation time
Minimum computation time
Mean computation time =
Number exceeding i second =
Number exceeding 1 second =
Maximum number of partitions =
Average number of partitions =

= 4
= 769
= 80
= 12
= 5

6
1.8

Note: For each range of processing time, the first column is the number of iterations and the second column is computer time in centiseconds.
The statistics, Min, Max and Mean are shown for computer time only.

Minimum number of iterations - 0
Maximum number of iterations = 482
Average number of iterations = 43
Minimum number of nodes generated = 1
Maximum number of nodes generated = 783
Average number of nodes generated = 81

328 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/320/377420 by guest on 10 April 2024

