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We describe a Fortran to Ada converter that uses a standard intermediate tree representation of the program being
converted. Points of some general interest include overall comments on high level language conversion and the selection
of an intermediate representation as well as the way the design of this system was influenced by that of the interactive
improvement system for which it is ultimately to provide components. Finally, the existing system and the conversions
applied to some selected Fortran constructs are described in detail.

1. INTRODUCTION

The present system for the conversion of Fortran
programs to Ada was initially developed on a mainframe
computer, but is intended to provide components for the
interactive Bath improvement system (IBIS), planned
for use on Perq workstations. In describing the work, the
selection of an intermediate representation for programs
is considered before introducing the overall design of
IBIS. Subsequent detailed discussion of the Fortran/Ada
Converter addresses strategic issues arising from its
eventual use within IBIS as well as details of the
processing of selected Fortran constructs.

2. GENERAL BACKGROUND

In general, automatic high-level language conversion is
not necessarily a viable way of introducing a change in
working practices; in specific cases (for example, Ref. 1)
it may be technically infeasible if the languages being
converted are too radically different, or commercially
unattractive if the majority of the users are likely, in any
case, to rewrite most of their programs to enhanced
specifications. Although there appears to be some
potential for Fortran/Ada conversion of such specialized
software as portable numerical libraries, the problem
with such conversions is frequently that the generated
programs are not sufficiently idiomatic in their use of the
target language to make subsequent maintenance of the
target language version an attractive proposition.

The present system initiates an attempt to improve
this situation by use of an interactive program improve-
ment system designed for a personal workstation.
Existing language conversion systems (e.g. Refs 2-4) all
use some combination of line-by-line conversion, pro-
gram transformation and prettyprinting, but these differ-
ent functions are frequently thoroughly intertwined. To
allow flexibility in the choice of transformations applied
to any particular program, these functions are quite
deliberately separated in the present system by using a
standard internal tree representation of the software
being converted. This separation has the great advantage
that the different transformations applied to programs
being converted can be implemented as a collection of

* Ada is a registered trademark of the US Government, Ada Joint
Program Office.

free-standing tools. The transformations to be applied to
a particular piece of software can then be chosen notina
standard way, but under the control of a programmer
using the system interactively. Thus we are concerned
with the production not of a monolithic converter but
rather with a collection of many small tools communicat-
ing through a common internal representation of pro-
grams, in accordance with the style of modern toolsets.>*

3. SELECTION OF AN INTERFACE

As in other projects involving many free-standing tools,
and in program transformation systems in general, the
viability of the whole project depends crucially on the
program representation used for the internal interface. It
was decided at an early stage that a tree representation
was appropriate. Further, the interface should be Ada-
related rather than Fortran-related; this allows later
extension of the system for other purposes such as the
improvement of Ada programs, as discussed below for
IBIS. Thus it seems reasonable to use an attributed parse-
tree representation of Ada programs as a basis for the
internal representation, the use of attributes providing a
mechanism for the sharing between tools of information
about the program. .

A standard for attributed Ada parse trees already
exists in the Diana specification. Diana (descriptive
intermediate attributed notation for Ada) is the specifi-
cation of a standard abstract data type that implements
attributed Ada parse trees. Since it is an abstract data
type it is quite independent of the way the trees are
actually represented ; the Diana standard also includes a
standard external representation of Diana structures as
character strings for communication between different
computing systems. Diana is maintained under contract
to the US Department of Defense; the latest version of
the Diana Reference Manual is Ref. 7 and the Diana
design philosophy is the subject of Ref. 8.

3.1 Choice of Diana

Diana was chosen as the interface for the present project
because of the availability of a complete, maintained
standard as an abstract data type with an associated
external representation. Further, the Diana standard
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allows users to define additional attributes which could
be used for communication between the program trans-
formers we envisage, as mentioned earlier.

It was hoped initially that our choice of Diana might
lead to free exchanges of tools with other parties and that
we might find an implementation of Diana we could use.
Diana is not currently sufficiently rigorously standardized
to make these things possible. The problem is that the
use of a general abstract data type interface within a
compiler for a structure as pervasive as a parse tree
introduces inefficiencies that can be overcome if assump-
tions are made about the tree representation (for example,
by using Ada record selectors for accessing parts of the
tree as in the York Ada compiler®). It follows that
compiler-writers, by far the dominant current users of
Ada parse trees, are naturally opposed to rigorous Diana
standardization since they see this as compromising
compiler efficiency. For tools, particularly on worksta-
tions, it seems better to keep the full generality of the
abstract data type interface; thus we may presumably
hope to see stronger standardization of Diana for tools
than is the case at present. Given this situation, our
philosophy has been to keep to the standard Diana
abstract data interface as closely as possible, and to
produce our own implementation of it. This implemen-
tation is modelled on the one developed for the Karlsruhe
front-end.® There are several advantages in keeping as
closely as possible to the Diana abstract data type
specifications—most of the program is totally independ-
ent of the way Diana is represented and the rigorous use
of the specification could only help us if it were necessary
to produce a version of the system that uses a different
standard attributed tree representation, such as the Ada
Intermediate Representation (AIR) developed for the
York Ada compiler.®

4. IBIS SYSTEM DESIGN

The present Fortran/Ada Converter is ultimately to
provide components for the interactive Bath program
improvement system (IBIS). IBIS is intended eventually
to handle several different source and target languages
via a common Diana interface. An overall view of the
whole system is given by the data-flow diagram in Fig. 1.
Here arrows represent tools transforming programs from
one form to another; solid arrows denote existing
components (although most transformers remain to be
written) and broken arrows denote projected compo-
nents, some of which might ultimately originate in other
systems.

As shown in Fig. 1, IBIS could include an Ada front-
end, allowing its use for transforming Ada programs
under development. Source languages other than Fortran
and Ada, and target languages other than Ada, could be
handled also. However, the use of Diana does mean that
any back-ends for languages other than Ada will only
generate language constructs derivable from Diana in a
similar manner to the PascAda back-end for Pascal.!®
Any combination of front- and back-end for which this
turns out to be a serious restriction should presumably be
using an intermediate form other than Diana and hence
cannot be accommodated within the present system.
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Figure 1. Overall organization of the |BIS system.

5. EFFECT OF IBIS ON THE CONVERTER
DESIGN

As an introduction to the design of our Fortran/Ada
Converter, we show how the requirements for IBIS have
influenced the design of the current Fortran/Ada Con-
version system. These considerations apply equally to
any future front-ends and improvers written for 1BIS.
Back-ends are not considered here: the Diana-to-Ada
prettyprinter (again based on one developed in connec-
tion with the Karlsruhe front-end®) is quite straightfor-
ward and need not detain us.

A given IBIS front-end processes input only from one
source language, whereas the transformers are in general
applicable to Diana originating from several languages.
So it seems sensible a priori to keep front-ends as simple
as possible, leaving any sophistication for the improvers.
However, this requirement must be relaxed as necessary
to conform with two others imposed by the need to keep
the Diana general, namely:

(R.1) The Diana generated by a front-end should
represent legal Ada as far as possible.

(R.2) Attributes added to the Diana used should not
include any specific to particular source languages.

In the context of the Fortran/Ada conversion system
(R.1) means for instance that the special processing for
parameters that are subroutines or functions (discussed
later) must be handled in the front-end rather than by
using an improver that accepts ‘Diana’ corresponding to
an imaginary Ada extension in which such parameters
are allowed. However, it occasionally seems reasonable
to allow a slight relaxation of (R.1) in cases where a
straightforward Ada compilation error would clearly
result if the condition went uncorrected. One such
exception in the current front-end is made for extended-
range DO-loops in standard Fortran. If we take no special
actions over these (which is the appropriate action for a
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simple, statement-by-statement front-end), we initially
generate Diana in which labels are used from outside
their scopes—this would raise an Ada compilation error.

In the current system (R.2) means that we disallow
attributes corresponding to such conditions as ‘statement
arises from conversion of a Fortran DO-loop’, or to the
original Fortran types of variables. Thus a transformer
for Ada generated from Fortran DO-loops, as discussed
later, will process all instances of the resulting Ada
structure; if a transformer were needed that explicitly
processed only the Ada resulting from Fortran DO-loops,
it should be included in a front-end. Similar remarks
apply to transformers requiring knowledge of the original
source-code types of variables; this may be necessary in
some projected front-ends for languages other than
Fortran or Ada.

It should be noted that the requirement (R.2) does not
preclude passing parts of the original source text into the
Diana as comments. To explain the handling of these by
a front-end, we digress to consider how comments in
general are handled by front-ends.

5.1 Handling of comments

Clearly, comments originating within the source text
should be carried through to the generated Ada code.
This is easily handled by storing comments in the node
of the Diana tree that they reference. Thus a Fortran
comment preceding an executable statement is stored in
the Diana node representing the Ada corresponding to
the statement ; comments preceding Fortran specification
statements such as COMMON, DIMENSION or
EQUIVALENCE statements are all grouped together
and stored in the Diana representation of the correspond-
ing Ada declaration list. The nature of Fortran specifi-
cation statements, allowing several items to be specified
in one statement and particular items to be specified in
more than one statement, makes it difficult to be more
accurate with the placing of comments occurring within
such statements. Proposed transformers include a special
tool for repositioning comments.

A case can be made for generating further comments
such as the original source-lines or comments on difficult
conversions. These could be useful, for example, in the
early stages of an interactive Fortran/Ada conversion
when the user is still thinking in terms of the original
Fortran. We include them, but they are distinguished
from comments originating in the source text; this
enables us to provide a transformer to remove them en
masse.

5.2. Design criteria for front-ends

The use of front-ends within IBIS, as already explained,
motivates the idea that in general these should be as
simple as possible consistent with their performing all
processing specific to the particular source-language. The
main advantage of this way of doing things is that any
program modification implemented by a transformer
may be applied or not in a particular case at the discretion
of the programmer using the interactive system. For
example, it seems most appropriate to translate an
arithmetic IF statement into a case statement with a goto
statement in each alternative; a transformer might then
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dispose of one or more of the gotos by moving sections of
code back into the arms of the case. Another example
arises in the translation of a DO-loop into an Ada for-
loop; since the Ada loop includes an implicit declaration
of the control variable, the for-loop control variable
cannot, in general, be used as the translation of the DO-
loop variable but in certain special cases it can be. Such
special cases could be detected by suitable transformers.

To summarize, the requirements for IBIS mean that
the use of Diana should largely correspond to legal Ada,
and that in general front-ends should be fairly naive,
statement-by-statement processors. This general philos-
ophy for IBIS components applies particularly to the
present Fortran/Ada Converter, described in the remain-
ing Sections.

6. THE EXISTING SYSTEM

The Fortran/Ada conversion system at present comprises
a front-end, a single modest improver and an Ada back-
end as indicated by the solid arrows in Fig. 1. It runs on
a Honeywell Multics system and is written in Pascal for
subsequent transfer to a Perq computer. The system
described here consists of about 9000 lines of Pascal
source code.

The components of the system, together with their
sizes in Pascal source lines and their interdependencies,
are shown in Fig. 2. Tests of the system have included a
conversion of a complete chapter of the NAG Library.

Running times for the current system as applied to a
Fortran program of about 180 lines are shown in Table
1, which gives separate timings for runs with the Diana

IBIS—The interactive Bath improvement system

/ wr Pascal

FD—Fortran to Diana  DI—Diana ‘improvers’ PP—Diana to Ada

converter 150 lines prettyprinter
3800 lines

2000 lines
DN—Diana
N i’

2500 lines

TO—Translator options
200 tines
SR —Symbol and comment representation/
manipulation
300 lines

Figure 2. Fortran/Ada conversion system: module sizes and
interdependencies.

Table 1. Multics processing times for

Fortran program of 180 lines
Operation CPU time, s
Fortran to Diana 8.1
Diana to filestore 3.1
Filestore to Diana 4.5
Diana loop improvements 0.9
Diana to filestore 2.7
Filestore to Diana 3.9
Prettyprinting 4.8
Compile original Fortran 2
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in main store throughout and with writing of the Diana
to filestore between the components of the system. These
timings appear unfavourable compared with those of the
Fortran compiler, which is highly optimized in terms of
the use it makes of the Multics system facilities. It is
believed that much of the running time of the current
Converter is attributable to the completely procedural
nature of the Diana interface, and to the amount of
checking performed within the Diana procedures to
ensure security of the Diana representation. The effects
of these issues on the Converter running time are still
being investigated.

An overall impression of the actions of the system in a
simple case is provided by Figs 3-5. Figure 3 shows a
listing of a small Fortran subroutine and Fig. 4 shows the
generated Ada with the Fortran source statements
included as comments. Finally, Fig. 5 shows the Ada
resulting from application of the modest loop improver

SUBROUTINE VECSCL ( VECTOR, VECSIZ, SCLFAC)
INTEGER VECSIZ
REAL VECTOR ( VECSIZ)
DO101=1, VECSIZ
VECTOR(I)=VECTOR(I)*SCLFAC
10 CONTINUE
RETURN
END

Figure 3. Small Fortran subroutine.

withh  FORTRAN_DATA_TYPES;
use FORTRAN_DATA_TYPES;
package PACKAGE_VECSCLis

described in our later discussion of Fortran DO-loops;
clearly further improvers to remove null statements and
unused variables and labels could profitably be used.

7. DETAILS OF THE CONVERTER

Remaining sections of this paper are devoted to detailed
discussion of the design of the current Fortran to Ada
Converter. Except where explicitly mentioned otherwise,
we loosely refer to ‘generated Ada’ meaning the Ada
listing resulting from application of the prettyprinter
(back-end) to the Diana generated by the front-end with
no program transformers used.

Progressing from global to specific issues, we first give
details of the source and object languages supported. The
structure of generated Ada programs is then discussed
leading us on to consider communication between
packages in the generated Ada. Finally selected Fortran
statements, and the actions of a transformer which acts
on Ada code generated from Fortran DO-loops, are
discussed in detail.

7.1 Source and object languages

The source language for the current Converter is Fortran
77'! or Fortran 66! according to the setting of a switch;
this switch does not limit the language being converted

— SUBROUTINE VECSCL (VECTOR, VECSIZ, SCLFAC)
procedure VECSCL (VECTOR :inout FREAL_ARR_DIM_1;

VECSIZ: inout FINTEGER;
SCLFAC:inout FREAL);

end PACKAGE_VECSCL;

with  FORTRAN_DATA_TYPES, FORTRAN_ENVIRONMENT, FORTRAN_RUNTIME;
use FORTRAN_DATA_TYPES, FORTRAN_ENVIRONMENT, FORTRAN_RUNTIME;;

package body PACKAGE_VECSCLis

— SUBROUTINE VECSCL ( VECTOR, VECSIZ,SCLFAC)
procedure VECSCL (VECTOR :in out FREAL_ARR_DIM_I;

VECSIZ:in out FINTEGER;
SCLFAC:inout FREAL)is

— INTEGER VECSIZ

— REAL VECTOR ( VECSIZ)
I: FINTEGER;
I_INCREMENT: FINTEGER;

begin

— DO101=1, VECSIZ
I_INCREMENT = 1;
I=1

for _CONTROL in 1..LOOP_COUNT (I, VECSIZ, _INCREMENT) loop

— VECTOR(I)=VECTOR(I}*SCLFAC
VECTOR (I) = VECTOR (I) * SCLFAC;

—10 CONTINUE
«LABEL_10>»
null;
1 =14 I_INCREMENT;
end loop;
—_ RETURN
return;
— END
null;
end VECSCL;
end PACKAGE_VECSCL;

Figure 4. The subroutine of Fig. 3 with Ada resulting from use of front-end.

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 347

20z UoIBIN € U0 150NB AQ ZE 1/ L€/ FE/7/92/0101ME/|Ufoo/W oo dno"olWapeoe//:sdy Woly PaPEOIUMOQ



J. K. SLAPE AND P. J. L. WALLIS

with FORTRAN_DATA_TYPES;
use FORTRAN_DATA_TYPES;
package PACKAGE_VECSCLis

procedure VECSCL (VECTOR :inout FREAL_ARR_DIM_I;

VECSIZ: in out FINTEGER;
SCLFAC:inout FREAL);

end PACKAGE_VECSCL;
with

FORTRAN_DATA_TYPES, FORTRAN_ENVIRONMENT, FORTRAN_RUNTIME;

use FORTRAN_DATA_TYPES, FORTRAN_ENVIRONMENT, FORTRAN_RUNTIME;

package body PACKAGE_VECSCLis

procedure VECSCL (VECTOR : in out FREAL_ARR_DIM_1;

VECSIZ: in out FINTEGER;
SCLFAC:in out FREAL)is

I: FINTEGER;
I_INCREMENT: FINTEGER;
begin
forlinl.. VECSIZ loop
VECTOR (I) = VECTOR (1) * SCLFAC;
« LABEL_10 »
null;
end loop;
return;
null;
end VECSCL;
end PACKAGE_VECSCL;

Figure 5. Ada from Fig. 4 after application of a modest loop-improver and removal of source statements.

but is used in the cases where the semantics of the
languages differ such as zero-traversal DO-loops which
are discussed later. There are several minor restrictions
many of which are also imposed by PFORT,*? a portable
subset of Fortran. Restrictions worth noting are that
unformatted input/output is not supported, formatted
input/output is not currently supported and an assump-
tion is made that Fortran functions do not change the
values of their parameters. This last assumption, neces-
sary because Ada functions can only have in parameters,
cannot easily be checked by a Converter working on a
line-by-line basis; violations result in Ada compilation
errors. Analysis of the source code by the Converter
starts with a classification of Fortran statements using an
extension of Sale’s Algorithm!* to be documented
elsewhere. Endeavours are being made to keep up with
Ada changes as they occur; the latest version of the Ada
Language Reference Manual is Ref. 15.

7.2 Structure of generated Ada

In considering the structure of generated Ada programs,
a description of their overall structure in terms of Ada
packages is followed by consideration of the library
support they require.

7.2.1 Package structure of generated Ada. Before discussing
the Ada package structure, the reader is reminded of the
Fortran term ‘program unit’ which means a Fortran main
program, subroutine, function or BLOCK DATA pro-
gram unit. The program units constituting a complete
program may be submitted to a Fortran compiler
independently, if required, with inter-unit communica-
tion being resolved by a ‘linkage editor’ or ‘linkage
loader’.

Analogously, it was decided that the Converter should
work on the basis of Fortran program units; a Fortran
main program is converted to a corresponding Ada
procedure and a Fortran subprogram (function or sub-
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routine) ‘NAME’ is converted to an Ada package
specification ‘PACKAGE_NAME’ containing a stub
corresponding to the subprogram specification, and a
package body containing the body of the subprogram. If
a program unit ‘NAME’ then references another program
unit ‘NAMEL’ then ‘PACKAGE_NAMEL!’ will appear
in the with and use statements of the converted form of
‘NAME’. The conversion of BLOCK DATA program
units is dealt with later when we discuss COMMON
storage.

The alternative of requiring a complete Fortran
program to be presented to the Converter and then
producing a single Ada program was rejected for four
reasons. First, our strategy is to keep the front-end as
simple as possible: separate processing of program units
means that the front-end is not concerned with inter-unit
communication. Secondly, our approach is more in line
with Fortran’s independent compilation, the role of the
‘link editor’ being provided by the Ada compilation
system. Thirdly, separate processing of program units
enhances the attractiveness of the Converter for conver-
ston of existing Fortran subroutine libraries. Fourthly,
we envisage special IBIS tools for making changes to the
package structure of Ada programs and it seems easier
to design tools for amalgamating packages than for
splitting them. The strategy adopted also has a further
incidental advantage in that it allows us to handle Fortran
COMMON storage in the way discussed below.

7.2.2 Run-time support for generated Ada. Three Ada pack-
ages will be provided for the run-time support of
generated programs. Their names—FORTRAN_
DATA_TYPES’, ‘FORTRAN_ENVIRONMENT’ and
‘FORTRAN_RUNTIME’'—appear, when required, in
the with and use statements of each converted program
unit. An outline of the package specification for ‘FOR-
TRAN_DATA_TYPES’is given in Fig. 6; this specifies
types corresponding to the Fortran primitive types
INTEGER, REAL, etc. and predefines arrays (up to
seven dimensions) of these types so that arrays may be

20z UoIBIN € U0 150NB AQ ZE 1/ L€/ FE/7/92/0101ME/|Ufoo/W oo dno"olWapeoe//:sdy Woly PaPEOIUMOQ



CONVERSION OF FORTRAN TO ADA USING AN INTERMEDIATE TREE REPRESENTATION

package FORTRAN_DATA_TYPESis

type FINTEGER is

range FINT_LOWER_BOUND..FINT_UPPER_BOUND;

type FREAL is
digits FREAL_DIGITS

range FREAL_LOWER_BOUND..FREAL_UPPER_BOUND;

type FDOUBLE_PRECISION is

digits FDP_DIGITS

range FDP_LOWER_BOUND..FDP_UPPER_BOUND;

type FCOMPLEX is
record
REAL, IMAG: FREAL;
end record;

type FLOGICAL is new BOOLEAN;
type FCHARACTER is new STRING;

type FINT_ARR_DIM_1 is array (INTEGER range (> ) of FINTEGER;
type FINT_ARR_DIM_2 is array ( INTEGER range (),

I
type FINT_ARR_DIM T7is...

INTEGER range (> ) of FINTEGER;

— same for arrays of FREAL, FDOUBLE_PRECISION, FCOMPLEX

— and FLOGICAL

type FCHAR_ARR_DIM_1_LEN_lis array ( INTEGER range ;{))

of FCHARACTER(!..1);

type FCHAR_ARR_DIM_1_LEN_2is array (INTEGER range {))

of FCHARACTER(1...2);
I

type FCHAR_ARR_DIM_1_LEN_256is array (INTEGER range () )

of FCHARACTER(1..256);
I

type FCHAR_ARR_DIM_7_LEN_256is...

end FORTRAN_DATA_TYPES;

Figure 6. Outline of the package FORTRAN_DATA_TYPES.

passed as parameters in the converted programs. Under
a previous edition of the Ada Language Reference
Manual'® it was possible to specify types corresponding
to the Fortran CHARACTER type and arrays of
CHARACTER type as in Fig. 7; this involved a small
fixed number of types rather than the cumbersome
number of types now required, which is dependent on
the maximum length of Fortran CHARACTER types
we allow to be converted (Fig. 6 limits this to 256
characters). The package ‘FORTRAN_ENVIRON-
MENT’ specifies the intrinsic functions available in

Fortran and various operators for supporting the types
defined in ‘FORTRAN_DATA_TYPES’, and the pack-
age ‘FORTRAN_RUNTIME’ provides all other facili-
ties assumed available by the converter including support
for Fortran formatted input/output.

7.3 Communication between packages

Next we discuss some Converter actions that affect
communication between packages in the generated Ada.

type FCHARACTER (LENGTH: FCHAR_RANGE)is

record

FCHAR: STRING(l..LENGTH);

end record;

type FCHAR_ARR_DIM_1 ( LB1, UB1: INTEGER,
LENGTH: FCHAR_RANGE)is

record

FCHAR: array(LB1.. UB1) of STRING(1..LENGTH);

end record;

type FCHAR_ARR_DIM_2 ( LBI, UBI,
LB2, UB2: INTEGER,
LENGTH: FCHAR_RANGE )is

record

FCHAR: array(LBI..UBI, LB2..UB2) of STRING(l..LENGTH);

end record;

I
type FCHAR_ARR_DIM_7 ...

Figure 7. Extract from a previous version of the package FORTRAN_DATA_TYPES.
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These comprise the treatment of Fortran COMMON
storage and BLOCK DATA program units, the EQUIV-
ALENCE statement and various issues related to the
conversion of parameters.

7.3.1 Fortran COMMON storage and BLOCK DATA program
units. The specification of a shared area of storage in
Fortran, COMMON, must be given by each program
unit that uses the shared area, and it is possible for
different program units to interpret the area in different
ways. In the current Converter, it is assumed that
positionally matching variables in the different specifi-
cations of a particular COMMON block agree in type
and size of dimension, although they may have different
names. Based on this assumption, the way in which the
Converter treats COMMON statements is dependent on
the type of the program unit in which they appear, as
discussed next.

The Converter treats the specification of a COMMON
block appearing in a BLOCK DATA program unit
(which is used for initializing COMMON blocks) as the
definitive specification for that COMMON block. Each
COMMON block specified ina BLOCK DATA program
unit is converted to an Ada package specification. For
example, the BLOCK DATA program unit

BLOCK DATA
COMMON /FRED/ A,B
DATA A/0.0/, B/0.0/
END

is converted to just one Ada package

with FORTRAN_DATA_TYPES;
use FORTRAN_DATA_TYPES;
package COMMON_FRED is
NAME_1: FREAL =0.0;
NAME_2: FREAL =0.0;
end COMMON_FRED;

References made to a COMMON block in other types of
program unit are then converted to a sequence of Ada
rename statements. For example, the Fortran COMMON
statement.

COMMON /FRED/ X, Y

appearing in a Fortran main program or subprogram, is
converted to the Ada statements

X: FREAL renames COMMON_FRED. NAME_1;
Y : FREAL renames COMMON_FRED. NAME_2;

To complement the above approach in the cases where
a particular COMMON block does not occur in a
BLOCK DATA program unit, the Converter provides a
method whereby the user may specify that the current
program unit being converted (not a BLOCK DATA
program unit) is to be taken as the definitive specification
for a particular COMMON block. In such cases, as well
as the rename statements being generated in the converted
program, a separate package specification corresponding
to the COMMON block is also generated. A particular
case where this technique would have to be used is for
Fortran’s ‘blank’ COMMON block which cannot be
initialized in a BLOCK DATA program unit. It is
possible for blank COMMON blocks within an execut-
able program to be of different sizes; in such cases the
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user should specify the program unit with the largest
blank COMMON block to be the definitive specification.
Many Fortran programs use COMMON storage in a
way that does not comply with the assumptions currently
made by the Converter. For example, a common practice
in Fortran programming is to put together a number of
variables in a COMMON block, used in several sub-
programs, but to replace the group by a suitably
dimensioned dummy array in other sub-programs not
using these variables. Such use will cause the Converter
to generate a rename statement associating variables of
different types, giving rise to an Ada compilation error.
If the dummy array is not used within the offending
program unit and is the last entry in the COMMON list
(as is common practice to match COMMON block sizes),
the offending rename statement may simply be removed.
In more complicated cases, it should be possible to design
IBIS tools to help the user rectify the resulting situation.

7.3.2 Fortran EQUIVALENCE statement. We briefly men-
tion the EQUIVALENCE statement here, since it is
possible to equivalence variables with other variables
that are in COMMON blocks, and thus in a sense
equivalencing can affect package communication. In
general the problem of translating Fortran’s EQUIVA-
LENCE statement which equivalences storage sequences
rather than variables of the same type and size, is not
feasible. The present Converter treats EQUIVALENCE
statements as untranslatable. In a later version of the
Converter, variables with the same type and size will be
converted using the Ada rename statements. Other
equivalenced variables will be treated as totally separate
entities; of course warning messages will be produced. A
user of IBIS might be able to rectify the resulting situation
if equipped with special tools for systematically renaming
quantities throughout a package.

7.3.3 Ada parameter modes. In Fortran, parameters to both
function and subroutine subprograms are passed using a
combination of call-by-reference and call-by-value-re-
sult; whether or not a formal argument may be defined
or redefined within a subprogram depends in general on
the actual parameter. For example, a formal parameter
associated with a constant expression cannot be redefined
within the subprogram; however, if the same formal
parameter were associated with a variable then it could
be defined/redefined. For this reason it is impossible to
calculate in all cases the modes of formal parameters
when converting program units on an independent basis.
Appropriate Converter processing of formal parame-
ters depends on whether these appear in a FUNCTION
or a SUBROUTINE in the original Fortran. All formal
parameters of Ada functions must be of the in mode, and
since Fortran functions are converted to Ada functions
the same is expected of the Fortran functions we translate.
If a function formal parameter appears on the left hand
side of an assignment statement within the function body
being converted, a warning message is produced; the
same is true if the formal parameter is used as an actual
parameter to another subprogram (the intention is not
determinable on an independent conversion basis). The
alternative is to convert Fortran functions to Ada
procedures and use auxiliary variables. This seems too
awkward for general use, but it seems appropriate to
provide an IBIS tool for doing it in specific cases.
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The situation is different for formal parameters of a
Fortran SUBROUTINE. The most general approach to
converting these under the independent translation
scheme is to convert the formal parameters of all
subroutines to Ada in out mode parameters and to assign
the actual parameters of subroutines which are constants
or expressions (not simply variable names) to auxiliary
variables, replacing the actual parameters with these
variables.

Another possible approach might be to convert formal
parameters of subroutines according to how they are used
within the subroutine body—read, written or both. This
involves putting some default interpretation on formal
parameters used as actual parameters to other subpro-
grams and hence is not a suitable approach for a front-
end that treats different Fortran program units quite
independently.

7.3.4 Procedures as parameters. Ada does not allow the
passage of parameters to procedures that are themselves
procedures, but enables a similar effect to be achieved
through the use of generics. It turns out to be feasible to
handle Fortran procedure parameters automatically in
this way provided that it is possible to determine in a
given program unit whether the procedure parameter is
a function or a subroutine and to determine the types of
its parameters; that is to say, a formal parameter that is
a procedure must not simply be used as an actual
parameter to another procedure; a warning is produced
if this is done. Figure 8 outlines the conversion into
Ada of a Fortran SUBROUTINE with a FUNCTION
parameter.

PROGRAM MYPROG
EXTERNAL FUNC

|
CALL SIMP (FUNC, A,B,N)

|
END

SUBROUTINE SIMP ( FOFX, XO, XN, N)

|
Y = FOFX (PT)

I
END

7.3.5 Arrays as parameters. Arrays that appear as formal
parameters are converted to the appropriate uncon-
strained array type defined in the package FORTRAN_
DATA_TYPES, which we have previously discussed.
This means that the bounds are obtained from the actual
parameter and the formal parameter is constrained by
these bounds. This is a particular case where it is
necessary for the user to obey certain restrictions which
cannot be checked using the independent conversion
approach and could otherwise result in the generation of
Ada programs which do not conform to the original
Fortran program, for example, the case where Fortran
77 corresponding formal and actual array parameters are
of the same size but have different origins. To help the
user to rectify such cases and also cases where the number
and size of dimensions of actual and formal parameters
disagree,!® which is also quite legal in Fortran, we
anticipate using IBIS tools applicable to -complete
packages that translate multidimensional array refer-
ences to single dimension references and for shifting the
origins of dimension bounds.

Note in passing that a tool acting on a complete
package to change multidimensional array references to
single dimension references could have a further use in
connection with the production of Ada programs to run
on paging systems. The Ada standard does not specify
whether multidimensional arrays are stored in row-major
or column-major form, and this can make a considerable
difference to the performance on paging systems of
programs handling such arrays.!” By using a tool that
converts multidimensional array references to vector
references, using row- or column-major form at the

with FORTRAN_DATA_TYPES, FORTRAN_ENVIRONMENT, FORTRAN_RUNTIME,

PACKAGE_SIMP,PACKAGE_FUNC;
use FORTRAN_DATA_TYPES, FORTRAN_ENVIRONMENT, FORTRAN_RUNTIME,
PACKAGE_SIMP, PACKAGE_FUNC;
procedure MYPROG is
I

procedure SIMP_FUNC is new SIMP ( FUNC);
[

SIMP_FUNC (A, B, N);
I

end MYPROG;

with FORTRAN-DATA_TYPES;
use FORTRAN_DATA_TYPES;
package PACKAGE_SIMPis
generic
with function FOFX (PARAM_1:in FREAL ) retuarn FREAL is{);
procedure SIMP ( XO:in out FREAL;
XN:inout FREAL;
N:in out FINTEGER);
end PACKAGE_SIMP;

Figure 8. Outline of converter actions for Fortran program units with procedure parameters.
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discretion of the user, a programmer could optimize
performance in this way regardless of which method of
array storage is used by his particular Ada compiler.

7.4 Fortran statements

Given the preceding work on program structure and
communication between packages, the conversion of
most Fortran statements is too straightforward to warrant
detailed comment. We discuss briefly our treatment of
Fortran declarations, assigned GOTO statements and
DO-loops.

7.4.1 Declarations. The declaration of the attributes of a
variable in Fortran may be spread over several state-
ments; for example, the same variable could occur in
DIMENSION, TYPE and COMMON statements. Var-
iables may also be implicitly declared by their appearance
in the executable part of the program text, in which case
they acquire default attributes. For these reasons, the
Converter does not translate Fortran specification state-
ments directly into Diana, but builds a symbol table,
which has been designed using Diana attributes, to which
are also added auxiliary declarations required by the
conversion process. This symbol table is subsequently
used at the end of each program unit to generate the
Diana form of the necessary declaration. Since the Diana
for a complete program unit is held in main storage, this
is compatible with the single-pass, line-by-line approach.

7.4.2 ASSIGN statement and assigned GOTO statement. The
Fortran ASSIGN statement

ASSIGN stoi

where s is a statement label and { is an integer variable,
is converted to the Ada statement

i_ASSIGN =LAB_s;
The Fortran assigned GOTO statement
GOTO i {,} (s{,s}...)

where i is an integer variable name and (s{, s} ...)is a
list of statement labels which must always be present
(this restricts the Fortran 77 assigned GOTO statement
where the list is optional), is converted to the Ada
statement

case i_ASSIGN is
when LAB_s1 = goto LABEL _s1;
when LAB_s2 = goto LABEL _s2;

when LAB_sN = goto LABEL sN;
when others = raise FT_ASSD_GOTO_EXCEP;
end case;

where i ASSIGN is defined as type ASSIGNED_
LABEL in the Ada program and the type ASSIGNED_
LABEL is defined in the program as an enumeration of
all the labels that appear in ASSIGN or assigned GOTO
statements. The exception FT_ASSD_GOTO_EXCEP
is defined in the package FORTRAN_RUNTIME.

The integer variable i (not i_ ASSIGN) stil} exists in
the program as an integer variable. This is necessary as
Fortran allows variables used in ASSIGN statements
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and assigned GOTO statements to be used also as
ordinary integer variables in other parts of the program.
The Fortran rules for the variable being defined/
undefined as integers or statement labels allow us to
separate its use in this way.

7.4.3 Fortran DO-loops. The Fortran DO-loop construct
DOsv=el,e2,e3
s étm
where s is a statement label, v an integer, real or double
precision variable and el, €2 and e3 are integer, real or

double precision expressions, is converted to the Ada
statements:

v_INCREMENT =e3;

v=el;

forv_CONTROLin1 ... LOOP_COUNT(v, €2,
v_INCREMENT) loop

«LABEL_s»
stm
v=v+ v_INCREMENT;
end loop;

where the variable v INCREMENT is defined within
the program and has the same type as v. The overloaded
function LOOP_COUNT is defined in the package
FORTRAN_RUNTIME and returns an integer value
which is the maximum of the values INT((e2 — v +
v-INCREMENT)/v_INCREMENT) and 0. This en-
sures a correct Ada interpretation of the Fortran 77 DO-
loop.

To ensure that the loop is always executed at least once
in the case of Fortran 66 the function call

LOOP_COUNT (v, €2, v INCREMENT)
is replaced by the function call
LOOP_COUNT_OR_1(v, €2, . INCREMENT)

which returns the maximum of the values INT ((e2 —
v + v_INCREMENT)/v_INCREMENT) and 1.

The above approach ensures that the most general
cases are catered for. In many cases, however, the
generated Ada could be improved, for example:

(D. 1) If €3 is not present (i.e. assumed tobe 1)ore3isa
constant expression, the variable v_INCRE-
MENT need not be introduced—instead it may
be replaced by the constant expression.

(D. 2) If the loop variable is of integer type, and the
increment value is 1, then the loop may be
‘collapsed’ to

forvinel .. e2 loop

«LABEL_s»
stm
end loop;

provided that the value of the loop variable is not
required after termination of the loop.

(D. 3) If there is no transfer of control from within the
loop to the loop terminating label, then this label
may be removed.
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Comparison of Figs 4 and 5 show the effect of applying a
simple program transformer that implements (D. 2). As
mentioned previously, the resulting program could clearly
be improved further, for instance by applying trans-
formers that implement (D. 3) and that remove null
statements.

8. CONCLUSION

The decision to use an intermediate tree representation
in our Fortran/Ada Converter enables us to use it as the
basis for an interactive program improvement system
that may ultimately be used for many different purposes.
Design considerations for IBIS resulted in our handling

the specifically Fortran-dependent parts of our conver-
sion in a fairly naive statement-by-statement front-end
that handles separate Fortran Program Units quite
independently. Future plans include attempts to discover
experimentally which improvers prove most useful in the
interactive conversion of existing Fortran libraries to
idiomatic Ada versions.
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