
A Survey of Recent Advances in Hierarchical
Clustering Algorithms

F. Murtagh
Department of Computer Science, University College Dublin, Dublin 4, Ireland

It has often been asserted that since hierarchical clustering algorithms require pairwise interobject proximities, the
complexity of these clustering procedures is at least O(N2). Recent work has disproved this by incorporating efficient
nearest neighbour searching algorithms into the clustering algorithms. A general framework for hierarchical,
agglomerative clustering algorithms is discussed here, which opens up the prospect of much improvement on current,
widely-used algorithms. This 'progress report' details new algorithmic approaches in this area, and reviews recent
results.

1. INTRODUCTION

The problems of automatically classifying data arise in
many areas, and hierarchical classification offers a
flexible, non-parametric approach. Substantial reviews
of the clustering problematic can be obtained in Refs 1-
3. Hierarchical clustering algorithms have tended to be
somewhat more prominent than others, perhaps because
they presuppose very little in the way of data character-
istics or of a priori knowledge on the part of the analyst.

Progress on algorithms for the minimal spanning tree,
and its associated single linkage hierarchical clustering
method, has been spectacular in recent years (see Refs 4-
7 and—less directly relevant here—Refs 8 and 9). Other
clustering algorithms would, if efficient, often be of
greater practical use, since the single linkage method has
certain well-known practical disadvantages. These in-
clude the 'chaining' effect, and the lack of any immediate
definition of cluster centre or representative (both of
which are serious handicaps when clustering is used in
such areas as information retrieval: for its use here, see
Ref. 10).

Current, efficient hierarchical clustering algorithms
include that of Sibson,11 who gave an algorithm for
constructing the single linkage hierarchy, and Defays,'2

who extends Sibson's approach to give a (not necessarily
unique) complete link hierarchy. These approaches
cannot be further improved, since they require all
pairwise dissimilarities to be considered.

The algorithms to be discussed in this article focus
instead on exactly what is required in order to carry out
an agglomeration at any stage of the clustering: this is
usually little more than the nearest neighbour points of
specified points. Sections 2 and 3 will present clustering
algorithms at a high level, removed from detailed
implementation considerations. Complexity aspects of
the algorithms will be discussed, but it will be assumed
until Section 4 that brute-force nearest neighbour
searching is used (i.e. N — 1 comparisons to find the
nearest neighbour of a given point among N). This is
because experience with the incorporation of nearest-
neighbour-finding enhancements on clustering algo-
rithms is relatively limited in experimental scale and in
the range of algorithms used, and because it will be
clearer to take hierarchical clustering algorithms as they

are currently employed and to show how and where the
nearest neighbour subproblem can be demarcated.

Regarding terminology, we will be concerned with a
set of objects with associated description vectors, i.e. a
set of points in multidimensional space. A dissimilarity
measure is defined on these, which is a positive semi-
definite symmetric mapping of pairs of objects and/or
clusters of objects onto the reals (i.e. d(i,j) > 0 and
d{i,j) = d(j, i) for objects or clusters / and./). Often the
stronger distance is used, where in addition the triangular
inequality is satisfied (i.e. d{i,j) < d(i, k) + d(j, k)). This
is satisfied, for example, by the widely-used Euclidean
distance. It is possible that the initially-given data might
be in dissimilarity form, but the bulk of this survey will
be focused on the more usual case where N objects each
have a descriptor vector in real Af-space.

2. BACKGROUND

2.1 General hierarchical clustering algorithm using
dissimilarity-update formula

Very different algorithms can be given for the same
hierarchical clustering method (see Ref. 13 for a review
of many algorithms for the single linkage method).
However, a general agglomerative algorithm for hierar-
chical clustering may be described informally as follows:

Algorithm 1

Step 1. Determine all interobject dissimilarities.
Step 2. Form cluster from two closest objects or clusters.
Step 3. Redefine dissimilarities between new cluster and

other objects or clusters (all other interpoint
dissimilarities remaining unchanged).

Step 4. Return to Step 2 until all objects are in the one
cluster.

Ordinarily Step 1 will require O(N2) calculations, i.e.
N(N — l)/2 interobject dissimilarities. The number of
variables obviously effects the calculation time required,
but they are usually considered constant for any particular
set of data. In Steps 2 and 3, it might be worth while to
consider keeping a sorted list of all dissimilarities under
consideration (taking O(N2 log N) time for the initial

CCC-0010-4620/83/0026-0354 $03.00

3 5 4 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 © Wiley Heyden Ltd, 1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/354/377434 by guest on 10 April 2024

A SURVEY OF RECENT ADVANCES IN HIERARCHICAL CLUSTERING ALGORITHMS

sorting, plus update time thereafter). Otherwise O(N2)
time will be required for any execution of Step 2. The
hierarchy involves the construction of at most N — 1
clusters, and so N — 1 iterations (Steps 2, 3, and 4) are
required. Step 3 can be carried out in O(N) time and
involves the use of the Lance-Williams combinatorial
formula. If the objects or clusters just merged are indexed
by / andy, and if k is any other object or cluster, then this
formula is:14

d{i +j, k) = a(i)d(i, k) + a
+ bd(i,j) + c\d(i,k)-d{j,k)\

where the values of a, b and c are dependent on the
clustering strategy used, and common values are listed in
Table 1. Values for a number of other methods are given
by Jambu.ls

The above recurrence formula not only unifies what
might at first appear to be a number of very different
procedures, but also aids in the analysis of subordinate
questions, such as the conditions under which inversions
(or reversals) take place, i.e.

d(i + j , k) £ d(i, j) for some i,j, k
(seeRefs 16-18). However Algorithm 1 has not facilitated
computational improvement, and for that we must
consider an alternative algorithm.

2.2 Hierarchical clustering algorithms using original
data and cluster data

Algorithm 2

Step 1. Examine all interpoint dissimilarities, and form
cluster from two closest points.

Step 2. Replace two points clustered by representative
point or by cluster fragment.

Step 3. Return to Step 1, treating clusters as well as
remaining objects, until all objects are in one
cluster.

This algorithm is justified by storage considerations,
when the O(N2) storage required for a dissimilarity
matrix is replaced by the 0(N) storage required for N
initial objects and O(N) storage for the N — 1 (at most)
clusters. Whether a cluster is represented by a centre
point or alternatively by a subgraph or 'fragment' of
interconnected points clearly divides the well-known
clustering algorithms into geometric methods (the cen-
troid method, the median method, and Ward's minimum
variance method) and graph methods (the single, com-
plete and average linkage methods). The formulae of the
cluster centres for the former are given in Table 1. The
term 'fragment' refers to a connected component in the
case of the single link method and to a clique or complete
subgraph in the case of the complete link method.

Apart from lessened storage requirements, the above
algorithm can also be justified in that it can be made
computationally very efficient by searching for two
closest clusters, in Step 1, in a restricted, local region
only. Before reviewing techniques for this, more details
of Algorithm 2 are discussed in the next section. These
are based on the nearest neighbours among the points or
cluster centres, and more particularly on reciprocal
nearest neighbours. The latter will be seen to be a basic
'atom' or 'building block' of most hierarchical clustering
algorithms. With little loss of generality, and in accord
with most current programs, we will assume that the
hierarchies are strictly binary (i.e. that there are precisely

Table 1. Properties of six hierarchical clustering methods

Hierarchical clustering methods (and Lance and Williams dissimilarity update
aliases) formula

Co-ordinates of centre of cluster, which
agglomerates clusters / andy Dissimilarity between cluster centres g, and g.

Single link
(nearest neighbour)

Complete link
(diameter)

Group average
(average link, UPGMA)

Median (Gower's method.
WPGMC)

Centroid(UPGMC)

a(i) = 0.5
b = 0
c = -0.5
(More simply:
min {d(i. k), d(j, k)})
a(i) = 0.5
/> = 0
c = 0.5
(More simply:
max \d(i.k). d(j.k)})
a(i) = |/|/(|/| + |/|)
6 = 0

a(i) = 0.5
b= -0.25
c = 0
a(i) = |/|/(|/| + I/I)
b= - I ' l 1/1/ (I'l + I/I)2

—

—

—

9 = (9i + 9/)/2

9=(\i\9i+\i\9i)l
(1/1 + I/I)

—

—

—

Da-ffyO2

[|<7/-ff/[]2

Ward's method a(i) = (I'l •
(minimum variance, error sum (|/| + |/| + \i
of squares) 6 =-1*1/(I'l + I/I

|/| + I/I)

Notes: |/| = number of objects in cluster /.
g, is a vector in /W-space (where M is set of variables);

either initial point or cluster centre.
il.,; is the norm in some metric, usually L2.

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 355

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/354/377434 by guest on 10 April 2024

F. MURTAGH

N — I agglomerations or clusters in the hierarchy): in
practice, arbitrary resolving of equal dissimilarities might
on occasion be necessitated.

3. FAST ALGORITHMS

3.1 Reciprocal nearest neighbours and the reducibility
property

Let the nearest neighbour graph (NN-graph) be defined
as a set of points, p, whose directed edges {(/>, NN(p))}
are such that NN(/>) is the nearest neighbour of p. For
any point/?, three cases can be distinguished (Fig. 1). In
case III, where q = NN(/?), and/? = NN(<J), pointsp and
q are referred to as mutual or reciprocal nearest
neighbours (RNNs).

p

Case I

Case II

Case III

Figure 1. Three situations of interest in the NN-graph.

The NN-graph can be defined at all stages of the
construction of the hierarchy for a geometric clustering
method—where the vertices consist of remaining, un-
clustered, initial points and cluster representative
points—and with suitable additional operations can also
be used for a graph clustering method. Before looking at
algorithms for these different areas (Algorithms 3 and 4
for geometric clustering methods, and Algorithms 5 and
6 for single linkage clustering), consider first the initial
situation where the set of N multidimensional points is
given. If i and j are any two RNNs, we have some p such
that for any other point, k:

d{i,j)<p
d{i, k)>p
d(j, k)>p

and, using these inequalities and the Lance-Williams
recurrence results, it is easily verified that

for all clustering methods in Table 1 with the exception
of the centroid and median methods. This is known as
the reducibility property.19 If verified by a clustering
method, the merging of RNNs i andy into cluster i +j
requires the updating of the NN-graph only for those
points which had i orj as NN (cf. Case II, Fig. 1). More
importantly it means that all RNNs / and j can be
simultaneously merged, without effecting the RNN
properties of other parts of the NN-graph.

These two corollaries of the reducibility property will
be used in the single and multiple cluster algorithms
(Algorithms 3 and 4) for geometric clustering methods,
to be studied in the next two subsections. Following this,
the use of the NN-graph in graph clustering methods will
be outlined in a similar perspective but with some
noticeable differences.

3.2 Multiple cluster algorithm for geometric clustering
methods2022

Algorithm 3

Step 1. Determine all RNNs.
Step 2. Replace all RNNs by cluster centres, thus

reducing set of points.
Step 3. Redetermine all NNs and hence RNNs.
Step 4. Goto Step 2 until only one point remains.

A brute-force approach to Step 1 takes O(N2) time for
the dissimilarity calculations, as in Algorithms 1 and 2
above, but some techniques for significantly improving
the complexity of this step are discussed in Section 4.
Given the NN of each of the N points, the existence of
RNNs is straightforwardly checked for in O(N) time.
The sum total of RNNs in Step 2, for all iterations (i.e.
Steps 2, 3, and 4) is N - 1. Therefore Steps 2, 3, and 4,
together, are O(N2) if the number of new NNs to be
determined in Step 3 is some constant times the number
of agglomerations.

Unfortunately this cannot be guaranteed in general:
the determining of the NNs of new clusters presents no
problem, but the NNs of points which have one or other
of the RNN points as NN (cf. Case II of Fig. 1) must
also be determined. The number of these points is
unbounded. Special situations where the number of these
points is bounded includes the case of points in the
Euclidean plane. In the centroid and median methods,
in this case, the distance used between cluster centres is
the same as that used between initial points, and it can
be easily verified that the maximum possible number of
points which can simultaneously have some one point as
NN is 6. Note however that even if the Euclidean
distance is used for Ward's method, a non-Euclidean
intercluster distance is employed (cf. Table 1), and so
this result does not apply. Thus a worst case O(N2)
operations must be assumed for Step 3, which coupled
with 0(N) iterations (Steps 2, 3, 4), gives complexity
O(N3) for Algorithm 3. In order to remedy the O(N3)
worst-case performance of Algorithm 3, an algorithm
which constructs a single cluster on each iteration will be
discussed next.

Algorithm 3 is exact for all hierarchical clustering
methods which satisfy the reducibility property (Section
3.1). As already mentioned, the centroid and median
methods do not. For Algorithm 3 to provide exact results
for these two methods, the RNNs would need to be
examined in order of decreasing closeness in Step 2. The
increased computational time required for this might
favour instead the good, approximate centroid and
median hierarchies produced by an unmodified Algo-
rithm 3.

3.3 Single cluster algorithm for geometric clustering
methods2324

Let an NN-chain be defined as the sequence of points

i,j = NNO), k = NN(y),. . . , q = NN(p), p = NNfo)

where i is an arbitrary point. Among the properties of a
NN-chain we have the following:

1. The final two points (p and q, say, where/? might be 0
constitute an RNN pair.

3 5 6 THE COMPUTER JOURNAL. VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/354/377434 by guest on 10 April 2024

A SURVEY OF RECENT ADVANCES IN HIERARCHICAL CLUSTERING ALGORITHMS

2. Dissimilarities between adjacent points in an NN-
chain are monotonically decreasing (it is assumed that
no two dissimilarities are equal).

3. An NN-chain cannot contain a circuit.
Owing to property 2, we may say that the NN-chain is
grown towards increasing density, since interpoint dissim-
ilarity—hence sparseness—at the start of an NN-chain
is greater than that at the end.

By continually growing an NN-chain, we have a single
cluster algorithm for geometric clustering methods:

Algorithm 4
Step 1. Starting with arbitrary /, determine j = NN(z),

k = NN(y),. . . until q = NN(p)and/> = NNfe).
Step 2. Agglomerate RNNs p and q, replacing with

cluster centre.
Step 3. Continue NN-chain from point in chain prior to

p (or if the first two points in the NN-chain gave
a pair of RNNs start a NN-chain from any
point).

Step 4. Return to Step 4 until only one point remains.

Since the NN-chain is grown, in Step 3, from where it
ended in Step 2, it can be deduced that this algorithm
requires 0{N2) dissimilarity calculations. As for Algo-
rithm 3, Algorithm 4 provides a good heuristic for the
centroid and median methods. Evidently the execution
of Algorithm 4 is dependent on the order in which the
input data are presented, but the reducibility property
ensures that the resulting hierarchy is unique and exact.
In particular it may be noted that Algorithm 4 yields an
exact minimum variance (Ward's method) hierarchy in
O(N2) time and 0{N) space, and is thus optimal in the
sense used by Sibson1' when discussing the single linkage
method.

3.4 Constructing the minimal spanning tree by subgraphs6

The single and multiple cluster algorithms for geometric
clustering methods have not been generalized for all
graph clustering methods. In this section, suggested
approaches to single link hierarchical clustering will be
discussed. These approaches are based on the minimal
spanning tree (which is transformed into the hierarchy
in O(N) time25).

The following proposition has been used inthe previous
sections:

Proposition 1. Given a point-set, any pair of RNNs is a
class or cluster of an agglomerative hierarchic clustering,
if the hierarchic clustering method satisfies the reducibil-
ity property.

The single link method satisfies this property, but a
stronger result is:

Proposition 2. Any NN-chain is a subset of a minimal
spanning tree.

Any NN-chain, originating in an arbitrary point and
ending in a pair of RNNs, therefore defines in reverse
order a sequence of nested clusters in a single linkage
hierarchic clustering. Instead of single and multiple
cluster algorithms for geometric cluster methods, we have
here single and multiple fragment algorithms, where a
fragment is 'grown' from an NN-chain. The following is
a single fragment algorithm.

Algorithm 5

Step 1. Construct an NN-chain; let q be the last point
added, and call the NN-chain a fragment.

Step 2. Find r, the nearest point to q which is not in the
fragment.

Step 3. If, for some i in the fragment, d(i, NN(0) <
d{q, r) then see if there is an s not in the fragment
such that

d(i, s) < d{q, r)
If so, find the least such d(i, s), and connect s to
i; otherwise connect r to q.

Step 4. Redefine q to be the point whose link to the
fragment is of least dissimilarity, and return to
Step 2 until all points are in the fragment.

Step 3 is explained as follows. The point r could be
connected to q. However it must be checked if a closer
point could instead be connected to some other point in
the fragment. The edge (/, NN(0) is in the fragment if i
is in the fragment. If d(i, NN(/)) > d(q, r), and if some s
is connected to / then d(i, s) < d(q, r), which together
imply: d(i, s) < d(i, NN(i')). But then s is the NN of /, and
from this contradiction it is seen that we were justified in
connecting r to q.

Step 3 possibly necessitates 'climbing back' some way
in the fragment (i.e. it requires the finding of NNs of a
number of vertices in the fragment) and is best imple-
mented using a list of vertices in the fragment, ordered
by the smallest dissimilarity which connects them to the
fragment (see Ref. 1, pp. 258-263, for a worked example
of such a priority queue).

The analysis of this algorithm depends on the average
number of iterations between Steps 2 and 3, i.e. if
constant or O(N), we get overall complexity of O(N2) or
O(N3), respectively. Bentley and Friedman6 suggest an
approximate minimal spanning tree algorithm, where
this number of iterations is held constant, but in general
worst-case O(N) must be assumed.

A better, multiple fragment algorithm with two
separate stages (Steps 1,2, and 3; and Steps 4 and 5) is as
follows.

Algorithm 6

Step 1. Pick an arbitrary point.
Step 2. Construct an NN-chain from this point.
Step 3. Pick another isolated point, and return to Step 2

until all points are in one of m NN-chains.
Step 4. Connect the closest point in an arbitrary NN-

chain (or fragment) to some other NN-chain (or
fragment), using Steps 2, 3, and 4 of Algorithm
5.

Step 5. Return to Step 4 until all points are in the one
fragment.

Algorithm 6 will work better if the NN-chains are long,
i.e. if the points chosen in Steps 1 and 3 are in sparse
regions. Following the iterated Steps 2 and 3, there are m
NN-chains and hence m — 1 edges remaining to be found
in the minimal spanning tree.

The principal computational advantage of Algorithms
5 and 6 lies in their ability to incorporate efficient NN-
finding techniques. The latter algorithm, for example, is
of O(N log AO complexity, using the approach of Bentley
and Friedman.6 We now review a number of these fast
NN-finding techniques.

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 3 5 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/354/377434 by guest on 10 April 2024

F. MURTAGH-

4. TECHNIQUES FOR NEAREST NEIGHBOUR
FINDING

The finding of NNs, on which all the algorithms discussed
are based, is 'local' in the sense that the NN of a point
can only lie in some intelligently delimited region of the
space of points. This justifies an initial, crude clustering
of the set of points which then allows NNs, and hence
the exact agglomerative hierarchy, to be determined very
much more efficiently than by an exhaustive search
approach. What follows is a short catalogue of prepro-
cessing strategies for NN-finding, some of which have
been used for clustering.

The preliminary hashing of all points onto directly
addressable cells takes O(N) time. The search for an NN
then proceeds by examining all points which have been
mapped onto the same cell, and if the given point could
potentially have an NN in a surrounding layer of cells,
then these must be explored also (Ref. 1, pp. 251-252;
also Refs 7 and 26). For low dimensional data (<4),
Rohlf5 has discussed the construction of the minimal
spanning tree and single link hierarchy using this
approach; and Murtagh27 has looked at results obtained
for other clustering algorithms using uniformly distrib-
uted points in the plane.

As an alternative to the crude non-hierarchical cluster-
ing technique just described, a crude, divisive, hierarchi-
cal approach is provided by a multidimensional binary
search tree—a generalization of a binary search tree. At
successive levels of the tree, some co-ordinate is chosen
and all points are associated with one or other of two
offspring nodes according to whether they take values
less than or greater than some cut-off value on this co-
ordinate. Continually subdividing the points in this way,
we eventually halt with a set of buckets, where each, of
the N points is associated with some one bucket. This
divisive clustering takes O(N log N) time, on average, as
in the case of the one-dimensional binary search tree.
Similarly, average search time is O(log N), although more
than one bucket might need to be searched to determine
the NN of a point. Further description of this prepro-
cessing method is to be found in Ref. 1, p. 248; results
for the NN finding problem are given by Friedman,
Bentley and Finkel;28 and empirical results for minimal
spanning tree construction are given by Bentley and
Friedman.6

The branch and bound approach of Fukunaga and
Narendra29 uses some tree structuring of the points and
determines in addition the centre and maximum devia-
tion of points in each cluster. Then, given a current,
potential NN, it may be established which clusters can
be definitely excluded from the search for the NN.

Other heuristic improvements on brute-force NN-
searching include the following. Friedman, Baskett and
Shustek30 use the value of points on some co-ordinate
axis, in order to exclude from consideration all points
with projections which are too distant on this axis.
Kittler31 and Richetin, Rives and Naranjo32 use metrics

other than the Euclidean to give bounds on the latter: the
Li (city-block) and Lm (Chebyshev or max) lower- and
upper-bound the L2 metric, and less computation is
required to determine the former two. Finally, Sethi33

establishes three reference points in the space of points
to be searched and uses these to determine a smaller
region of the space to be searched.

5. DISCUSSION AND CONCLUSION

We have discussed the design of algorithms for hierar-
chical clustering which take the nearest neighbour
problem as a more primitive task. A number of practical
results reported in the literature have been noted. Much
work remains to be accomplished in the area of NN
searching; in particular, efficient algorithms for high-
dimensional spaces are very much needed.

One major area of recent work, of direct relevance to
hierarchical clustering algorithms, has not been discussed
in this article. This is the construction of the minimal
spanning tree, and hence the single link clustering, by
first constructing a supergraph of the former. The
Delauney triangulation and the Voronoi diagram (Thies-
sen polygons or Dirichlet tesselation) have been used for
this purpose. The former is the dual of the latter, which
in turn is the graph of the N given points, and the edges
are the perpendicular bisectors of straight lines connect-
ing neighbouring points. This supergraph approach has
shown itself particularly powerful for O(n log n) worst
case performance4 and O(N) expected time7 algorithms
for the minimal spanning tree. To date, however, this
approach has been restricted to very low dimensions and
has not been used for other clustering methods. The
subgraph approaches, on the other hand, are versatile
and allow a wide range of NN finding techniques to be
incorporated.

We have attempted in this overview of recent work on
clustering algorithms to show the centrality of such
concepts as mutual nearest neighbours, the NN-chain,
and the NN-graph. The former concept was much used
by McQuitty from the early nineteen-sixties for particular
clustering methods (see, e.g. Ref. 34). It was briefly
surveyed by Bock (Ref. 35, pp. 308-312), and by Rohlf.20

However it has in particular emerged as a basis for
general clustering algorithms in a series of articles in the
journal Les Cahiers de /'Analyse des Donnees (associated
with J. P. Benzecri). From the point of view of general
hierarchical clustering algorithms for large data sets, it
appears to constitute the first major advance since the
well-known combinatorial relationship formulated by
Lance and Williams.14

Open problems are legion: the generalization of
Algorithms 5 and 6 (the single and multiple fragment
algorithms for the minimal spanning tree and single link
clustering) to other graph clustering methods; the
incorporation of other fast NN finding routines into
Algorithms 3-6; and, most of all, further efforts in the
technology of NN finding.

REFERENCES

1. R. C. T. Lee, Clustering analysis and its applications. \n Advances
in Information Systems Science, Edited by J. T. Tou, Vol. 8, pp.
169-292, Plenum Press, New York (1981).

2. A. D. Gordon, Classification, Chapman and Hall (1981).

3. R. Dubes and A. K. Jain, Clustering methodologies in exploratory
data analysis. In Advances in Computers, Edited by M. C. Yovits,
Vol. 19, Academic Press, New York (1980).

4. M.I.ShamosandD. Hoey,Closest-pointproblems./Voceerf//70s

358 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/354/377434 by guest on 10 April 2024

A SURVEY OF RECENT ADVANCES IN HIERARCHICAL CLUSTERING ALGORITHMS

of the 16th IEEE Symposium on the Foundations of Computer
Science 151-162 (1975).

5. F. J. Rohlf, A probabilistic minimum spanning tree algorithm.
Information Processing Letters 7,44-48 (1978).

6. J.L. BentleyandJ. H.Friedman,Fastalgorithmsforconstructing
minimal spanning trees in coordinate spaces. IEEE Transactions
on Computers C-ZJ, 97-105 (1978).

7. J. L. Bentley, B. W. Weide and A. C. Yao, Optimal expected-
time algorithms for closest point problems. ACM Transactions
on Mathematical Software^, 563-580 (1980).

8. A. C. Yao, An O(\E\ log log | V\) algorithm for finding minimum
spanning trees. Information Processing Letters 4, 21-23
(1975).

9. D. Cheriton and R. E. Tarjan, Finding minimum spanning trees.
SIAM Journal of Computing*. 724-742 (1976).

10. N. Jardine and C. J. van Rijsbergen, The use of hierarchic
clustering in information retrieval. Information Storage and
Retrieval 7, 217-240 (1971).

11. R. Sibson, SLINK: an optimally efficient algorithm for the single-
link cluster method. The Computer Journal 16, 30-34 (1973).

12. D. Defays, An efficient algorithm for a complete link method.
The Computer Journal 20,364-366 (1977).

13. F. J. Rohlf, Single link clustering algorithms, IBM Research
Report RC 8569, 33 pp. (1980).

14. G. N. Lance and W. T. Williams, A general theory of classificatory
sorting strategies. I. Hierarchicalsystems. The Computer Journal
9,373-380(1967).

15. M. Jambu, Classification Automatique pour /'Analyse des
DonnGes. Dunod, Paris (1978). (Cluster Analysis and Data
Analysis, North-Holland, Amsterdam (1983).

16. G. W. Milligan, Ultrametric hierarchical clustering algorithms.
PsychometrikaM, 343-346 (1979).

17. V. Batagelj, Note on ultrametric hierarchical clustering algo-
rithms. Psychometrika 46,351-352 (1981).

18. E. Diday, Crossings, orders and ultrametrics. In COMPSTAT
1982 Parti, Edited by H.Caussinusef a/., pp. 186-191,Physica-
Verlag.Wien(1982).

19. M. Bruynooghe, Classification ascendante hierarchique, des
grands ensembles de donnees: un algorithme rapide fonde sur
la construction des voisinages reductibles. Les Cahiers de
/'Analyse des DonneesM, 7-33 (1978).

20. F.J. Rohlf, Computational efficiency of agglomerative clustering
algorithms, IBM Research Report RC 6831, 36 pp. (1977).

21. C. de Rham, La classification hierarchique ascendante selon la
methode des voisins reciproques. Les Cahiers de /'Analyse des
DonneesV, 135-144 (1980).

22. J. Juan, Le programme HIVOR de classification ascendante
hierarchique selon les voisins reciproques et le critere de la
variance. Les Cahiers de /'Analyse des Donnees VI I , 173-184
(1982).

23. J. P. Benzecri, Construction d'une classification ascendante
hierarchique par la recherche en chaTne des voisins reciproques.
Les Cahiers de /'Analyse des Donnees VII , 209-219(1982).

24. J. Juan, Programme de classification hierarchique par I'algo-
rithme de la recherche en chaTne des voisins reciproques, Les
Cahiers de fAnalyse des Donates VII , 219-225 (1982).

25. F. J. Rohlf, Algorithm 76: hierarchical clustering using the
minimum spanning tree. The Computer Journal 16, 93-95
(1973).

26. C. Delannoy, Un algorithme rapide de recherche de plus proches
voisins. RAIRO Informatique/Computer Science 14, 275-286
(1980).

27. F. Murtagh, Expected-time complexity results for hierarchic
clustering algorithms which use cluster centres. Information
Processing Letters 16, 237-241 (1983).

28. J. H. Friedman, J. L. Bentley and R. A. Finkel, An algorithm for
finding best matches in logarithmic time. ACM Transactions on
MathematicalSoftware 3, 209-226 (1977).

29. K. Fukunaga and P.M. Narendra, A branch and bound algorithm
for computing /r-nearest neighbours. IEEE Transactions on
ComputersC-24, 750-753 (1975).

30. J. H. Friedman, F. Baskett and L. J. Shustek, An algorithm for
finding nearest neighbours. IEEE Transactions on Computers
C-24, 1000-1006(1975).

31. J. Kittler, A method for determining A-nearest neighbours.
Kybernetes 7, 313-315 (1978).

32. M. Richetin, G. Rives and M. Naranjo, Algorithme rapide pour
la determination des k plus proches voisins. RAIRO Informa-
tiqueI'ComputerScience 14,369-378 (1980).

33. I. K. Sethi, A fast algorithm for recognizing nearest neighbours,
IEEE Transactions on Systems. Man and Cybernetics SMC-11,
245-248(1981).

34. L. L. McQuitty, A mutual development of some typological
theories and pattern-analytic methods. Educational and Psy-
chological Measurement 27,21-46 (1967).

35. H. H. Bock, Automatische Klassifikation. Vandenhoeck und
Rupprecht, Gottingen (1974).

Received January 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 359

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/354/377434 by guest on 10 April 2024

