
A Proposal for an Extended Form of Type Checking
of Expressions

R. T. House
School of Applied Science, Darling Downs Institute of Advanced Education, Post Office, Darling Heights, Toowoomba,
Queensland 4350, Australia

This paper proposes a method for incorporation of the scientific notion of a system of measurement units into
programming languages. A method proposed in a previous paper on this topic is first discussed and found to be
seriously flawed. We find also that the earlier method must rely on run-time checking in order to allow certain desirable
language features, whereas the method proposed here is completely implemented at compile-time, and permits
improved program self-documentation, and is clearly more compatible with the spirit of Pascal, the language chosen
for this exposition. Further, the actions expected of the compiler are very modest indeed, and a suggested
implementation method is given.

INTRODUCTION

The concept of a data type has existed in many
programming languages for a long time. Some languages
impose strict compatibility rules on usage of data items,
for example, Algol 68,1 whereas others are less strict.
However, the question of whether a value represents
(say) a length, a mass, or a voltage, is not addressed in
any common programming language. Other distinctions,
such as subtypes and abstract data types, are frequently
discussed.2"4

One might at first think that the problem can be simply
solved by a strict form of name equivalence (for example,
see Ref. 5), whereby two types both declared to be real
should not in fact be considered equivalent. For example
the types WEIGHT and SPEED declared as:

type WEIGHT=REAL,
SPEED = REAL;

would be considered different, and attempts to combine
these in a single expression would give rise to syntax
errors. Unfortunately, there exist mathematical expres-
sions which legitimately combine quantities with differ-
ent units (such as dividing a mass by a volume to give a
density), and expressions which involve only a single
type of unit, and yet are inconsistent (such as adding a
length to the ratio of two lengths).

Gehani6 has in fact proposed a method for incorpora-
tion of checks for measurement unit consistency in
Pascal. We shall commence with a brief description of
the salient properties of scientific measurement units,
and follow by discussing Gehani's proposal, noting some
severe deficiencies; then we shall propose a new method
for achieving the same goal which does not suffer from
the problems inherent in Gehani's method. We shall then
discuss methods for implementing the checks, and we
shall see that the complexity of the implementation is
minimal, providing a complete check at compile-time—
a feat beyond the scope of an implementation of Gehani's
proposal. The proposal will be expressed as an extension
to Pascal, but this is not essential to the discussion. A
very similar extension could be made to Ada in particular,
being, like Pascal, a strongly-typed language with rich
facilities for creating data types.

PROPERTIES OF SCIENTIFIC
MEASUREMENT UNITS

The rules governing combination of scientific dimen-
sioned quantities are simple and are as follows:

Rule (i) Quantities with similar dimensions may be
added or subtracted, yielding a quantity pos-
sessing the same units (e.g. two masses may be
added, yielding a mass).

Rule (ii) Quantities with dissimilar or similar dimen-
sions may be multiplied. The dimension of the
result is the product of the two dimensions (e.g.
force equals mass times acceleration: if mass
is expressed in kg, and acceleration in m s~2,
then force will possess units of kg m s" 2).

Rule (iii) Quantities with dissimilar or similar dimen-
sions may be divided. The resulting dimension
is the ratio of the original dimensions. This
rule obviously follows from inversion of rule
(ii).

GEHANPS PROPOSAL FOR UNIT CHECKING

The names of measurement units according to Gehani's
proposals are not declared. Rather, they are simply used
wherever a variable requiring them is declared. For
instance,

var ROCKETSPEED.real UNITS(CM, SEC = - 1);
r:array[l. .200, 1. .20]of real UNITS(T);

The question of the precise notation used is unimportant;
however two significant things are evident from the
above examples. First, all names of units are essentially
unrelated; the only way to specify that a variable has
units of speed is to actually state the basic component
units of a speed, namely a length and a time (as in the
example above). This is a direct consequence of failure
to provide a declaration for a unit name. Secondly, a unit
name can also serve as a name of another quantity. This
strange quirk will not be of much interest to us, although
it does not seem to fit well with the Pascal philosophy of
exactly one declaration per identifier.

CCC-0010-4620/83/0026-0366 $04.50

3 6 6 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 © Wiley Heyden Ltd, 1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



A PROPOSAL FOR AN EXTENDED FORM OF TYPE CHECKING OF EXPRESSIONS

Gehani prefers to completely separate the notions of
storage type (e.g. real) and units (e.g. centimetres). He
therefore introduces the attribute declaration to declare
a combination of the two of them. A variable may directly
be declared with an attribute name from an attribute
declaration. For example, the preceding declarations
might be rewritten:

attribute SPEED = real UNITSiCM, SEC = - 1 ) ;
TARRA Y= array[ 1.. 200,1.. 20]of real UNITS(T);

var ROCKETSPEED: SPEED;
T:TARRAY,

This particular feature is of no significance to our analysis
of his proposal, and we shall not discuss it further. The
really interesting question in this whole issue is how to
permit one to write functions and procedures which are
not restricted to accepting parameters of a single unit
type. For example, a procedure to find the zero of a
function should be able to tell us the time at which a
projectile reaches maximum height (by locating the time
when speed is zero) or the range of the projectile (by
locating the distance at which height is zero). Without
some provisions for this facility, the whole idea loses
interest rapidly. Gehani attempts to solve this difficulty
by permitting variables to be declared with the attribute
UNITS(*). Such a variable assumes the units of the latest
assignment to it. Clearly, by declaring a procedure
parameter to have UNITSi*), an actual parameter with
any units may be assigned to it. To permit variables to be
declared in a subprogram which have the same units as
one of the parameters, the function UNITSOF is
introduced. UNITSOF(e) returns the units of the expres-
sion e, and may be called in executable statements.

The question is how the compiler is to check for
consistent units among the various objects passed to a
subprogram as parameters. It is possible to specify that
parameters have identical attributes. For example, if we
wish procedure P to have two real parameters of
unspecified, but identical units, we may declare P as
follows:

procedure P(A,B: Real UNITS{*));

For parameters whose units are not necessarily identical,
the following declaration could be given:

procedure P(A: real UNITSi*); B: real UNITSi*));

Gehani then considers the question of measurements of
the same quantity in different systems of units. If a
program uses two or more systems of units, then
conversions between, say, lengths in inches and lengths
in metres, will be necessary. To incorporate facilities for
automatically handling this situation, he introduces the
counits declaration, which may specify a relation between
any two units. For example,

counits UNITSiMILE) = 1.6 UNITS(KILOMETER);

Implementation of the units checking is then discussed.
He suggests that each variable name be associated with
a linked list of nodes, each of which describes one of the
base units making up the units of the variable concerned.
Each node would consist of unit name, exponent, and
pointer to the next unit. They would be sorted in order of
unit name. He makes the claim that compile time
checking is possible provided three restrictions are made,
which we now quote:

1. Expressions with units may only be exponentiated to
constant or compile time determinable values.

2. The expressions representing the exponents in the
units attribute declaration may be constants or compile
time determinable values.

3. Variables with the attribute UNITS(*) are not allowed
to be assigned values with different units depending
upon certain conditions (and therefore program flow).
For example, if T has attribute UNITSi*), then the
statement:

ife then T = ex else T\=e2

should not be permitted if et and e2 have different
units.

PROBLEMS WITH GEHANI'S PROPOSALS

The main problems with the scheme presented are as
follows:

1. Gehani's implementation scheme is not capable of
performing the type of unit checking required of it.

2. His claim regarding compile time checking is false,
given any reasonable assumptions about the amount
of work or the level of sophistication which can be
expected from a good compiler.

3. He does not mention that his proposal would require
retention of the symbol table unit information at run
time.

4. His scheme gives rise to programs whose legality is
ambiguous.

5. His counits proposal is seriously flawed.

The first three of these problems are related to each
other, and all stem from the existence of variables with
UNITSi*), and the UNITSOF function. Gehani does not
seem to realize that his proposals do not permit checking
of the legality of arithmetic expressions directly from the
delcarations, but also require checking of expressions
depending on the content of other expressions. Also, the
other expressions upon which the checking depends may
not yet have appeared in the program. Consider the
following erroneous program:

program faulty;
var q .real UNITSi*);

m :realUNITS(KG);
a : real UNITS(M, SEC = - 2);
/ : real UNITS(M, KG, SEC = - 2);

function ratio(x:real UNITSi*);
var y: real UNITSi*)): real UNITS(*);

begin
q.= a;
ratio = x\y

end;
procedure x(function fun(m: real UNITSi*);

var n: real UNITSi*)) • real UNITSi*));
begin

a =funifq);
end;

begin
q.= m;
xifatio)

end.

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 3 6 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



R. T. HOUSE

The key point to note here, and to which we shall
return, is that if the two parameters should bear some
given relation to each other, there is no syntactic
mechanism for specifying so. The above program is
simply calculating the ratio of a force to a mass, which
is, of course, an acceleration. By a circuitous route, the
ratio of the variables / and m is computed by function
ratio. However, a bug has crept into ratio: the statement
q '= a alters the contents of the actual parameter y. This
error cannot be detected in ratio alone, as the procedure
has no way of knowing what its actual parameters will
be. It will have to generate some information to indicate
the way in which the parameters were actually combined
to produce the function result, as it certainly cannot
perform any checks at that stage in compilation.
Procedure x cannot detect any errors, as it does not know
anything about the operation of function fun (which is in
fact ratio, but we don't know that yet).

The main program could, in fact, check the call x{ratio)
for consistency based on information collected during
compilation of the other modules. However, it is clear
that (1) this cannot be done using the implementation
method suggested by Gehani, as there is simply no
mechanism for this sort of global consistency check, and
(2) the existence of the error depends on the meaning of,
and the precise ordering of, every single statement in the
program (for example, if the assignment to q in ratio had
occurred after the assignment of the function result, no
error would result).

Thus we see that the only way a compiler could detect
this error at compile time would be to create a data
structure reflecting the logic of the entire program, and
then process this by some algorithm which has not been
specified by Gehani, and which would certainly be
complex, and require extensive processing. Yet the above
program violates none of Gehani's stated requirements
for compile time checking to be possible. If one procedure
were to be separately compiled from the rest, detection
of the error at compile time would certainly be impossible.

From this we see that (1) implementation of the
proposal as a compile time check is grossly impractical,
and (2) the suggested implementation method has ignored
major difficulties in checking the passing of parameters
to procedures. Retention of the symbol table unit
information at run time is needed because of the
UNITSOF function. Examples may be easily constructed
to show that, in general, a compiler cannot know in
advance which units an actual parameter of a procedure
will possess at run time. The legality of programs is
ambiguous because real powers of units are permitted in
declarations. In computing the units of an expression
result, floating point arithmetic may not yield a precise
value. Thus a compiler may rule that correct programs
are inconsistent. It remains to discuss the counits feature.

As we have pointed out, a counits declaration may be
made between any two unit names, and has the effect of
making one a multiple of the other. Gehani himself
realizes that there is the possibility of multiple connection
paths being created between a given two units. He
presents an algorithm to detect such multiple paths, and
compute the overall conversion factor along each path.
He then says that if the conversion factors are not the
same, an error exists. Once again, computation of this
conversion factor necessarily requires floating point
arithmetic, and once again the definition of an erroneous

program is ambiguous—a property which cannot be
tolerated in a programming language.

We shall not attempt to modify Gehani's proposal, but
rather start afresh and develop a new proposal based on
fundamental considerations.

DEVELOPMENT OF BASIC CONCEPTS

This proposal centres on a recognition of the structured
nature of scientific units, which consists of a two-level
hierarchy. (We shall use the term 'dimension' to indicate
a fundamental notion such as length, mass, etc., and the
term 'unit' to denote a particular standard measurement
quantity, such as metre, foot, inch, etc.) As an example
we shall consider the International System of Units (SI).
Seven base dimensions, namely length, mass, time,
electric current, thermodynamic temperature, amount of
substance, and luminous intensity are defined, along with
a measurement unit for each. At the second level are the
derived units, some of which have special names.
Examples are frequency, force, pressure, magnetic flux,
area, and surface tension. Each of these have units
expressed as a combination of the base units.

Which of these distinctions need be incorporated into
a programming language feature? We easily see that a
relation which holds between two dimensions also holds
between the units in which those dimensions are
measured. For example, a force is a mass times a length
divided by a time squared; and similarly a newton is
defined to be units m kg s~2. Thus we are led to conclude
that one or the other of the concepts 'dimension' or 'unit'
is superfluous as an explicit construct in a programming
language, as whatever relations are expressed according
to the one will necessarily be exactly duplicated in the
other. However, the fact that some units (or dimensions)
are combinations of others is a fundamental distinction
which must be mirrored in our language feature. Thus
we are led naturally to the idea that we may dispense
with the one distinction, but must preserve the other.

The following syntax rules for a dimension specification
reflect this idea:

dim-spec = "dim" base-unit-list";" derived-unit-list
| "dim" derived-unit-list
! "dim" base-unit-list";".

base-unit-list = unit-identifier
| unit-identifier "," base-unit-list,

derived-unit-list = derived-spec ";"
] derived-spec ";" derived-unit-list,

derived-spec = unit-identifier ":" unit-rule,
unit-rule = unit-factor \ unit-rule "*" unit-factor

] unit-rule "/" unit-factor,
unit-factor = unit-identifier "••" rational

unit-identifier.
rational = unsigned-integer | "(" signed-integer

["/" unsigned-integer]")".
unit-identifier = identifier.

The definitions of identifier, signed-integer and un-
signed-integer are obvious, but see the ISO Draft
Proposal.3 These syntax rules enable one to declare a
system of basic units and a system of derived units
expressed as rational powers of the basic units. It is
essential that rational powers be insisted upon, rather
that permitting real powers of base units, to ensure that

3 6 8 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



A PROPOSAL FOR AN EXTENDED FORM OF TYPE CHECKING OF EXPRESSIONS

all unit derivations and checking by the compiler are
unambiguous. All identifiers are declared once and once
only, and none may be used for multiple purposes within
a single scope. These rules will be recognized as being of
the essence of the Pascal philosophy. An example of a
dim-spec follows:

dim
metre, kg, sec;
volume: metre**3;
unitspeed: metre/sec;
newton: metre* kg* sec** {—2);

{ Or, newton:metre*kg/sec**2;}

At this stage it matters little whether the identifiers
declared represent dimensions or units. Only if differing
units for the same dimension are to be used is it necessary
to choose identifiers carefully. We now move to the
question of declaration of variables possessing dimen-
sional attributes. We note that a variable may either
possess a standard Pascal type alone, or it may possess
both a type and a unit. No special benefit accrues from a
special syntactic construction for the combination of the
two, as it could be used only where a normal type
identifier could be used. We therefore extend the syntax
of a type-definition beyond that given by ISO with the
following additional rule:

type-definition = identifier " = " unit-type-denoter.

A unit-type-denoter must allow specification of a combi-
nation of a non-unit type and a unit. Thus we envisage
declarations like:

type
speed = real dim unitspeed;
time = real dim sec;

Before framing our syntax for this extension, we need
to be aware of the need to allow unit information to be
associated with various storage types. For example, an
integer sec should be assignable to a real sec, but not to
an integer length or a speed. The power of such a system
comes when we permit arrays and records to possess unit
information.

The most obvious question is how to relate the
dimensions of a structure to the dimensions of its
components. Now the structuring information (e.g. that
it is an array of a certain size, etc.) is quite independent
of the unit information. The factor which determines the
relationship is the use to which the array will be put. For
example, a three element array representing a vector will
have the same units as the individual elements of the
array, in the same way as, say, velocity (a vector) has the
same units as speed (a scalar). However, a record
representing a two-dimensional vector stored in polar co-
ordinates, (r,6), has overall units the same as the first
component, and the second component is unitless, being
an angle (as a radian is the ratio of two lengths, and thus,
strictly, possesses no dimensions). We are led to the
conclusion that the system should permit arbitrary
relations between the dimensions of the components and
the dimensions of the total structure. (This is in
contradistinction to the proposal of Gehani, who consid-
ers, for example, the units of a structured type to be a
structured unit. That concept does not appear to be
justified as it merely replicates the normal type compata-
bility rules, which will be checked in any case. Gehani

himself does not explain the benefits of using his concept
in checking operations involving structured types.) The
one restriction we may make is to demand that all
elements of an array possess the same units. The contrary
is not found to be necessary in science, and would
prohibit compile-time checking.

Considering once again the example of polar co-
ordinates, we see that any sort of 2-dimensional vector
may be written in polar form, irrespective of the particular
units of the vector concerned. Thus, we are led to
introduce generic type descriptions with units as param-
eters. For example, we can define the above two examples
as follows:

type
polar(someunit) = record dim someunit

r: real dim someunit;
theta.real;

end;
vectorianyunit) = array dim anyunit [1 . . 3]

of real dim anyunit;

We shall not give this extension in BNF. Simply, the
type name may be followed by a formal unit parameter
in parentheses. The words record, array, pointer, and any
scalar or generic type names on the right hand side may
be followed by 'dim unit-rule', where a unit-rule has
already been defined, and may include compound units
according to the syntax given earlier. The words someunit
and anyunit used above are in scope only during the right
hand side of the type declaration, and therefore may be
reused later if desired. In a further type declaration, or in
a var declaration, an actual type may be provided (once
again using the 'dim unit-rule' syntax) to replace the
formal type given in the type declaration above. In fact,
variables may not be declared unless the actual type is
provided. (That is, variables are not permitted whose
units are not precisely specified.) To declare a vector
displacement variable, therefore, the following var
declaration may be given:

var
displacement: vector dim metre;

Thus the dim notation has two purposes: to associate a
unit with a unitless scalar type, such as real, and to
provide actual parameters to replace formal parameters
of a generic dimensioned compound type. A unitless
compound type name may not be given a unit, as there is
no way of knowing the intended units of its individual
components. It is not clear that there is physical
justification for more than a single formal unit parameter
to a structure; however, this may be required if the
facility were to be applied in an unexpected application.
In any case, there is no technical objection to its
provision.

EXTENSION OF UNIT CHECKING TO
PROCEDURE CALLS

As we have had cause to note, this facility is not of
practical use unless it can be implemented across
procedure calls. We shall stipulate the following condi-
tions which the facility should satisfy:

1. Checking should be possible solely from information
provided by declarations, and should not need any

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 3 6 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



R. T. HOUSE

examination of the statements composing the proce-
dure (except, of course, for purposes of checking those
very statements for errors).

2. Checking should be possible by a one-pass compiler
retaining only a modest amount of information from
each declaration.

3. The algorithm needed to do this should be simple.
4. It should work perfectly well for externally compiled

procedures, such as library routines.
5. It should allow subprograms to insist that certain

parameters possess stated units, or relationships to the
units of other items or parameters, and also allow
subprograms to accept any units for certain parame-
ters.

A solution which satisfies all these requirements is to
permit generic types in procedure parameter declara-
tions, in a similar manner to that used for declaration of
generic dimensioned compound types. Unfortunately,
however, the requirements are more complex, owing to
the wide variability in possible combinations of parame-
ters to procedures and functions. We shall firstly specify
the syntax rules for the proposal, and then explain their
purpose. The ISO rules for value-parameter-specification,
variable-parameter-specification, functional-parameter-
specification and function-heading are altered to read:

value-parameter-specification = identifier-list":"
type-identifier newdim-or-dim-part.

variable-parameter-specification = "var"
identifier-list":" type-identifier
newdim-or-dim-part.

functional-parameter-specification =
function-heading newdim-or-dim-part.

function-heading = "function" identifier
[formal-parameter-list]":" result-type
dim-part.

Except for newdim-or-dim-part and dim-part, all other
non-terminals are defined in ISO. In these rules, we also
require that newdim-or-dim-part must be empty if the
associated type-identifier already possesses a unit, and
dim-part must be empty if the associated result-type
already possesses a unit, and that they may not be empty
if the associated type-identifier or result-type is a
structured type which requires a unit (such as a polar or
a vector as declared in the preceding section). The
definitions of newdim-or-dim-part and dim-part are:

newdim-or-dim-part = "newdim" unit-identifier
[ dim-part.

dim-part = "dim" unit-rule j empty,
empty = .

A newdim option is effectively an implicit parameter
to the subprogram. That is, whatever units are associated
with the actual parameter are regarded as being associ-
ated with the unit-identifier of the formal parameter. The
newdim option is a declaration of the unit-identifier. All
newdim options in a subprogram heading are processed
before any dim options in that heading.

A dim option is an assertion of the units which an
actual parameter must possess to match the formal
parameter. Thus, any identifiers occurring in the unit-
rule after a dim must have already been declared. An
empty option reduces to a standard Pascal parameter.

The operation of the compiler when it encounters a
subprogram call is as follows:

1. All units of actual parameters whose formal parameter
contains a newdim option are evaluated, and associated
(for the purpose of checking the legality of this
procedure call) with the unit-identifier in the newdim
option.

2. The unit-rules of all formal parameters containing a
dim option are evaluated. These may contain unit-
identifiers declared earlier in the program, or unit-
identifiers associated with newdim options, but whose
actual units were evaluated in 1 above, and are thus
known. The resulting units of each of these unit-rules
are checked for consistency against the units of the
corresponding actual parameters. Naturally formal
parameters with no newdim or dim part must match
only unitless actual parameters.

3. If the subprogram is a function, the unit-rule of the
function result's dim option is evaluated if it is present.
(An empty dim-part indicates a unitless result.) The
resulting units are used as the units of the function in
the expression in which the function is used. If the
units of the function result are incorrect, this will
sooner or later cause a syntax error in compiling the
expression.

Consider the following declaration:

function SQRJ\x: real newdim whatever)
: real dim whatever ** (1 /2);

The meaning is that SQRT will accept a real parameter
of any dimensions. Whatever dimensions are supplied in
an actual call, however, the function result will be the
half power of those dimensions. Outside SQRT, all calls
may be checked on that basis: any call where the
parameter does not have units equal to the square of the
result units required, is in error. Inside SQRT, a different
tactic is employed, whatever is treated as just another
elementary unit name, as if it had been declared as a base
unit in a dim-spec. Local variables with units of whatever
are perfectly allowable. Thus, specified relations, how-
ever complex, between the units of the various parameters
of a procedure may be demanded to hold. Recall that a
dim tag may be followed by a general unit-rule. (Note
that there is no place in this proposal for UNITS(*)
objects, nor for the UNITSOF function.)

To indicate clearly the difference between newdim and
dim options, consider the following function heading for
a function minimum which returns the x value of the
minimum of the function/, one of its parameters./must
be a function of a parameter with the same units as the
result-type of minimum, but the units of the result of/are
irrelevant, except that local variables in minimum may
need to be of that type, eps is an error tolerance parameter,
and must be of the same units as the units of the
parameter t o /

function minimum (function f(x: real dim u): real
newdim v;

eps: real newdim M) : real dim u;

or, alternatively,

function minimum (function/(jc: real newdim u): real
newdim v;

eps: real dim M) : real dim u;

3 7 0 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



A PROPOSAL FOR AN EXTENDED FORM OF TYPE CHECKING OF EXPRESSIONS

Note that u and v appear exactly once in newdim
options, but may appear in any number of dim options.
Local variables with units uori; may be declared within
the function. Note also that a degree of look-ahead is
required to scan for tokens following newdim in a
subprogram heading before processing the heading, as it
may not always be convenient to arrange all newdim
tokens to appear first, especially if some units are
combinations of others. The result-type of a function
heading may not be a newdim, since it may not be easy in
a compiler to determine the units which an expression
which calls the function expects to see as the function
result; a function parameter to a subprogram may have
a newdim result, because in a call to the subprogram, an
actual function whose result units are known, must be
supplied. The choice of placement of the newdim option
for u after either x or eps results from the symmetry of
our requirement, which simply is that x and eps have
identical units. Which one supplies its units to minimum
to be checked against the units of the other, is irrelevant.

In spite of the great flexibility provided in the above
example, this scheme really can be checked quite simply
entirely at compile-time. The following simple example
including a function whose result is its first parameter
divided by its second will be used in a later section to
illustrate the proposed implementation scheme:

program careful {input, output);
dim

len, amp, ohm;
lengsquare: len**2;

type
length = real dim len;
amps = real dim amp;
ohms = real dim ohm;
area = real dim lengsquare;
volts = real dim amp * ohm;

var
leng, breadth: length;
surface .area;
current .amps;
resistance :ohms;
voltage : volts;
x,y,z .real;

function ratio (a: real newdim u;b: real newdim v)
.realAim u / v;

begin
ratio = a/b

end;
begin

read (leng, surface, current, voltage, x, y);
breadth '= ratio (surface, leng);
resistance = ratio (voltage, current);
z = ratio (x,y);
writeln (breadth);
writeln (resistance);
writeln (z)

end.

The compiler can check that no quantities are used
illegally, in spite of the use of a function accepting
parameters of differing units. What is more, complexities
do not mount as the complexity of the program increases.
A highly convoluted program with obscure logic can be
checked for dimensional correctness as simply as can the
short program given above. Whether the read and writeln

statements above are legal depends on how the compiler
considers them to be declared. If parameters are
considered to be

real

then only the last writeln is legal. If, however, they are
declared

real newdim anyname

then all are legal. This writer would prefer the second
alternative. We shall see how easy this scheme is to
implement after discussing multiple units for a single
dimension. Note that it is not strictly necessary to create
type names length, amps etc. We could directly use a dim
option in a var declaration.

MULTIPLE UNITS WITHIN A SINGLE
DIMENSION

When a user wishes to make this distinction for the
purposes of calculating with units of varying magnitudes,
it is necessary to distinguish between the concepts of
'unit' and 'dimension'. We shall consider, therefore, that
all identifiers declared in a dim declaration will be names
of units, not names of dimensions. We introduce another
method for declaring a unit-identifier.

derived-spec = unit-identifier " = "
conversion function,

conversion-function =
unit-identifier * unsigned-number offset
| unit-identifier/unsigned-number offset,

offset = empty ]" + " unsigned-number
!" — " unsigned-number.

(For definition of unsigned-number, once again see the
ISO report.) As we are keeping strictly to the spirit of
Pascal, the identifiers on the left hand side of the " = "
sign may not be declared previously in the same block,
and usual Pascal scope rules apply. We shall call unit-
identifiers which are either base units or units derived
via a unit-rule, 'primary units'. Units declared using our
new syntax shall be called 'subunits'.

The compiler may consider the primary units to define
a standard unit system. Any subunit may be expressed as
a linear function of some unit within the standard system.
This allows units with a common zero (such ais metres
and inches) or units with a different zero (such as Kelvin
and Celcius or Fahrenheit temperatures) to be automati-
cally converted. We see that the problem of determining
a 'path' between two given units (as in Gehani) cannot
arise, because the compiler may compute the function of
the primary unit at the point of declaration of a subunit.
If a subunit is defined in terms of another subunit, the
conversion function specified in the declaration is applied
to the conversion function recorded for the other subunit
to arrive at a new linear conversion function direct from
the primary unit. For each subunit, only two numbers,
the multiplicative and additive constant, need be stored.
Multiple definition paths between two units also cannot
occur; an attempt to create one would show up simply as
a multiple declaration of an identifier. Thus, the problem
is solved by use of a standard syntactic device already
present in the language.

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 3 7 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



R. T. HOUSE

IMPLEMENTATION

We now turn to the question of implementation. For a
start, let us not consider the problem of subunits, as these
represent a mere complicating factor not affecting the
real essence of the problem. Our major concern is to show
how to represent the unit information in a compact,
efficient form, and, particularly, how to implement the
checking of procedure parameters. Although usually
written in science using multiplicative symbolism, the
suggested extension can be implemented efficiently using
an additive symbolism.

Let us assume that a total of n base units have been
declared in a given block or surrounding blocks. Also, a
number of units may be derived from these base units.
With every unit declaration, we associate two arrays of n
elements each (called num and denom, say). In program
careful's main program block (see above), these arrays
will have three subscripts. Within ratio, they will have
five. These arrays store the rational value following the
** sign of the declaration, as a pair of integers. It is not
permissible to store this as a real number, owing to
floating point accuracy problems which would make unit
consistency calculations ambiguous.

Here are the array values of the units for each type
declared in the main block:

length

area

amps

ohms

volts

num
denom
num
denom
num
denom
num
denom
num
denom

len
1
1
2
1
0
1
0
1
0
1

amp
0
1
0
1
1
1
0
1
1
1

ohm
0
1
0
1
0
1
1
1
1
1

We shall consider corresponding elements of num and
denom to constitute a single rational number, and we
shall use the term 'template' to describe a complete num
and denom array pair which describe a given unit.
Checking an arithmetic expression is simply done as
follows: For + and — operators, the templates of the
two operands are simply checked for equality, and the
common template becomes the template of the result.
For multiplication, corresponding rationals in the two
templates are added and common factors cancelled, and
for division they are similarly subtracted. Surprisingly,
checking of procedure and function calls presents only a
modest difficulty.

When compiling a subprogram heading, the compiler
creates a template which is extended by one rational for
each newdim parameter in the subprogram parameter
list. During the compilation of the subprogram itself, this
extended template is treated like any other. Within it,
therefore, templates are longer than in the surrounding
block. Units declared in terms of the newdim units have
suitable templates constructed. The extended template
for each dim tag in the subprogram heading must be
retained as long as the subprogram is in scope. When
compiling a call, a reduced template is computed for each

dim for compatability checks (in the case of a dim
associated with a parameter) or for use as the result units
(in the case of a function result).

The compiler proceeds as follows to create the reduced
template: The fields belonging to types declared outside
the procedure are split off and retained (call this the 'first'
template). For each remaining rational number (each of
which corresponds to a newdim parameter), the template
corresponding to the appropriate actual parameter is
multiplied element by element by that rational, and
added to the first template. If the procedure call is
recursive, the reduced template might not be shorter than
the extended template! In this case the templates
corresponding to the actual parameters will be longer
than the first template; the first template should be
extended by an appropriate number of 0/1 values before
commencing. (Even in a 'normal' template calculation,
extension by addition of 0/1 values will commonly occur
when a template from a parameter declared in an outer
block is used in a block which has additional declared
base units, or which has newdim subprogram parameters.)

To see how this works, consider the following statement
from program careful:

resistance '= ratio{voltage, current);

During compilation of ratio, the following extended
template for the units of the function result was built:

ratio num
denom

0 0 0
1 1 1

1 1
1 1

The first template is:

first num 0 0 0
denom 1 1 1

The actual parameter template for the newdim u is:

num 0 1 1voltage denom 1 1 1

•(A)

(B)

The actual parameter template for the newdim v is:

current
num 0 1 0
denom 1 1 1

The extended template requires this template to be
multiplied by - 1:

num 0 - 1 0
denom 1 1 1

Templates (A), (B) and (C) are added, giving

(C)

num
denom

0
1

0
1

which is the template of an ohm, which is the unit of the
variable on the left hand side of the assignment; the
compiler deems this statement to be correct.

A method similar to the above may clearly be used to
fill in the units of a generic dimensioned compound type
when it is actually used as a declarer for a particular
dimensioned compound type or for a variable. In Pascal
pointers may be declared within record types to point to

3 7 2 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



A PROPOSAL FOR AN EXTENDED FORM OF TYPE CHECKING OF EXPRESSIONS

that very type. This does not in fact lead to any real
difficulty for the compiler. For all declared pointers,
whether or not the object of a pointer is a dimensioned
type, the compiler simply stores a pointer to the type
definition.

The magnitudes of dimensional powers used in science
are rarely very large, neither are they usually more
complex than ratios such as 3/2. Accordingly a fairly
small number of bits would need to be allocated for each
number; a 16 bit word could easily store a useful rational
number. Also, the number of independent dimensions is
not usually large, and so complete templates will not be
large. Templates are only associated with unit and type
definitions and subprogram declarations, and not with
each and every variable. Thus storage requirements are
tolerable, and the algorithms for the checking are
straightforward.

We now consider how to allow for subunits. Along
with the template for each unit, two real numbers, called
the base factor and the offset, are stored representing the
linear functional relationship of that unit to the primary
unit (the primary unit for a derived unit being that unit
derived from primary base units according to the same
template as the unit under consideration). If this is, in
fact, the primary unit, the numbers stored will be 1 and 0
respectively. During compilation of a term for which all
offsets are zero, units which are multiplied will have their
base factors multiplied, and conversely for division. This
will give a base factor for the units of the result. If an
offset is non-zero, that factor must be converted to the
primary unit before being used in a multiplication or
division. (Thus such a primary unit must be carefully
selected to be the one for which the mathematical
operations are meaningful—e.g. for temperature units,
usually the Kelvin scale.) For addition or subtraction of
terms, the units should be reduced to the same base factor
before the calculation, and similarly for assignment. For
records or arrays with differing subunits, automatic
conversion is not recommended, as this should rightly be
performed on the individual components by the program-
mer. This is especially so if the facility is to be useful for
unexpected applications in which any built-in assump-
tions about the relation of a complete array to its
components may prove erroneous.

It could be argued that, if the independent dimensions
were properly chosen, non-integer powers of a base unit
would not arise. This is true, but failure to provide for
rational powers of a unit would prevent functions like
SQRT from being written in a straightforward way; a
more complex and less satisfying syntax would be
required in subprogram headings.

Lastly it should be noted that some programs rejected
as incorrect by the compiler might in fact have been
correct at run time. For example, consider the following
procedure:

procedure/uwjyOt: real newdim a);
vary.realdimb;

z.real;
begin

z=y/x
end;

The compiler will reject the assignment to z. The program
in which this occurs would in fact be consistent if every
call to funny happened to pass a parameter whose units

were b. Nevertheless, if that is the case, then the
procedure should be declared as such. The proper
procedure heading should be:

procedure funny(x: real dim b);

ADDITIONAL CONSIDERATIONS

In most cases it will be necessary to specify the units to
be possessed by constants. This is most simply done by
permitting a constant to be followed by a unit name. For
example, given the declarations from program careful,
we might write:

voltage = 2.6 amp * resistance;

As an aside, I suggest the incorporation into Pascal of
a directive, transfer to permit transfer functions to be
declared. Within standard Pascal, the most obvious
requirement for this is to obtain a value of an enumerated
type which corresponds to a value in another ordinal
type. For example, given

type day = (sun, mon, tue, wed, thu,fri, sat);
var/, n:0..6; d.day;

the only way to convert an integer value n representing
the nth day of the week into a value of type day is the
grotesque method of taking the wth successor of sun as
follows:

d = sun;
for i != 1 to n do d '=• succ(d);

or perhaps to compute the (5 - n)th predecessor of sat.
In the present context, transfer would permit a

programmer who, for reasons of his own, wishes to
violate the unit checking system, to do so. transfer does
not actually provide any new capability, neither in the
case of standard Pascal as we have seen above, nor in the
case of altering units (since a value may be multiplied by
the constant 1, with appropriate units). The only purpose
is elegance and efficiency. A declaration of a transfer
function might be:

function inttoday(i: integer): day;
transfer;

CONCLUSION

The main import of the scheme presented is not that it
adds any new functional capability to Pascal (except for
automatic conversions between subunits), but rather in
its provision of a new restriction. That is that certain
programs written using the checking facilities provided
will be rejected by the compiler on grounds quite different
from the usual ones. A previous paper describing a
scheme for the same purpose has been analysed and
found to be flawed in that the proposal presented there is
not capable of actually providing these facilities. Some
demonstrations of these defects have been given.

The new proposal presented here, however, is not a
modification of the Gehani scheme, but rather a new
development obtained by considering afresh the funda-
mental theoretical principles underlying the concept of a
measurement unit. In a few places, we have stopped

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 3 7 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024



R. T. HOUSE

short of pushing the proposal as far as possible, in the
interests of generality. For example, automatic conver-
sion of arrays and records between subunits could
undoubtedly be made if more restrictive assumptions
about the place of arrays and records in scientific
programming were made. The proposal resulting from
our analysis is a static checking scheme—it relies solely
on the static layout of declarations, and checks calcula-
tions against the information collected from the declara-
tions. If Pascal had a '**' operator, it would be restricted
to possessing constant exponent if its first operand
possessed units (unless in the same term there was another
exponentiation in terms of the same exponent which
removed the uncertainty). In fact, this particular opera-
tion is scarcely seen with a variable exponent in science,
except in unitless expressions.

The ideas presented are not restricted to implementa-
tion in Pascal. That language has been used solely for
demonstration. Checks of this nature would be of most

use in large scientific programming efforts. As was
mentioned in the beginning, Ada would also be suitable,
although the Ada philosophy is slightly different, permit-
ting overlaid identifiers; the philosophy behind this
extension fits in more cleanly with the original Pascal
idea of strictly one definition of each identifier (for
example, prevention of multiple definition of a subunit
depends on this). These proposals also do not exhaust the
types of checks which might be found to be desirable in
a programming language, and more general checking
facilities are being investigated.

Acknowledgements

Thanks are due to Drs Pieter De Villiers and Mary O'Kane for useful
discussions, to Dr Hugh Avey for drawing my attention to the earlier
paper on this subject, and to the referee for suggestions resulting in a
significant improvement in the clarity of this paper and an increase in
its generality.

REFERENCES

1. A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck and C. H. A.
Koster, Report on the Algorithmic Language ALGOL 68, Mathe-
matisch Centrum, Amsterdam.

2. F. W. Burton and B. J. Lings, Abstract data types, subtypes and
data independence. The ComputerJournal'24,308-311 (1981).

3. ISO Specification for the computer programming language—
Pascal. Draft Proposal 7 785 (1981).

4. B. Liskov and S. Zilles, Programming with abstract data types.
Sigplan Notices 9, 50-59 (1974).

5. W. I. McGregor, An alternate (sic) approach to type equivalence.
PascalNews No. 17,63-65, March (1980).

6. N. Gehani, Units of measure as a data attribute. Computer
Languages2, 93-111 (1977).

Received March 1983

374 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/366/377440 by guest on 20 M
arch 2024


