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The time delays experienced by tasks in computer systems are a prime interest for both the user community and
installation management. Thus their prediction becomes an important objective for the computer performance analyst.
Cycle time in scheduling systems and response time, an aggregation of cycle times, in interactive systems are typical
examples. The statistical characteristics of time delays have been represented predominantly by simulation models. In
analytical models, based on queueing network analysis, normally only their mean values have been derived using
Little’s law. An exact derivation is presented for the distribution of cycle times in so-called tree-like queueing networks.
The analysis is performed for a choice of network structure which avoids the need for explicit tagging of some test
customer. Thus expansion of the state space is not necessary. Cycle time distribution is derived in the form of its
Laplace transform, from which its moments follow. Further, a recurrence relation for a uniformly convergent discrete
representation of the distribution may be determined in a similar manner. Numerical examples show how the
distribution of cycle time and its standard deviation vary as the population of a network increases, and how the exact
formulae may be used to validate other types of model, such as approximate analytic or simulation.

1. INTRODUCTION

Prediction of characteristics of the time delays experi-
enced by tasks in a computer system or messages in a
communication network is of great importance to the
performance analyst. For example, in a process control
system one could predict the probability of occurrence of
a system fault caused by failure of a scheduler to complete
a cycle of work in some minimum specified time,
determined in real time by exogenous events. Similarly
in communication network modelling, the probability of
a message transmission taking longer than some given
time may be required. Aggregation of a sequence of time
delays such as these is sometimes the main interest. For
example, in the case of an interactive computer system,
a major requirement of the user community is optimiza-
tion of response time which, even if it has a rather large
expected value, may still be tolerable if it is fairly
consistent.

Time delays have been studied in terms of their mean
values, typically using Little’s law, making the necessary
independence assumptions, €.g. Refs 1 and 2. However,
the mean value of a time delay alone is frequently
insufficient. In the examples given above, for instance,
higher moments are necessary to give the standard
deviation for response time and in polling systems
quantiles are also required. To date, more detailed
characteristics have been investigated, in the main, by
use of simulation techniques, see for example the
collection of papers by Iglehart and Shedler summarized
in Ref. 3. Theoretical studies of the probability distribu-
tions of time delays have tended to be limited to their
Laplace transforms, and thence moments, and networks
of restricted structure.*® Unfortunately analytic inver-
sion of the Laplace transforms is possible only for very
simple networks and numerical inversion is difficult as
well as time consuming in view of the smoothing effect
of the transformation which obscures important details;
properties of the distribution’s tail in particular.

Chow* derives the cycle time distribution for cyclic
networks of two exponential, first-come-first-served
(FCFS) servers, extending the result to central server
networks in Ref. 5. His analysis is based on the
observation that the behaviour of the second server in a
cycle, given the queue length there on arrival of some
customer, is that of the server taken in isolation. An
analysis in continuous time derives the probability
distribution of the queue length faced at the second
server, conditional on that existing initially (on arrival)
at the first. The exact result follows via a complex integral
expression. In Ref. 6 the Laplace transform is derived
for cycle time distribution in cyclic networks of any
number of exponential, FCFS servers.

In this paper we present an exact analysis of the cycle
time distribution for customers in a class of networks with
cyclic properties. This class is chosen so that at all stages
in the computations involved, whatever the state of the
network, the position of some test customer is known. In
particular, given the initial distribution of customers
among the service centres, and the initial position of the
test customer, this is true of cyclic queueing networks if
all servers have FCFS queueing discipline.

Thus cyclic networks are considered first in the next
section, and the analysis is generalized to the tree-like
class of networks.

In Section 3, a solution is derived for the Laplace
transform of cycle time distribution; its mathematical
equivalent, but of limited practical value. Results are
then obtained for the moments of the distribution. A
uniformly convergent discrete form approximation may
be derived in the same way as in our continuous time
analysis, using generating functions in place of Laplace
transforms, the details appearing elsewhere.’

Applications of the analysis are considered in Section
4, and some numerical examples are given which show
how the distribution, its mean and variance change as a
network’s population increases, and how these quantities
can be used as standards against which to assess
alternative, inexact models.
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2. CYCLE TIMES AND THE EQUIVALENT
OPEN NETWORK

2.1 Cyclic networks

The first step in the analysis is to consider the correspond-
ing tandem network consisting of the servers in the same
sequence, but with the last no longer connected to the
first. There are no external arrivals, and departures from
the network occur at the last service centre; all states are,
then, transient. Of course the corresponding tandem
network is not unique since the choice of the first server
is arbitrary.
The method consists of the following steps:

1. On arrival of a test customer at server 1 in the closed
network, the equilibrium probability distribution for
the state space of the network is assumed. Thus the
result presented by Mitrani and Sevcik® can be
applied. This states that the state space probability
distribution seen by the arriving customer is the same
as the equilibrium distribution for the same network
with itself removed.

2. The corresponding open network is now considered.
The cycle time in the closed network is the same as
the time taken for the test customer to depart from the
open network if the assumption is made that returning
customers joining queues behind the test customer
can have no effect on the rate of progress of the test
customer through the network ; i.e. departed customers
can be disregarded.

In other words it must not be possible for customers
to be overtaken by other customers, i.e. the cyclic
ordering of customers must be invariant, and service
rates must be unaffected by the addition of new
customers to queues. This is equivalent to demanding
constant service rates. Order invariance is ensured by
FCFS queueing discipline at all centres together with
the existence of only one path in the network. Note
that PS* discipline is precluded by both the order
invariance and service rates requirements.

The invariance of order implicitly tags the test customer
in the open network in that it is always the leftmost
(furthest from departure) and its position is therefore
always known; in any network state. Such implicit
tagging, although not possible for networks of the most
general type, results in a much smaller state space than
would be required in the direct analysis of the Markov
process with an additional state space dimension included
for the ‘tagging’ information, as in Ref. 3 for example.
Thus it reduces computational complexity.

With the assumptions listed above, the cycle time for
the test customer is identical to the time taken for the
open network to enter the state with zero customers at all
centres. Now, the network can empty in this way by
passing through any of a (finite) number of (finite)
sequences of transitions between (transient) states. Thus
the cycle time distribution, conditional on any particular
sequence, is the convolution of the distributions of the
sojourn times for each state in that sequence, by the
Markov property. The unconditional cycle time distribu-
tion is then a weighted sum of convolutions of state

* PS: Processor sharing.

28 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

sojourn time distributions, the weights being the proba-
bilities of occurrence of the corresponding sequences of
states. The formal analysis of cyclic networks proceeds
on this basis, and may be extended to queueing networks
of more general structure as described in the following
section.

2.2 Generalization to tree-like networks

The method outlined in Section 2.1 relies primarily on
the order invariance property of customers in the network,
so allowing the position of the test customer to be known
in any state and an equivalent open network with no
arrivals to be analysed. Clearly such an approach can be
applied to a much greater class of networks, although not
to networks of arbitrarily interconnected service centres.
In this section, cycle time distribution is considered for
the class of tree-like networks, defined as follows.

Broadly speaking, a tree-like network is, as its name
suggests, one which has branches with no loops or paths
between separate branches. Formally a tree-like network,
abbreviated to tree, is either

(i) Null, or

(i1) a tandem network (root segment) the last centre, b, of
which is connected to more than one tree—the
primary subtreesin the sense that a customer departing
from centre b passes directly to the first centre of a
primary subtree according to the network’s routing
probabilities.

The leaves of the tree are those centres which are
connected to a null tree. In particular, then, a tandem
network is a tree by virtue of being connected to two (or
more) null primary subtrees from its last centre.

A closed tree-like network is one in which the leaves are
all connected back to the top of the tree, i.e. on departure
from a leaf centre, a customer may proceed directly to
the first centre in the root segment. Thus, cyclic networks
are a special case of closed tree-like networks. An
example of a closed tree-like network, showing a primary
sub-tree, is shown in Fig. 1.

The cycle time in a closed tree-like network is the time
elapsed between successive arrivals of a customer at the
first centre in the root segment. This is equivalent,
assuming instantaneous passage between centres, to the
time elapsed between arrival at the first root segment
centre and departure from the corresponding open
network.
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Figure 1. A closed tree-like queueing network.
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The order invariance property of cyclic networks is
preserved in the form of a non-overtaking property in tree-
like networks. Given the path taken by the test customer
in the network and the FCFS queueing discipline of the
servers, no customer behind the test customer in the
latter’s path can subsequently enter a centre in that path
ahead of the test customer. Thus the network can be
analysed recursively as a composition of tandem networks
of the type considered in Section 2.1: tagging is still
implicit. Intuitively, tree-like networks are the most
general that can be solved by this method; otherwise the
non-overtaking property will not hold. This is proved to
be the case in Ref. 9, yielding a formal definition of tree-
like networks.

In the following section the notation used in the
analysis is defined and the basic recursive result for the
cycle time distribution is given in terms of convolutions
of the distributions of the time intervals required by the
test customer to pass through each (linear) segment of
the tree. From this result, expressions for the Laplace
transform, and so the moments of the cycle time
distribution, are given in Section 3.3.

Although the required result is a mixture of convolu-
tions of negative exponential distributions, the problem
is to determine the weights for the components in this
mixture, and to keep track of the parameters of the
constituent exponential functions. It is shown in the
following section that these all derive from the inverse of
the matrix which is the difference between the identity
and a trivial generalization of the state transition
matrices, (I — T*)~'. Because of the lower triangular
form of T*, this may be computed by a simple algorithm.
Despite its limitations for direct practical use, the Laplace
transform is the principal result; not only academically,
but also as the function from which the moments follow
exactly by a straightforward algorithm, and as the basis
for a parallel argument which yields a discrete form
approximation to the result.

In any exact analysis of the distribution of the time
elapsed between a network’s entering specified states,
every possible sequence of intermediate states must be
considered, each making its own additive contribution.
Aggregation leads to some form of averaging, and a result
which must then be approximate, even if adequate for
use in practice. This is in contrast to the case of solving
for marginal queue length probabilities, which are by
definition aggregates, relating neither to individual
customers nor states.

The resulting computational complexity limits the
domain of numerical application to some extent, but
certainly permits validation of alternative model types,
such as simulation and approximate analytic formulae.
In the case of the latter, the procedure is clear, a precise
error being computable in any given test. For simulation,
the validation process is a little less simple. Simulation
never yields precise predictions, only estimates for the
quantities of interest, given along with estimated error
ranges and their associated levels of confidence. Thus it
is necessary to validate not only the model’s design and
implementation as above, but also the inherent impreci-
sion. For any specified confidence level, the width of the
error range depends on the size of the simulation sample,
i.e. on the number of simulated events, and so on the
length of the simulation run. It is therefore necessary to
establish confidence in a simulation with respect to

known results according to appropriate statistical tests.
The present analysis provides just such known results, or
standards. Note, incidentally, that simulation estimates
all require quite restricting underlying assumptions, and
the confidence band widths are typically inversely
proportional to the square root of the simulated run time,
rendering simulation highly inefficient as a predictive
model.

3. DERIVATION OF THE MATHEMATICAL
FORMULAE

3.1 Notation

Consider a tree-like network, A, with r primary subtrees
labelled (arbitrarily) 4,, 45, ..., A, (r=>0). If r=0,
there are no non-null primary subtrees and the network
is tandem.

Let A consist of a total of M centres and have root
segment B consisting of b centres: B,, B,, ..., B,. Let
the jth primary sub-tree of 4 have M; centres (1 <j <r).
Centre c€ A is numbered m(c) defined as

i ifc=B(l<i<bh)
m(c) = s—1
m)+b+ Y M, ifceA(l1<s<r)
i=1 where M; is the
number of centres

in subtree A(1<j <7r).

where centre c€ A, is numbered my(c) with respect to A;.

The mapping m between the set of servers in 4 and {1,
2,..., M} iseasily seen to be a 1-1 correspondence.

The network A is assumed to be of the Jackson-
Gordon-Newell type,'®!! all the servers having FCFS
queueing discipline and service times with negative
exponential probability distributions.

Let the state space of 4 under this centre enumeration
and for a population of N customers be denoted by S and

given by

M

S={n ZnisN;niZO,lsisM}

i=1
where if ne S, n; is the number of customers at the ith
numbered centre, 1 <i< M.

Let the set of valid initial states be denoted by S’ and

defined by

M
SN = {nlneS; Y ni=N;n > 0}
i=1
which represents a state with a total of N customers and
the test customer at (the back of the queue of) the first

centre in the root segment of A.

In order to proceed with the recursive analysis, it is
also necessary to define one more subset of states, namely
those which can introduce the test customer into a
primary subtree after one state transition. Define E< S
by

E={nlneS;n=0,1<i<b;n,=1}

Hence E consists of states with only one customer left in
the root segment, B, of A; at its last centre. Because of
the FCFS queueing discipline, this must be the test
customer.
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Let the service rate of centre i be y; (1 <i< M), a

constant for the reasons explained in Section 2, and
define 6, ¢, A by

0(u, v) = number of centre from which a departure
causes a transition u — v (4, ve.S)

¢(u, v) = number of centre at which a customer arrives
on a transition ¥ — v (u, ve S)

where 0(u, v), ¢ (4, v) are undefined if a one-step transition
u — visinvalid,
Aw)= Y u, the total service rate in state ue S.

1<jsM
uj>0

The state transition matrix for the embedded Markov
chain, 7, may be derived from the instantaneous
transition rate matrix or the balance equations for 4 as

How,vPow,v), ¢,y if @ one-step transition u — v is
T, = AMw) valid
0 otherwise

where p is the routing probability matrix of A4, so that for
a transition, u — v, caused by a customer moving within a
segment, the factor would be absent in the expression for
T,,.

By the exponential assumption, the time spent in state
ue S also has exponential distribution, F, say, with mean
{A(u)} ~! and so has Laplace transform

The modified transition matrix, T*, is defined by T* =
T,D,,i.e.

if a one-step transition u — v is
valid
otherwise

#O(u,v)p(?(u,v).¢(u,v)
T = s+ Aw)
0

Let the probability distribution function for the time to
pass through 4 on some stochastically chosen path,
conditional on initial state aeSY), be G(t|a) with the
unconditional distribution function for an initial equilib-
rium state distribution being G(7). Let these distributions
have Laplace transforms L(s|a) and L(s), respectively.

Let the random variable for the time taken for the
network A4 to reach state f from state a (x, feS) be
denoted by 7,; and define

Hy(t) =Pr(ts<1) (x# P
Haa(’) =1

3.2 The basic recurrence relation
Proposition 1. The conditional cycle time distribution,

G(t|®), in a tree-like queueing network, A, with b root
segment centres, r primary subtrees, N customers initially
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and start state a.e S*’ in which the test customer is at the
first numbered centre of 4, is given by

G( |a)
HaO (r = 0)
- - }).I#b (j) .
Y Y AG(|F))DF,®H,; otherwise
pet j=1 AB)
where

G;( |y) is the cycle time distribution for subtree 4;
conditional on initial state y in the state space of 4;
state 0 is that representing zero customers at all centres
P; = pyx;, the routing probability, in which
Jj—1
K=1+b+ Y M (1<j<r#0)
i=1

B =BPy - (1<i<M)

BY e S is the state succeeding fe S entered by transit of a
customer from centre b to the first centre in subtree
A(1 <j<r). BV is the same as Y with its components
not corresponding to centres in subtree 4; removed.

Proof. Let the random variable for the time taken for
the test customer to leave the network from state fe S be
denoted by Y. Also, let d; denote the random variable
for the network’s sojourn time in state .

Then, forae S” and a¢ E, r # 0,

' Y, < t — uand transition from
G(tle) = Y | Pr| state B caused by test customer
PeE service completion

x dPr(t,; < ulf)

since for any path in A taken by the test customer, some
state f€ E must be entered just before passage of the test
customer to a primary sub-tree, and using the fact that
T,p is @ Markov time. Thus,

G(t]a)
(o Y < t — uand test customer
=) Y. Pr| enters primary subtree
peEY (=1 j after state 8
x dPr(t,p < ul|p)

Now, the probability distribution of ,and the probability
that e next state transition is f — Y are independent
by the Markov property, so the expression { } may be
written as

t—u

f Gt —u—v|pY)  dPr(5;<v)

0

distribution of time from state
BY - end of path

: P,
R0

state transition
probability g — gV’

distribution of
time spent in
state f§

where B is, as defined in the proposition statement, the
state succeeding f caused by transit of a customer from
centre b (last in the root segment) to the first centre in the
Jth primary subtree’s root segment, numbered K; say;
P; = pyk;, the associated routing probability. By defini-
tion,
ji—1
K=1+b+Y M (1<j<r)

i=1
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Thus the expression { } is

r

P ;Z) (G 1B) @ F)(t — u)

where, as required,
ﬁ D= ﬂl + K

are the components of the state space vector for 4; taken
in isolation corresponding to state Y in A. The sub-trees
A; may be considered separately in this way since all
transitions in other sub-trees A, (1 < k # j < r) are sto-
chastically independent. Thus,

(I<i< M)

Piu,
G(t|la) = “=G( [F)® F,®H,
a ;1;5,; TN i [ s
forr # 0and a¢ E.

For ae E, the same reasoning and resulting equation
applies using the result that

H, =1 (>0,ae9)
Forr = 0, A is a tandem network, and so

G(t|@) = Heol?)

This completes the proof.

Note that the tree-like property of the network A4
allows the position of the test customer to be determined
at all stages in the recursive computation, using the
partition of each route (or sequence of states entered by
the network) via the states fe E. The test customer is,
therefore, implicitly tagged.

Note further that the terms H,; are the time delay
distributions corresponding to the test customer’s passing
into service at the last centre in the root segment of the
tree-like network. Thus, in order to compute any
properties of cycle time distribution, the corresponding
properties of H,; must first be derived. The analysis of
the following sections proceeds thus.

3.3 The Laplace transform and moments

The Laplace transform is simply obtained using the result
of Proposition 1 and the moments by differentiation.
Corresponding results for the distribution H,z(x, f€S)
are first derived in the Lemma which follows the notation
given below.

Fors, te S, define

Ry={(i1,02,...,0)ln€eZ*;ieS, 1<j<n;
il =a,l”=ﬂ, T}kik+l #0, 1 Sk<n}*
i.e. the set of all sequences of states entered, or routes,
from state « to state . If
i= (ll ’ iZ, ceey in)eRaﬂ
then let |i| = n, the number of steps in the route i. Let
Ryg={rlreRpr#p 1 <i<|rl},

the subset of loop-free routes. For tree-like networks,
Rys = Ry, all states being transient. A formal proof of
this statement is given in Appendix A.

Let H,,(7) have Laplace transform L,(s).

*Z* is the set of positive integers.

Lemma 1.
Log(s) = (I — T*)g'
where I is the unit matrix.
Proof.
Hy()= Y Pr(r|a, p)Pr(t,; < t|r)

r€R'qp

since the end states o, § are implied by the route r, and
where

Pr(r|a, B) = Pr{r|r, = a, |, = B}.

Now,

Irl=1
Pr(t < tlr) = Pr{ Y 6.< t}
i=1
and
Ir] =1

Pr(rlo, )= [ T.,,,

i=1

Thus, by the Markov property,
el -1 [rl-1
wo= S (1. fer

reRgp Li=1 j=1
and so
Irl -1

La[}(s) = Z 1—[ T, i D, (S)
reR'qp i=1
where L,,(s) =1,Vs > 0, y€S.
This result applies to networks in general; in fact to
any such Markov process. Rearranging and dropping the
prime on R, for tree-like networks,

® k-1
Lyy=3 X T1T%.,

k=1reRgp i=1
Irl =k

Fork > 3,

k-1

Z l—[T:’.’H: Z { Z HT:T.H} )‘:( 1B
i-rEIRap i=1 Y- 1 €S lI-jIR:’ck— ll i=1

for if Are R,; with r, _, = y,_, then either no one- step
transition y, -, — fexistssothat T}, | ;=0,0rR,, =
A

By a simple inductive argument, this yields the result
Y...Y Y TAT, ...
v2€S Yk—2€S k- 1€8
T;;—z?k—l Y18 [{T*}k_ 1]‘1/3
and so

an

La0(3)= Z {T*}ﬁ,;—]

k=1

since L,,(s) = 1 and L,4(s) =
o — B by definition. Thus,

Log(s) = I = T*]54'

Ty, for a one-step transition

10 is the empty set.
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since T is a stochastic matrix and for s > 0, D,(s) <
1VueS, so the series converges. In fact here 3ke Z* s.t.
(T*) = 0, since ultimately the network has no customers
and can have no transitions.

A simpler, but non-constructive, proof which avoids
the need to consider the set R, is as follows.

For a # B,
Laﬁ= Z T*L

y€eS

Now, T§,L,, = 0 for all «, yeS since if there is a route
o — y there is no route y — a, otherwise a and y would be
recurrent states, contradicting the fact that all states are
transient in tree-like networks. Thus we may write
Lo,=1+)Y TL
y€S
the summation term yielding zero contribution. Hence,

L=1+T*L
as required.
Theorem 1.
L(s|o)
{[1 Tz (r=0)
Fith [ — T*15'L(s|BY) otherwise
p =i

peej=1 S+ AB)

where Li(s|y) is the Laplace transform of Gtly, 1<j

<r
Assuming an initial equilibrium state space probability
distribution P(a), ae S,

L(s)= Y P(L(s|a)
aeS)

The proof follows directly from Proposition 1 and Lemma
1, using the fact that F; has Laplace transform

Dy(s) = AB){s + A(B)} !
By the result in Ref. 8, forne S,
Uy H;M=1 {ei/l‘i}ni
e,-G(N - 1)

where G(N — 1) is the normalizing constant for the closed
network, A, with one customer removed and {¢]1 < i
< M} is such that

P(n) =

6=

J
Since all states are transient, by suitable enumeration,
with centres numbered as defined in Section 3.2, the
transition matrix T, is lower triangular.® Thus (/— 7*) !
may be computed by a simple back substitution process.
Moreover, not every column of the inverted matrix is
required; only

IIME

Jp,l (I<isM)

{a- T*);pl |Be E}

Indeed, for cyclic networks only the first column is
required. As a result, both numerical precision and
computational efficiency are enhanced.

The moments of cycle time distribution may be derived
by differentiation of the Laplace transform as follows.
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Corollary. Let the pth moment of cycle time distribution
for the tree-like network, A4, of N customers and r primary
sub-trees, conditional on start state a€ S’ be denoted by
M(p|a) where

N
S=U SsP
n=1
in which S, is the state space for network 4 having

population n.
Let

|m|
0=y {H(l—n“r(m,-)}(l—n“ (>0
Slm=p

m;>0

XO =1

where |m| is the number of components in the vector m
and

aﬂ
Top(m) = {,1( ) (a, BeS)
Then, for ae ',
pIX® (r=0)
Mpley={ p!'Y Y P, Y,  XHAB} !
BeE j=1 utv+w=p

u,v,w=0
x Mw|pO){w!}~" (r>0)

where M; is the moment function for the primary subtree
A;.
J .. .
The unconditional pth moment of the cycle time
distribution is then

M(p)= Y P@@M(plo)
aesS)
Proof.
M(plo) = (— )"[—L(sla)} (xeS")
=0
Forr=0,
Mpla) = (—y| L T*)-‘]
(ploy=(— [@ T |

=p!IXR
by the result derived in Appendix B which yields

drT?,
ds™ s=0

For r > 0, by Theorem 1,
Mpl))=(=PY Y P

BeE j=1

" [‘d:”{('“ ™ e |

=(-)ry Z Piu,p!

= (=)"m!Ty(m) (a, B€S)

PeEj=1
(u)(o)( )v L(w)(Ol ﬂu))
R 2y (e
u,v,w20
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where the nth derivative of a function of s, F(s) say, is
denoted by F™(s) and Leibnitz’s theorem for repeated
differentiation of a product has been used. Here, F =
(I — T*)~ ! so that the result follows as for the case r = 0.

Analgorithm to compute moments from these formulae
is illustrated by the explicit expansion of the following
terms

XV=(-D7'TOHU -1
XP=(I-D'TQU-T)!
+U-D)7'TOU-D'TMHU-T)!

and forr >0

_ay v B
MQ|o) = 2,,;,5,»; B X9
+ AR + $M;21 B9) + XY M;(1]| ')
+ Mi(L|BO)AB) + X PP}

In theory, then, any number of moments of the cycle time
distribution may be computed. But in practice, unoptim-
ized recursion may be excessively inefficient, since the
moments for the subtrees of 4 may be recomputed many
times, and many large associated data structures must be
stored simultaneously. However, for the first two mo-
ments, the computations involved are not prohibitive for
networks with simple structure. Typically no higher
moments will be required, particularly if, for example,
the central limit theorem is to be applied for prediction
of response time (an aggregation of cycle times!?)
distribution, under suitable independence assumptions.

4. NUMERICAL RESULTS

The formulae derived in the previous section for the
moments of cycle time distribution are simply expressed
as algorithms and programmed for execution on a
computer. Moreover, a similar approach may be used to
derive an approximate discrete form for the actual
distribution of cycle time.” The negative exponential
state sojourn times are first expressed in discrete form by
geometric distributions. Their convolutions, correspond-
ing to test customer routes through the network, are
determined using Z-transforms (corresponding to the use
of Laplace transforms in the continuous time domain),
and numerical computation may then be performed
directly as simple summations. Approximations are
introduced at an early stage in this analysis, and
expressions are subsequently manipulated. Thus an error
analysis becomes essential, and it is shown in Ref. 7 that
the result is uniformly convergent to the exact cycle time
distribution as the time axis mesh size approaches zero.
The choice of network structure results in an imple-
mentation which is efficient compared to the ‘brute force’
approach involving tagging a customer explicitly and
working with holding time distributions in an extended
Markovian state space.'® However, the algorithms are
still very complex computationally and permit only
relatively small networks to be analysed—the largest in
our selection of tests has seven servers and four customers.
This applies particularly to the representation of the
distribution in discrete form as a histogram, especially
when a small mesh size is required. The mesh used in our

A Simplest non-cyclic case

? 9

B Cyclic

C More complex

02 0.5 03

g g

Figure 2. Test network specifications.

e

examples has size equal to one tenth of the associated
mean value.

From a series of tests, the following three are presented
to show the way in which the distribution of cycle time
changes as a network’s parameters vary and to illustrate
how the accuracy of an approximate method may be
assessed by comparison with standards.

The networks are all Markovian, closed, with FCFS
exponential servers, and defined in Fig. 2. The service
rates and routing probabilities are shown in the circles
and by the arrows, respectively. The mean and standard
deviation of cycle time distribution were calculated for a
customer population of four in each case, with the results
for population two and six also given for case A (Table
1). The distributions were also computed in histogram
form by the algorithm given in Ref. 7, and may be seen
in Figs 3-5. Thus, from Fig. 3 and Table 1, the effect on
cycle time distribution of changing the number of
customers in network A can be seen. Similar results were
also obtained by the approximate method of Ref. 12 and
are included in Table 1; the corresponding histograms
appear with the exact plots in Figs 4 and 5. Accuracy of
the approximate method may be assessed for these test
cases via its predictions for standard deviation and

Table 1. Summary statistics for test cases

Popu- Standard deviation  Percentage Maximum  Per-
Case lation Mean (exact)  (approx) error difference  centile
A 2 2.186 1.451 1.488 26 0.030 54
A 4 4026 2035 2.115 3.9 0.033 62
A 6 6.003 2491 2574 3.4 0.013 77
B 4 4.245 1962 2.187 115 0.041 14
C 4 4246 1.995 2.171 8.8 0.066 26
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0.15

o Population 2
+ Population 4
X Population 6

e
Rt

Probability

0.05

Cycle time (s)

Figure 3. Cycle time distribution for network A with 2, 4, 6
customers.

percentiles. It should be noted here that this particular
approximation yields exact mean cycle times. Precision
is therefore indicated in Table 1 by the percentage error
in the standard deviation and by the maximum difference
between the cumulative discrete distributions (along with
the corresponding quantile), and accuracy can also be
judged by inspection of the Figures.

It can be seen, particularly from Fig. 3, how the
distribution becomes more Normal as the numbers of
customers in the networks increase—corresponding to a
greater number of convolutions and better validity of the
central limit theorem’s assumptions. Moreover, for
smaller populations, the shapes of the curves are
characteristic of lower-order Erlang density functions,
corresponding to (mixtures of) small numbers of convo-
lutions of negative exponentials. It may also be seen (Figs
4, 5) that the approximate method yields a ‘flatter’ density
function, with correspondingly larger variance (Table 1).
This results from a greater degree of averaging, arising
from the assumption of independence between servers
which underlies the approximation in this particular
model. The effect is less pronounced for the more complex
network C (Fig. 5) in which less correlation between
customers is to be expected than in, say, cyclic networks
in which their ordering is invariant under FCFS queueing
discipline.

01

o Exact |
* Approximate

0.05

Probability

3k ot 0.
2 3 4 5 6 7

Cycle time (s)

Figure 4. Exact and approximate histograms for cycle time distri-
bution in network B with 4 customers.
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01

o Exact |
X Approximate

0.05

Probability

0.,
L Y

I L ] |
0 1 2 3 4 5 6 7

Cycle time (s)

Figure 5. Exact and approximate histograms for cycle time distri-
bution in network C with 4 customers.

S. CONCLUSION

The probability distribution of cycle times has been
derived for the tree-like class of queueing networks, in
terms of its Laplace transform, its moments and as a
uniformly convergent discrete-time representation. The
importance of this result lies in the modelling and
prediction of time delay characteristics in a variety of
physical systems such as communications and computer
networks. From the moments, predictions for response
time distribution may also be made. Response time is
represented by the sum of several successive cycle times
for some customer. If these constituent cycle times are
assumed to be independenely distributed, as indicated in
Ref. 9 for example, the central limit theorem may be
applied so that the response time distribution, conditional
on the number of cycles, is asymptotically Normal. Thus
only the first two moments of cycle time distribution are
needed, simplifying the computations required. Perhaps
more importantly, from the histogram representation,
percentiles may be computed, allowing for example, the
probability of system failure to be predicted, rather than
merely an aggregate description in terms of mean time
between failures and perhaps its standard deviation. By
the convergence property, the precision of any such
estimate is, in theory, arbitrary (over the whole of the
distribution in view of the uniformity), although in
practice limited by the computing resources available to
handle sufficiently small mesh sizes.

The computations involved in the implementation of
the formulae derived here are undeniably complex. As a
result, the main practical use of the theory is its
application to simple network structures to provide
standards by which to assess the precision of alternative,
inexact solutions, such as simulation or approximate
formulae. The tests of section 4 illustrate the methodology
for such comparisons, and demonstrate its viability. The
ultimate goal of this research direction would be to create
performance tools for practical use from the more
efficient, but approximate models, the accuracy of which
would be adequate according to systematic validation.
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APPENDIX A

Proof of non-existence of loops in tree-like networks

In the notation of Section 3.3: for «, f€ S,
RaB = R{;ﬁ
Proof

1. Trivial for f = 0, the state with zero customers.
2. Otherwise, suppose the result is false and assume the
centre enumeration given in Section 3.1.

Then if a customer passes from centre i to centre j, i < j,
Ire Ry; with |r| > 1 and integers i, k s.2.

rZ,n=Bn (n¢l’k)
ryi=p—1
rae=pP+1

i.e. the state transition  — r, is caused by passage of a
customer from centre i to centre k. Choose r with
minimum such i.

Now, since re Ry, 3 integersn > 2, j < is.t.

Tni=T2,

r",j > 0

Tn+ 1,i = rn,i + 1 = ﬂi

Fn+1,j="Tnj— 1
1.e. the state transition r, » r, , ; is caused by passage of
a customer from centre j to centre i. Suppose first that

Bi=r1;>0 and consider the sequence of states, r*,
defined by

rt=r

(#1,j,k)

*
rm,l_rm,l

*
Tm,i = m.i+2
*
Tmj=Tmj— 1
*
rm.k_rm,k_l

where 2 < m < n, so that, in particular, the transition
rf — r} is caused by passage of a customer from centre j
to centre i, subsequent transitions being caused by the
same passages as in route r;

rmer=rn (#ik)
% — p¥*
rn+1,i_rn,i_1

* -
rn+1,k_rn,k+1

so that the transition r¥ — r¥, , is caused by passage of a
customer from centre i to centre k. Thus r¥*, , = r,,, and

m+1<m<]r))

Thus, r* € Ry contradicting the definition of i since j < i.

If B;=0, 3 integers h <j and p <n such that the
transition r, —r,, ; is caused by passage of a customer
from centre A to centre j. Assume f, > 0 and consider the
sequence of states r** defined by

rh=r,

= n

ok _ % P
rm,l - rm,l (l # 1 h,J)
*k __ .k
rm,i_rm,i—'l

2<m<p
=1

Y =rmi+2

pP+l1<m<]r|)

Then r**e Ry, again contradicting the definition of i

since h < i. A simple inductive argument completes the
proof for the case 8, = 0.

kk __ .k
T'm =1Tnm

APPENDIX B

Multiple differentiation of a (weighted) sum of products

Let F(s) =[1 — A(s)] " !. Then,
(1 — A)~ 4™
{I—Iﬁ( : }

dP
FP(s)=—F(s)=p! Y

dsp Z|,,,| m=pli=1 m,-!
m;>0

1<j<|m|

x(I—A)~!
where A™ = d™4/ds™ and |m| is the number of compo-
nents in m so that |m| < p.
Proof

The proof is by induction on p.
For the case p = 1, the formula gives

1
FOs)= Y N[]U— 4)'AVI — 4)~!
myp=1 1
= (I — A) ' AV(J — A)~!
which is true, since for matrix M(s),
d dMm

E;{M(S)}_l = —Al_lal‘l_1

Now assume the result is true for derivatives up to the
pth.

Fet 1)(s) = d%- F(p)( s)

= X 4 Y say

where X =
‘""{j“(l—A)“A""”}(I—A)“A"”J“’

> pt YT

2m=p j=1li=1 mi! - mj'
' m — A) 1 gm)
&m0 X{ a A)' % }(I—A)“l
i=j+1 it
and Y =
|m| +1 j—l(]_A)—lA(m.-) (I_A)—IA(l)
oz ATl |
Zm=p j=1 i=1 m,‘! 1!
&,,,"> Iml (7 — 4)~140m
° x {H(—%—}(I—A)“
i=j it
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with slightly abbreviated notation.

First consider X and for each m, j define n by
m=m (1<i#j<|m|)
hj=m; +1

Then,

In] In] -1 4(m)
I—A) " A" _
x= 3 pr 3 {102 g
Zn,=p+l j=1 i=1.
&, W1

Now define kY’ for each m, j by
K=m (1<i<))
k}” =1

K =m_, (j<i<|ml+1)

Then, In] Ikl 1 4(k)
" I—A) A%
y= ¥y pzz{krﬁ——l——}u—Arl
Zk,=p+l Jj=1 =1
&k,>0 kj=1

Thus, relabelling k; by n; in the expression for Y,

In| In| —1 4(n;
X+Y= Z P!Z{an}(l—fi)_l

ZHI:p+1 j=1 i=1
&,.l>0

But,Z}';’,nj=p+ 1,s0
FPr(s)=X+Y .
"I — A) A
_ @+nﬁrﬂ——%——}a_mﬂ

n=p+1 i=1 it

& n;>0
as required.
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