Security Management and Protection—A Personal

Approach

Maurice V. Wilkes
Digital Equipment Corporation

In all security systems, a distinction must be drawn between security management and protection. Security management
can be described by the well-known lattice model and implemented by means of an access control algorithm in the file
manager. The effect is to erect a security fence around each user’s file directory. For protection the simpler capability
model suffices. In addition to the user file directories there is a system-wide capability index. This is not protected by a
security fence and procedures that can make direct use of it may only be used in that part of the operating system—
the security kernel—which is certified by a security inspector. At the present time the efficient implementation of a
capability-based protection system presents difficulties and further research is called for.

INTRODUCTION

Computer security has a number of distinct aspects. This
paper is concerned with the relatively narrow problem of
safeguarding information held in a time-sharing system
from being communicated to unauthorized persons
through the action of a user working at a terminal. It will
not be concerned with the safeguarding of information
against accidental corruption or destruction, nor with the
protection of the communication channels by encryption
or otherwise. Similarly, outside the scope of this paper is
discussion of ways of monitoring the actions of system
programmers and others who have access to the computer
room.

In all security systems, manual or mechanized, a
distinction must be drawn between security management
and protection. In the discussion of manual systems the
emphasis is usually on the former. Documents are
assigned security classifications and each user is accorded
a security clearance. The well known lattice model of
Bell and La Padula' provides a convenient means of
formalizing such a security management system. A
person wishing to obtain a copy of a classified document
must show that his security clearance entitles him to do
so. Having obtained possession of the document, he must
then ensure that the information in it is properly
protected. In manual systems the onus of protection rests
entirely on the individual. It has two aspects that may be
termed physical and moral, respectively. The recipient
of the document must attend to its physical security, for
example, by keeping it locked up when he is not using it
and he has the moral duty of not communicating its
contents, verbally or otherwise, to unauthorized parties.
In a computer system, access to files can be controlled by
an access control algorithm within the file manager.
There is no difficulty in designing the algorithm so as to
implement the lattice model. It is only necessary to
associate with each file a list of the persons or classes of
persons who are permitted to access it, together with a
statement of the type of access to which they are entitled,
namely read, write, or execute. When a user needs access
to a file, the program operating on his behalf calls the file

manager and quotes his security clearance.* If this is in
order the file manager opens the file for him.

Once a file has been opened for a user, the physical
responsibility for its protection rests with the operating
system. This enforcement of protection by the operating
system is by no means a trivial matter, and discussions of
computer security are largely concerned with it.

Theoretical discussion of protection can be based on
the capability model; this is a simpler model than the
lattice model needed to discuss security management. A
capability names a resource and confers certain access
rights in respect of it. A non-computer example of a
capability is a pass to a building that allows the user to
enter certain specified rooms. Such a pass will only be
issued after the security status of the applicant has been
examined, but thereafter no further reference to his status
is necessary; the mere possession of the pass is sufficient
to confer the access rights. The same is true of a
capability. For example, when a file is opened on behalf
of a user, the process operating for him receives a
capability for the file, and can then access it without
further formality. It is important to observe that the
capability is held by the user’s process and that no
representation of it is ever handled by the user himself.

CONFINEMENT

There is nothing to prevent an ill-disposed user from
making a copy on paper of information in the computer
and passing that copy to some third party, that is,
committing a breach of security outside the computer.
However, a secure computer system will prevent him
from using the computer itself to commit such a breach
of security, either deliberately or accidentally. In partic-
ular, the system will prevent a user from copying
information from a file at one level of security classifica-
tion into a file at a lower level of classification, either
directly or after modification. This is known as confine-
ment.> 3

* Note that it is only people who have a security clearance. There is no
provision, in the system being described here, for attaching security
clearances to system programs or to physical devices.

CCC-0010-4620/84/0027-0003 $02.50

© Wiley Heyden Ltd, 1984

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 3

20z Iudy 60 U0 1s9nB AQ $9G81 /€/1/.Z/2191E/|UlWoo/ W00 dnodlWapese/ SRy WOl PSPEOjUMOQ

M. V. WILKES

A straightforward way of enforcing confinement is to
design the access control algorithm so that a user is never
given write access to files at a level of security different
from that at which he is currently working. This implies
that when logging in, a user must specify the level at
which he proposes to work. If he logs in at the secret
level, he may expect to have write access to certain files
at that level, but no more than read-only access to files at
the confidential or unclassified level. He will, of course,
have no access at all to files at the top secret level. A user
may log in at any level up to the highest that his security
clearance will permit. If provision for downgrading
information is required, then an exception to the above
rule must be made in favour of a small class of users who
are specifically authorized to perform the downgrading
operation; these users will be allowed write access to files
at a level below that at which they are logged in.

If the course outlined above is followed, the problem
of confinement is solved at the security management
level; it does not impact in any way on the problem of
enforcing protection.

THE CERTIFICATION OF AN OPERATING
SYSTEM

Certification implies that a competent person has
inspected the code of the operating system in detail, and
has felt able to issue a certificate to the effect that, in his
opinion, the system is secure. In much the same way an
auditor issues a certificate confirming the correctness of
a set of accounts. Ideally, certification should be based
on a formal proof of correctness, but significant theoreti-
cal and practical advances in the art of proving programs
correct will be needed before this can be done for a
complex system. For the foreseeable future, reliance must
be placed on a systematic search for security loopholes.
It is in this sense, rather than in that of formal proof, that
the term security inspection is used in this paper. The
security inspector concentrates on security, and only
concerns himself with functional correctness to the extent
that is necessary for him to confirm the security of the
system. Thus, a system may have functional defects of a
serious kind—for example, it may be incapable of
displaying information on a user’s terminal—and yet
pass a security inspection with flying colours.

Operating systems are ordinarily written without any
regard to certification and in such cases the task of
certification, if attempted, would prove to be an impos-
sible one. Efforts have, therefore, been directed towards
structuring an operating system in such a way that
certification for security is possible. What follows is
essentially a discussion of this problem from the point of
view of the capability model.

One approach to the design of a secure system is to
identify a part of the operating system known as the
security kernel. Provided that the security kernel is
properly written, software bugs in those parts of the
operating system thatlie outside it, together with software
bugs in users’ programs, will be incapable of causing
breaches of security. The advantage gained is that it is
only the security kernel and not the entire operating
system that has to be certified. Clearly, this advantage is
only realized in practice if the security kernel is a small
part of the operating system and this is a requirement
that it is, in practice, not easy to satisfy.

4 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

OBJECT-BASED SYSTEMS

What are referred to as objects have various roots in
computer development. One important root is formed by
the classes that appeared in the SIMULA language.
Anotheris formed by the protected procedures introduced
by Dennis and Van Horn. Later the term abstract data
type came into use in programming language circles.
These developments led to the packages in ADA and the
modules in MODULA 2. The above are all software
developments and the protection associated with the
objects—by whatever terms they are known—is enforced
at compile time. Concurrently work has proceeded on
unconventional processors in which capabilities are
implemented directly in the hardware. These develop-
ments stem from the work of Fabry at Chicago in the
1960s. They include the Plessey System 250,* the CAP
computer at Cambridge University,* ® !° and the Intel
iAPX 432.7 In all these systems, protection is enforced at
run time. The Hydra operating system® is capability
based, but the protection is enforced by software instead
of by hardware. An unimplemented capability-based
system has been described by Feiertag and Neumann.’

Objects fit well into the capability model. At the
abstract level it is sufficient to say that a capability
confers access rights to a named object, for example, to a
segment, to a procedure, to a file directory, or possibly to
a physical device. At a less abstract level it may be helpful
to observe that a capability is, in the first instance, a
capability for a segment. This segment may contain
arbitrary data, and such a segment constitutes the
simplest form of object. On the other hand, the data in
the segment may have a special format and be designed
to be interpreted in a particular way. If so there will be a
type associated with the capability that specifies how the
data are to be interpreted.

Among the items embedded in an object may be
capabilities for other objects, and thus we have the
concept of compound objects. An important form of
compound object is a procedural object, or protected
procedure to adopt one of the terms introduced above. A
diagrammatic representation of simple and compound
objects is given in Fig. 1.

DOMAINS OF PROTECTION

The set of capabilities available to a process at any time
constitutes the domain of protection in which the process
is running. A process may enter any protected procedure
for which it has a capability in its domain of protection,
and it may pass any such capability as an argument to
the protected procedure. Thus at any time a process has
accessible to it (1) capabilities that it has taken with it
when it entered the protected procedure and (2) capabil-
ities that are permanently associated with the protected
procedure. There are no capabilitiecs—of the kind
sometimes called global capabilities—that are perma-
nently associated with the process. Thus there is no
automatic inheritance of rights by a procedure in virtue
of the fact that a particular process happens to be running
in it. The reader’s attention is directed especially to this
point, since it constitutes an important difference between
the protection system described here and conventional

20z Iudy 60 U0 1s9nB AQ $9G81 /E/L/LZ/2191E/|UlWoo/ W00 dnoolWapesE// SRy WOl PSPEOjUMOQ

SECURITY MANAGEMENT AND PROTECTION—A PERSONAL APPROACH

capability |

simple object

capability
capability

o

compound object

Figure 1

systems based on hierarchical scope rules. Systems which
allow the automatic inheritance of rights are open to
attack by Trojan Horses, that is, by sections of code
deliberately embedded in proprietary compilers and
similar software with the object of bringing about a
breach of security.

The point just made may be illustrated by considering
the way in which a proprietary and, therefore, suspect
compiler could be safely run. As with all imported
software, the compiler must be interfaced to the system
under which it is to be run. In the present case, this would
be done by encapsulating it in a protected procedure.
The protected procedure would have no capabilities of
its own, but would on being called receive capabilities
for the segments it needed to do its work. At the
minimum, it would receive two capabilities, namely one
(read-only) for a segment containing the source code to
be compiled and one (write-only) for a segment into
which to place the compiled code. Since global capabili-
ties are unknown in the system being discussed, there is
no way in which the protected procedure in which the
compiler is encapsulated can pass information to the
outside world other than by putting it into a segment for
which a capability is explicitly passed to it. The only
form of Trojan Horse that could be effective would be
one that had been inserted into the kernel by a dishonest
system programmer and had escaped the detection of the
security inspector.

There does, however, remain the danger that the
compiler may store sensitive information within itself
and incorporate this information in some way into the
results of later compilations. The security inspector must,
therefore, verify that a fresh copy of the compiler is read
from the filing system whenever a new compilation is to
be performed.

The avoidance of global capabilities, while giving the
protection just mentioned against Trojan horses, does
not prevent the exploitation of timing channels. In this
respect, the system discussed here is no different from

other systems. In the present state of knowledge, all that
can be done is to exercise vigilance and to reduce to a
minimum the bandwidth of any timing channels that can
be identified.

THE SECURITY FENCE

In a capability object-based operating system it becomes
necessary to distinguish between (1) objects which are
known to a user (under alphanumeric names) and (2)
objects which are embedded in other objects but which
are not known to any user and for which no alphanumeric
names exist. One is thus led to have indexes for objects
at two levels. At one of these levels the indexes may be
identified with User File Directories (UFDs). In terms
of the capability model a UFD will, on being presented
with the alphanumeric name of an object, deliver a
capability for that object. At the other level there is a
single index which I will refer to as the capability index
and which contains an entry for all objects known to the
system including those which appear in one or more
UFDs. The capability index will, on being presented
with a capability, deliver an indication of where in the
system the corresponding object is to be found.

The view being put forward in this paper is that
security management should be implemented at the level
of the UFDs by means of an access control algorithm in
the file manager. As explained above this algorithm takes
account of the security level at which the user is logged
in. It also takes account of any access restrictions that
the owner of a file may impose on it. In other words, the
algorithm implements both non-discretionary and discre-
tionary controls. The effect is to put a security fence
around each UFD.

Some of the objects whose names appear in a UFD
will contain names of other objects in the UFD. These
latter objects will be protected by the security fence
around the UFD. Some of the objects whose names
appear in the UFD may, however, have embedded in
them actual capabilities as distinct from names; these
may or may not be capabilities for objects that are
represented in a UFD. Since a process using the object
may refer to the capability index and find the location of
the objects concerned, the security fences around the
UFDs provide no protection. It follows that any object
that has capabilities embedded in it must be regarded as
being part of the security kernel and, as such, subject to
the scrutiny of the security inspector. This leads to a clear
definition of what is meant by the security kernel, namely,
the set of objects that have capabilities embedded in
them.

By way of illustration, Fig. 2 shows a UFD belonging
to a particular user and containing entries for four objects.
Also shown is an extract from the capability index, which
is, of course, system wide. Names have an alphabetic
form and capabilities are denoted by numbers. The
capability index contains a pointer to the location of the
object concerned—as explained above this is, in the first
case a pointer to a segment either in high speed memory
or on the disc. Some of the objects have references to
other objects built into them; these references may take
the form either of names or of capabilities. For the object
ALPHA, the UFD gives the capability 1973 and the
capability index indicates where the object is to be found

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 5

20z Iudy 60 U0 1s9nB AQ $9G81 /€/1/.Z/2191E/|UlWoo/ W00 dnodlWapese/ SRy WOl PSPEOjUMOQ

M. V. WILKES

m—————— =~ Security
r] fence
UKD memory
M name capy .
| 1
+ |ALPHA 1973 .
| I - -
s |BETA 428 . g Lo
1 | i
1 |camma 583 | 2| ALPHA
L DELTA 742 J
L P - 7 ALPHA
. GAMMA BETA
capability AT
index
1973 S
428 7 | Gamma
583 .
Z 7
742
a "
A
Z S7% 0 DELTA
/,/ 7
Figure 2

in high speed memory. This object has no references to
other objects built into it, and may be used outside the
security kernel. Object BETA contains the names of
other objects but no actual capabilities; this may also be
used outside the security kernel, since access to the
objects whose names it contains can only be obtained by
going through the security fence, and this will not be
allowed unless the user on whose behalf the process is
running has the necessary security clearance. Object
GAMMA contains actual capabilities and, since access
to the objects to which these refer can be obtained by
going direct to the capability index—thus avoiding the
security fence—the object GAMMA can only be used
within the security kernel. The same applies to DELTA.
There may be other entries in the capability index for
objects that have nothing to do with the particular UFD
shown. Some of the entries may relate to objects that are
on the disc, rather than in high-speed memory.

LEAST PRIVILEGE

With the system described above it is possible to
implement the principle of least privilege or a close
approximation to it. This principle says, in capability
terms, that at any time a process should have access only
to those capabilities that it needs for its immediate
purposes and no more; in other words the domain of
protection should at all times be as small as possible. The
advantage gained by following the principle of least
privilege is that security inspection is made easier;
indeed, it may be rendered practicable when otherwise it
would be impracticable. The inspector is trying to prove
a negative, namely that no breach of security can occur.
This implies a search through the various possibilities
that present themselves. Reducing the size of the domains
of protection can reduce the scope of this search to one
of manageable proportions.

6 THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

AN OPEN QUESTION

It must not be concluded that, even if the principle of
least privilege is followed, the task of the security
inspector is an easy one. In particular, he may be faced
with a problem in flow analysis. In capability terms, the

" problem may be explained as follows. The inspector must

take account of the fact that, since capabilities can be
passed to protected procedures as arguments, the domain
of protection may differ on different occasions when the
procedure is entered. This problem would not be a serious
one if a protected procedure were unable to pass on to
another protected procedure a capability that it had itself
received as an argument. If the free passing of capabilities
is allowed, then the security inspector may be presented
with a difficult problem in flow analysis. For this reason,
writers on capability systems have been led to propose
the placing of restrictions on the passing of capabilities
from one procedure to another.

It is clear that to prohibit entirely the passing on of
capabilities received as arguments would put insuperable
obstacles in the way of the writer of the operating system
kernel. On the other hand, it is equally clear that some
restrictions are desirable. For example, some capabilities
might be marked to indicate that they could, in no
circumstances, be passed on or that they could be passed
on only a limited number of times.

CONCLUSION

The above discussion shows that the capability model
provides a powerful conceptual tool with which to discuss
protection as distinct from security management. Unfor-
tunately, at the present time efficient implementation of
a system described in terms of the capability model
presents serious problems. Any direct implementation of
capabilities in software terms leads to a low run-time
efficiency. In particular, changing the domain of protec-
tion is a time-consuming operation. Such systems are,
therefore, not in practice capable of supporting the
frequent changes of protection domain that are demanded
by the requirement that the domain should at all times
be as small as possible.

Systems such as the Cambridge CAP in which
capabilities are implemented in hardware are, in prin-
ciple, capable of supporting without undue overhead
very frequent changes in the domain of protection.
However, such systems have, somewhat paradoxically,
led to great software complexity and the reasons for this
have been discussed by the author elsewhere.’ It is
possible that further research will lead to simpler systems
of this type being developed. It is possible, also, that
alternative forms of hardware support for rapid domain
switching, that fall short of providing a general capability
implementation, will be devised.

The scope rules found in current high-level languages
do not lend themselves well to the implementation of the
capability approach. This is unfortunate since the
compiling of protection into the code once for all leads to
a high run-time efficiency. Perhaps, as further develop-
ments in higher level languages take place, we may
expect to see some convergence between the language
approach to protection (compile-time enforcement) and
the capability approach (run-time enforcement).

20z Iudy 60 U0 1s9nB AQ $9G81 /€/1/.Z/2191E/|UlWoo/ W00 dnodlWapese/ SRy WOl PSPEOjUMOQ

SECURITY MANAGEMENT AND PROTECTION—A PERSONAL APPROACH

REFERENCES

1

. D. E. Bell and L. J. La Padula, Secure computer systems:
mathematical foundations and models. Conference of the
Society for General Systems Research, Sacramento (1974).
Mitre Corporation report M74-244.

. B. W. Lampson, A note on the confinement problem. Commu-
nications of the ACM 16,613 (1973).

. S. B. Lipner, A comment on the confinement problem.
Proceedings of the Fifth Symposium on Operating System
Principles, ACM SIGOPS Review 9 (5), 192 (1975).

. D. M. England, Capability concept, mechanisms, and structure
in System 250. Protection in Operating Systems, IRIA, Roc-
quencourt, France, p. 63 (1974).

. R.J.FeiertagandP. G. Neumann, The foundations of a provably
secure operating system. AF/PS Conference Proceedings, NCC
79, p. 329 (1979).

. M. V. Wilkes and R. M. Needham, The Cambridge CAP

Computer and its operating system, North Holland, New York,
1979.

10.

. Intel Corporation. /ntroduction to the iIAPX 432 Architecture

Manual 171821-001 (1981).

. W. A, Wulf, et al. Hydra/C.mmp. An experimental computer

system, McGraw-Hill, New York (1981).

. M. V. Wilkes, Hardware support for memory protection.

Proceedings of a Symposium on Architectural Support for
Programming Languages and Operating Systems. Computer
Architecture News 10 (2), 107 (1982); also SIGPLAN Notices
17 (4), 107 (1982).

A. J. Herbert, A hardware supported protection architecture, In
Operating Systems edited by D. Lanciaux. North Holland,
Amsterdam (1979). Reprinted in Ref. 6.

Received May 1983

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 7

20z Iudy 60 U0 1s9nB AQ $9G81 /€/1/.Z/2191E/|UlWoo/ W00 dnodlWapese/ SRy WOl PSPEOjUMOQ

