Jumping About and Getting into a State
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A number of recently published letters have presented alternative styles for programming a simple multi-exit loop.
Some comments are made upon these styles and a further alternative is suggested—that of using state indicators.

1. INTRODUCTION

Five letters'° published in recent issues of The Computer
Journal form a chain of references leading back to a
paper by Arblaster et al.° and, in particular, to one
example drawn from Knuth.” Knuth adopted an ad hoc
Algol-like language and presented the following program
fragment.

Knuthl
FORi=1STEP1 UNTILm DO
IF d[i] = x THEN GOTO found FI;
notfound:i=m+1;, m=i;
ail=x; bli]=0;
Sfound: bli] = b[i] + 1

Its purpose is to seek a value x within the first m elements
of an array a, dimensioned from 1 to max. If x is not
present then it is to be inserted as an additional entry.
Each element b[i] of the array b records how many times
the value afi] has been sought. ,

The opinion expressed by Arblaster and colleagues is
that the alternative versions of this program, with the
explicit jump removed, are no easier to understand. This
view is not shared by some of the authors of the recent
letters. Each of the first three letters criticizes the previous
solution and suggests a ‘superior’ alternative. These
alternatives are shown in Fig. 1. The authors did not
adopt the same syntax conventions and so, to standardize
notation, the fragments are presented here in Pascal.
Missala and Rudnicki took m to indicate the first free
slot rather than the last one occupied; for compatability,
their fragment has been modified in Fig. 1.

Hill makes the point that his fragment is easier to
understand by virtue of its having only one entry point:
the top. Knuth’s original fragment, on the other hand,
has three possible entry points because, in addition to
natural entry from the top, control can enter via either of
the two labels found and not found. Thus one cannot be
certain of the effects of Knuth’s fragment without
examining the whole section of program for which the
two labels are in scope.

Knuth presents the following alternative to his original
version:

Knuth2

i=1;

WHILEi <mANDa[il# xDOi=i+1;
IFi>mTHENm=i; alil=x; Bbi]=0FI;
blil=b[i] + 1

This assumes the existence of a sequential conjunction
operator AND which evaluates its second operand only
if the first is true. Such a definition is necessary because,
if the array a is full (m = max) but does not contain x, an
attempt will be made to access an element of a which
does not exist. Knuth’s original notation is retained
because a direct transliteration into Pascal would not
produce a portable program ; the Pascal Standard® deems
the order of evaluation of operands of a dyadic operator
to be implementation dependent. The relative merits of
the sequential conjunction definition of the Boolean
operator AND have been debated by Barron and Mullins®
and Sale.'® Robinson’s suggestion, which is almost
equivalent to Knuth2, avoids this implementation de-
pendence but, as pointed out by Missala and Rudnicki,
fails to cater for the case when a is empty (m = 0).

It is perhaps worth noting that the need for a sequential
conjunction operator does not arise in a language which
provides conditional expressions. For example, in Algol
60, the while-loop of Knuth2 can be written as follows:

while (if i < m then a[i] # x else false)do i =i + 1

However, such constructs, especially when extended to
include several tests, can impede program transparency.

Hill
i=1; notfound = true,
WHILE notfound AND (i < = m) DO
BEGIN

notfound = ali] < > x;

IF notfound THEN i =i + 1
END;
IF notfound THEN
BEGIN

m=i;, aml=x; blml=1
END ELSE

bli] = bli] + 1

Robinson
i=0;
REPEAT
i=i+1
UNTIL (a[i] = x) OR (i = m);
IF a[i] = x THEN bli] = bli) + | ELSE
BEGIN
m=m+1 am]l=x; blm]l=1
END

Missala & Rudnicki
am+11=x; blm+1]=0; i=0;
REPEAT

i=i+1
UNTIL ali] = x;
IFi>mTHENm =1,
bli] = b[i] + 1

Figure 1
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JUMPING ABOUT AND GETTING INTO A STATE

Linear search of a linked list, an application analogous
to linear search of an array, is considered by Jensen and
Wirth.!! We are given a (possible empty) list of records
(of type person) and wish to locate some specified key (a
social security number n). Each record has the following
form:

ptrtoperson = | person;
person = RECORD
ss: integer;

next: ptrtoperson
END {person};

Recognizing the possibility that the sought key may be
absent, a solution requiring a sequential conjunction
operator is suggested :

VAR
D, first: ptrtoperson;

P :;ﬁrst;
WHILE (p < > NIL) AND (p1 .ss < > n) DO
p=pl.next

However, because such a Pascal solution is implementa-
tion dependent, two alternatives are suggested. One is
effectively equivalent to Knuth’s first version of the array
search and the other is as follows:

p=first, b=true;

WHILE (p < > NIL) AND b DO
IFp1.ss=nTHENb = false ELSEp '=p1 . next;

IF b THEN {key absent} . . . ELSE {key found} . . .

Hill has adopted this same technique in his program to
search an array. Interestingly, like Wirth, Hill has chosen
to use a Boolean variable which adopts the value true
when the value sought has not been found. This involves
a double negative because, when determining the
condition under which control reaches the statement

blil =5[]+ 1

one concludes that this is when the sought value is NOT
notfound—in other words, when it is found! This aspect
has been criticized elsewhere'? and the suggestion made
that program transparency is improved when the truth of
a Boolean variable implies a successful outcome. A
version of Hill’s fragment applying positive thinking
follows.

i=1; found = false;
WHILE NOT found AND (i < = m) DO
IF a[i] = x THEN found = true ELSEi =i+ 1;
IF found THEN b[i] = b[i] + 1 ELSE
BEGIN
m=1;
END

aml=x; bm]=1

2. USE OF A SENTINEL

Turning to considerations of efficiency, Knuth illustrates
use of the sought value as a data sentinel in the array.

Knuth3
am+1]l=x; i=1;
WHILE a[il# xDOi=i+ 1;

IFi>mTHEN
m=i; bli]=1
ELSEbi]=b[i1+1FI

The fragment presented by Missala and Rudnicki is
similar to this and Inglis makes the interesting observa-
tion that Missala and Rudnicki criticize Robinson for
not catering for the case where a is empty and yet,
themselves, present a fragment which fails when a is full!

3. A FULL ARRAY

None of the fragments discussed considers the possibility
that a may be full but, as Knuth points out, each program
must include a check of the form

IF m = max THEN error

before attempting to reference a[max + 1] or b{max + 1].
Including this test in the positive version of Hill’s
fragment, we get the following:

Hill*
i=1; found = false;
WHILE NOT found AND (i < = m) DO
IF a[i] = x THEN found = true ELSE
i=i+1;
IF found THEN bli] = bli] + | ELSE
IF m = max THEN error ELSE
BEGIN
m=i,
END

aml=x; bml=1

4. TRANSPARENCY OF MULTI-EXIT LOOPS

Our concern here is not to compare one particular search
algorithm with another, such as linear search with and
without a sentinel. Rather, we concentrate upon the
transparency and security of implementation of multi-
exit loops, particularly when two loop termination tests
are dependent in that the validity of one depends upon
the outcome of another. To this end, the linear search of
an array, without the use of a sentinel, will suit our
purpose initially. There are two reasons for exiting the
loop (the sought entry has been found or an unsuccessful
exhaustive search has been performed) but, when the
process is programmed as in Knuth2, the two loop
termination tests are dependent. To avoid subscript
overflow, values of afi] and x can be compared only if
i<m.

Using Pascal, there is one further approach, applicable
to all multi-exit loops and which we have not yet
examined—the use of state indicators.

5. STATE INDICATORS

Knuth discusses the application of event indicators as
described by Zahn.'® Using Pascal’s enumerated types,
we can simulate Zahn’s event indicators by using a
variable to record any state transition of interest. The
application of such state indicators has been suggested
by the present author' > !'* !5 with reference to a number
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of examples including linear search of a list and of an
array as well as to earlier work by Arblaster’s colleagues.

For a loop with n possible reasons for exit, there are
n+ 1 states of interest during execution of the loop:
either the loop is still repeating or one of the » reasons for
stopping has been encountered. Using Pascal’s enumer-
ated types, a name can be given to each of the states. For
the array search example there are three states of interest :

(i) Thaven’t found it yet but I'm still looking;
(ii) gotit;
(iii) I‘velooked everywhere but it’s not here.
We can introduce a state variable

VAR
state: (searching, gotit, givenup);

and produce the following fragment :

Atkinsonl
IF m = 0 THEN state = givenup ELSE
BEGIN

State = searching;, i=1;

REPEAT

IF a[i] = x THEN state = gotit ELSE
IFi<mTHENi=i+1ELSE
State = givenup
UNTIL state < > searching

END;
CASE state OF
gotit: blil = b[i] + 1;
givenup:
IF m = max THEN error ELSE
BEGIN
m=m+1; aml=x; blm]=>bm]+1
END
END {case}

Of course the constants gotit and givenup do not suffer
from the drawbacks of normal statement labels, as
described by Hill. These are constant values of an
enumeration type and access to a limb of the case-
statement can only be via the selector state.

As a general technique for programming a multi-exit
loop, this approach has a number of advantages. The
intent of the loop is readily apparent and subsequent
processing, upon exit from the loop, is more transparent.
The case-statement could, of course, be removed and its
actions inserted at the appropriate places within the loop
body but the separation is to be preferred; each action
defined by the case-statement is performed only once and
so does not logically form part of a loop.

This format also has the advantage that further states
of interest can easily be accommodated. Any number of
tests can be included within the loop and can be arranged
in any order; this avoids the need to organize while-loops
(or repeat-loops) so that the test is made at the beginning
(or at the end).

For instance, in the above example, we might decide
to qualify the state

‘I’ve looked everywhere but it’s not here’
as either

‘It’s not here but there’s room for it’

or

‘It’s not here and there’s no room for it’.
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We simply replace the state givenup by two others, extend
and noroom, and include a further test (m < max) within
the loop. This test will not be made more than once and
so will not affect efficiency:

Atkinson2
IF m = 0 THEN state = extend ELSE
BEGIN

state = searching;i=1;

REPEAT

IF ali] = x THEN state = gotit ELSE
IFi<mTHENi=i+1ELSE
IF m < max THEN state = extend ELSE
state = noroom
UNTIL state < > searching
END;
CASE state OF
gotit: b[i] = b[i] + 1;
extend:
BEGIN
m=m+1;
END;
noroom: error
END {case}

alml=x; blm]=bm]+1

6. MINIMAL SUBRANGING

One further advantage of the state indicator approach is
of particular significance to Pascal. With the exception
of Knuth’s initial version, all the array search programs
not using a sentinel require the range of i to be 1 greater
than the index range of the array a. It is a general case,
with state transition loops involving arrays, that the
range of the subscripting variable need be no greater
than the index range of the array. This minimal subranging
has been commented upon by the present author!® and
is important for three reasons.

First, because Pascal permits any ordinal type to be
used as an array index type, it may be impossible to
extend the range of the index type; for example, this
would be the case if the index type were char. Secondly,
one of Pascal’s greatest assets is the degree of compile-
time security it affords, and this is particularly beneficial
for subscript checking. When the range of a subscripting
variable does not exceed the index range of the array,
many possible subscript range errors can be detected by
the compiler and, when the variable is used as a subscript,
no run-time subscript checking is necessary. This leads
toathird benefit—efficiency. Welsh!” considers a number
of situations and shows how minimal subranging aids
compiler optimization and improves efficiency.

Efficiency of the state transition linear search compares
reasonably with the alternative implementations of the
same algorithm. Knuthl and Knuth2 both make two
tests each time round the loop and the state transition
loop performs the same two tests and, in addition, tests
state < > searching. However, this additional test is
simply a jump on zero, usually achievable with a single
machine code order, and so the run-time overhead is
minimal. This extra test is equivalent to the inclusion of
the Boolean variable in the loop test of Hill’s program.
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7. NUMERICAL ITERATION

As a final illustration of the general application of state
indicators to multi-exit loops, we consider an example
from the field of numerical methods. Many numerical
processes involve repeating some process until conver-
gence is achieved and the process we shall examine is the
Newton iteration to find a zero of a non-linear function
S(x).

Given an initial value x,, the basic iteration has the
form

Xivr = X — fOIf (%)

and we shall terminate the iteration when the relative
difference between two successive iterates falls within
some specified tolerance. This gives the following initial
schema

REPEAT
oldx =x; x=x— f(x)/fdashed(x)
UNTIL abs((x — oldx)/oldx) < = tolerance

In case the process does not converge satisfactorily, it is
advisable to bound the permitted number of iterations
and so the loop acquires a second possible reason for exit.
As with the previous examples, the loop can be controlled
by a three-state scalar. This is illustrated by the program
fragment of Fig. 2.

In addition, there are two places at which division by
zero can occur: when a new iterate is computed (f'(x)
small) and when the relative error test is made (x small).
Including tests for these eventualities gives the loop four
reasons for exit and leads to the adoption of a five-state
scalar variable. This is illustrated by the program
fragment of Fig. 3.

There are even two further possibilities of division by
zero—within the evaluations of f(x) and f"(x). A fragment
offering complete protection in this respect is given in
Fig. 4.

Many other numerical iterations, controlled by state
indicator loops, are discussed by. Atkinson and Harley.!®

8. CONCLUSION

Little of the information presented in this paper is
entirely new but no apology is made for this. Recent
correspondence to The Computer Journal has shown that

CONST
tolerance = . . .; maxits = . . ;
VAR
x, oldx: real;
itcount: 0 .. maxits;
state: (iterating, converged, maxitsreached);

itcount’ =0; state = iterating;
REPEAT
itcount = itcount + 1;
oldx'=x; x=x— f(x)/fdashed(x);
IF abs ((x — oldx)/oldx) < tolerance THEN state ‘= converged ELSE
IF itcount = maxits THEN state = maxitsreached
UNTIL state < > iterating;

CASE state OF
converged.: . . .;
maxitsreached: . . .

END {case}

Figure 2

CONST
tolerance = . . ..
VAR
x, oldx, fd: real;
itcount: 0. . maxits;
state: (iterating, converged,
maxitsreached, flatspotmet, xtoonearzero);

maxits = . . .; assumedzero = . . ..

itcount = 0; state = iterating,
REPEAT
IF abs(oldx) < = assumedzero THEN state = xtoonearzero ELSE
BEGIN
Jd = fdashed(x).
IF abs(fd) < = assumedzero THEN state = flatspotmet ELSE
BEGIN
itcount = itcount + 1,
oldvi=x; x=x—f(x)/fd;
IF abs((x — oldx)/oldx) < = tolerance THEN state ‘= converged ELSE
IF itcount = maxits THEN state = maxitsreached
END
END
UNTIL state < > iterating
CASE state OF
converged: . . .,
maxitsreached.: . . .
Xtoonearzero: . . .,
Sflatspotmet : . . .
END |case|

Figure 3.

CONST
tolerance = . . .,
VAR
X, oldx, fx, fd: real ;
itcount: 0 . . maxits,
zerodivattempted : boolean:
state: (iterating, converged,
zerodivinf, zerodivinfdashed,
maxitsreached, flatspotmet, xtoonearzero);
PROCEDURE Evaluatef (x:real; VARf:real; VAR zerodir: boolean);

maxits = ..., assumedzero = . . .,

PROCEDURE Etaluatefdashed (x: real; VAR f:real; VAR zerodiv: boolean);

itcount = 0, state = iterating;
REPEAT
IF abs(oldx) < = assumedzero THEN state = xtoonearzero ELSE
BEGIN
Evaluatef (x, fx, zerodivattempted);
IF zerodivattempted THEN state = zerodivinf ELSE
BEGIN
Evaluatefdashed (x, fd, zerodivattempted);
IF zerodivattempted THEN state = zerodivinfdashed ELSE
IF abs(fd) < = assumedzero THEN state ‘= Aatspotmet ELSE
BEGIN
itcount = itcount + 1
oldx'=x; x=x-—fx/fd,
IF abs((x — oldx)/oldx) < = tolerance THEN state ‘= converged ELSE
IF itcount = maxits THEN state ‘= maxitsreached
END
END
END
UNTIL state < > iterating;

CASE state OF
converged.: . . .,
maxitsreached.: . . .,
Xtoonearzero: . . .
zerodivinf: . . ..
zerodivinfdashed: . . .
Hatspotmet: . . .

END |case)

Figure 4

disagreement still exists over the most transparent style
to adopt for a multi-exit loop and the amount of debate
generated by one simple example shows that the issue is
not trivial.

Choosing Pascal as our implementation language, we
have attempted to show a particular approach which, in
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simulating Zahn’s event indicators, abides by the
doctrines of structured programming, conforms to Pas-
cal’s structured control constructs, maintains program
transparency and yet produces efficiency comparable
with equivalent versions using explicit jumps. The use of
Pascal in this way is gaining support. In teaching
texts'872% the present author has proposed the use of
state indicators as the recommended approach for multi-
exit loops, particularly when the validity of one test is
dependent upon the outcome of another. Recently, this

recommendation has received support from Wilson and
Addyman.?!

It is hoped that this paper will urge more people to
adopt this technique and thereby produce programs
which are structured, transparent and efficient.
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