User-Defined Types in a Polymorphic Language

David M. Harland

Department of Computer Science, University of Glasgow, Scotland

This paper will briefly review the common view of data types and summarize the various methods of deciding type
equivalence (i.e. name equivalence, isomorphic equivalence and occurrence equivalence). After criticizing the
essentially lexical nature of these mechanisms, a new rather dynamic view of types will be introduced and with it a very
simple equivalence mechanism. This dynamic view of types will then be shown to be essential if types are themselves
values in a language, as we argue they must be if that language is ‘polymorphic’ while supporting data protection via
‘type constancy’, especially if user-defined types are to be freely abstracted over, as is demanded by the principle of
procedural abstraction. This view of types and type equivalence, when combined with higher-order functions and
general type polymorphism makes ‘abstract data types’ almost trivial, and, as we shall see, it does so without
interfering with the classical concept of block structured scope. This, in turn, supports and encourages ‘modularity’ in

software.

1. INTRODUCTION

In this paper we shall outline the essential requirements
of a polymorphic language which supports data protec-
tion via cell constancy, particularly with respect to the
notion of type which it must embody. We shall discover
that commonly encountered type-definition mechanisms
are inadequate in a language where types are themselves
manipulable. User-defined types are chosen as the vehicle
for the discussion in this paper simply because they
illustrate the dilemma that arises with respect to type
equivalence when traditional, essentially static, notions
of type and type equivalence are carried forward into
such a highly dynamic language.

The use of strong typing has revolutionized program-
ming practices, and greatly enhanced software reliability
and data protection. Modern languages therefore try to
encompass as large a range of data types as possible.
Although it is clearly impractical to provide a program-
ming language which directly supports all the data
formats likely to be needed by its future users, it is
generally acceptable to provide the users with a built-in
mechanism for combining existing data types so as to
form new composite, or structured, data types. Of these
user-defined types the record is perhaps the most often
encountered such mechanism. We shall concentrate upon
the record mechanism in this paper. This will provide a
focus for our criticisms of user-defined types; we have no
quarrel with the idea of a record as such.

In a language which is strongly typed the question of
type equivalence for such new data types naturally arises:
when are two records considered to be of equivalent
type? This is the problem which we wish to highlight
here, and, after briefly reviewing existing strategies, we
shall outline a new approach to user-defined types which
we feel offers several advantages, not the least of which
is simplicity. We shall then explore the consequences of
having types as values, particularly with respect to side-
effects affecting user-defined types.

2. TYPES AND POLYMORPHISM

Before we discuss types as such, and user-defined types
in particular, we shall set the scene by outlining a form
of polymorphism which we find attractive.

Polymorphism, as its name suggests, means that
something will assume different forms at different times.
In relation to programming languages we see its role as
being an optional constraint on the form that a storage
cell can assume. In particular, we assert that whenever a
cell is created (or allocated for use, if cells are reused
within their lifetime) it assumes a particular degree of
type- and value-constancy. Strachey has argued' that
constancy is a property of a cell. We agree. Our kind of
polymorphism is therefore related to storage cells. The
particular constancy requirements of a cell constrain the
type of value that it can hold, if it is type-constant, and
whether or not it can be updated, depending upon
whether it is value-constant.

Taking these two degrees of freedom there are four
options. A cell may be declared to be type-constant, i.e.

letxint=E

where E is some suitable expression. This cell will only
hold integers. Similarly, should it also be value-constant,
we have:

let x const int = E

which, once initialized cannot be changed.
The remaining two forms are, therefore, a constant
cell which is not type-constant:

let xconst=E

which, once initialized cannot be updated, but has the
advantage that it can be initialized with anything at all;
and, ultimately, the truly general purpose storage cell:

letx =E

This can be initialized with any value of any type, and
can thereafter be updated by any other value of any other
type.

Naturally we can perceive among these forms the
traditional LISP or APL variable, which is polymorphic,
and the Pascal cell which is more or less equivalent to the
type-constant cell, apart from the fact that Pascal does
not have initializing declarations; and its constant-
system which is effectively the type-constant cell (al-
though the implementation will be different).

By making the choice of the desired degree of constancy
explicitly available to the user we enable him to choose
that delicate balance between expressive power and data

CCC-0010-4620/84/0027-0047 $05.00

© Wiley Heyden Ltd, 1984

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 47

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

D. M. HARLAND

security, and let him choose it for each variable he
declares to suit its application. We have found this to be
most useful, very natural (more so than any single form
of constancy on its own) and quite adequate for our desire
to write truly general purpose, yet secure, ‘software tools’.

To write generalized routines, ‘abstractions’, we must
also enable parameters to create cells with these forms of
constancy, or else we cannot abstract over their in-line
equivalents. This is the principle of declaration corre-
spondence.” It demands precisely what we want. We
agree with it, and adopt it wholeheartedly. We therefore
have a full range of equivalent parametric declarations,
one for each of the above in-line declaration forms.

Now, it would not be very good if we could only specify
the types in these type-constancies by embedding some
particular type-name. To be able to abstract over these
constancy specifications we must be able to use arbitrarily
complex expressions at these points, otherwise constancy
specifications become ‘frozen in’, being literally ex-
pressed. To achieve this freedom of expression we need
to be able to manipulate types themselves. Classically,
that is mathematically, such manipulation is embodied
in the process of ‘computation’. Computation is therefore
the corner-store of computational science. Computation
is generally agreed to be concerned with the act of
evaluating expressions to yield values. It is in this light
that we must examine types. The aim of this paper is,
therefore, to justify the elevation of types to being fully
manipulable values in a language (see Section 5) so that
we may abstract over them (see Section 7). The form of
polymorphism introduced above turns out to have quite
a lot to say about types.

3. TYPES AND TYPE EQUIVALENCE

In language manuals the notion of type is usually skirted
over as being intuitively obvious and therefore not
requiring an elaborate exposition. Detailed discussion is
usually reserved for enumerating the particular types
which are included. This is unfortunate, because the
precise meaning of type, which lies at the heart of most
programming systems, is far from universally accepted.
Indeed, many people use the term but introduce it in
apparently different ways. Perhaps most popular, among
the more rigorous approaches, are the ‘axiomatic’ and
‘algebraic’ (see Ref. 3 and references therein) type
models; whereas the more abstract, but ultimately more
powerful, lattice-theoretic models of Dana Scott* are to
be found deep within most approaches, so the range is
perhaps narrower than it seems.

Once we have decided what types actually are, we
must examine how they are to be exploited in a
programming language. It is widely accepted that the use
of types enhances program reliability, by increasing data
security—only sensible operations are allowed on data of
different types. Most language designers demand that
compilers undertake to check programs for such senseless
operations, as far as is possible, and it is to this ‘type
checking’ that we must turn now.

To be able to undertake type checking we must
determine when two types are ‘equivalent’. But what
does type equivalence actually mean? Whatever it means,
it must be defined in terms of the type model adopted,

48 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

and so it will tend to be different in languages which have
different type models.

There are three principal forms of type equivalence
criteria, all of which concentrate on the form that a type
definition takes within the text of a program. They are
therefore essentially ‘static’ equivalences, since they are
based upon syntactic analysis.

Perhaps the simplest is that based on the equivalence
of type-names. Namely, two type definitions which have
the same name are deemed to be equivalent. The obvious
danger is that the detailed structure of such composite
types may well be completely different. An obvious
refinement, therefore, would be to say that only occur-
rences of a name within a given scope level (where that
name has a unique meaning) are equivalent.

Secondly, there is a structural equivalence strategy.
This states that any two type definitions which give rise
to the same data format (after macro expansion of
embedded type names, etc.) are deemed to be equivalent,
irrespective of their user-coined type-names. The obvious
drawback here is, of course, that data that are distinct to
the user are all the same to the system, and so it is quite
possible for data to inadvertently migrate, because they
have ‘the right shape’, into places where they are
essentially meaningless. This seems to be somewhat
counterproductive, since the point of a data type system
is to make data secure.

A third mechanism, usually called occurrence equiva-
lence, states that each occurrence of a type definition in
a program’s text gives rise to a distinct data type. Thus
the equivalence is entirely dependent on the textual form
of a program. This suggests the opposite of the isomorphic
equivalence, that is that identically formed types are
distinct.

Obvious complications and side-issues affecting such
equivalence schemes are the precise ordering of compo-
nents of a structured type (with regard to the isomorphic
equivalence scheme), and the so-called ‘anonymous types’
(in the case of name equivalence) which have no type-
name as such.

4. A CRITIQUE

One major criticism of the above mentioned type
equivalence mechanisms, which are to be found in many
of today’s programming languages, is that they treat
types as ‘second class’ objects. They discriminate against
types, as they do against procedures, by making them
denotations, and not values in their own right. That is,
they give types names, making them essentially lexical
objects. By discriminating against types, so that they
cannot be evaluated via arbitrarily complex expressions,
they become entirely known statically, making them
amenable to complete analysis during compilation. Most
languages designers regard this as an advantage, because
it makes programs easier to check during compilation.
Although we acknowledge that type checking is highly
desirable, in principle, we feel that achieving this by
discriminating against types actually complicates the
programming language (as we shall argue below).

Given that most popular languages have such ‘static’
types, it is no surprise, therefore, to find that type
equivalence boils down to either equivalence of the name
given to the definition, or the lexical form of the

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

USER-DEFINED TYPES IN A POLYMORPHIC LANGUAGE

definition, or the position of the definition within the
text.

Discriminating against types, by removing the ability
to evaluate them, is a slight against the teachings of
Strachey, who felt that all things should have the same
‘civil rights’. Although he did not actually consider types
in this scheme, we feel that his approach would be to
make them ‘fit in’ with the other things in a language.
The popular obsession with wholly static type checking
has, we feel, given rise to a veritable albatross sitting
squarely on the shoulders of today’s programming
language designers, and it seems to be retarding the
developmentof what we would regard as better languages.
But how do we know when we have produced a better
language? Two factors must be considered. A good
language is a ‘simple’ one. A useful language is one which
is well suited to the area of its application. A language
can be judged pragmatically, to see how well it fits with
the application in hand, and it may be judged in a more
abstract sense to see if it is sufficiently simple. Measuring
simplicity is not an easy task. If we distinguish between
simplicity which arises from triviality, and simplicity
which arises from a uniform structure, then it is clear
that we must measure the degree of structure in a
language in order to determine whether it is a simple
language or an inherently complex language. We feel
that the classical notion of computation, the evaluation
of values from expressions, is the expressive structure
that is required in a programming language. Anything
which hinders unfettered expressivity, such as discrimi-
nating against types by forbidding their evaluation,
complicates this structure, and therefore makes a lan-
guage more complicated than it would be if its types were
fully manipulable. It is in this sense that the struggle for
wholly static type checking in modern programming
languages is seen as being counterproductive.

S. TYPES AS VALUES?

Values are abstract entities, carriers of information,
arranged according to their properties, granted by way
of the operations available to them, into type spaces.
Every value has a type; we shall argue later (see Section
8) that every value has exactly one type. Given a value,
we should be able to deduce its type. To specify the type
of a value we can ‘tag’ its internal representation with an
internal representation of that particular type. There
must be a unique tag for every type that must be
represented. In terms of an implementation scheme,
therefore, every value has a type-tag inseparably bound
to it, the pair being passed and assigned as one.

Here we assert that not only should types be values in
a language’s universe of discourse, they should be ‘first
class’ citizens in the language, just like all other values.

This assertion contains two proposals; that types
should be values as such, and that these should then be
‘normal’ values (in the ‘clean’ sense of Strachey). Let us
examine each aspect in more detail, to discover why, if
indeed it is so, that types should be freely manipulable.

We could, strictly speaking, adopt types as values but
discriminate against them to prohibit arbitrary type-
valued expressions. If we resist making types fully
manipulable values, what are the consequences in the
light of the above type-constancy options?

First we would have difficulty specifying arbitrary
forms of type-constancy; we would be able to specify the
desired type literally but we would not be able to evaluate
it, as the result of a function, say.

Secondly, we could find ourselves in the situation of
having a polymorphic variable and wanting to use its
content value but of not knowing the type; how might
we find out? One way would be to employ type-testing
predicates, such as Is/nt etc. to test the type of a value,
without directly accessing the type. This might well be
acceptable in languages with a fixed number of types
(and hence predicates), but in a type-extensible language
such predicates are far too restrictive; they require that
the user already have some notion as to the type that it is
likely to be. Predicates are unwieldy, in a polymorphic
system, as a great many type tests become necessary
every time a polymorphic variable is accessed in a type-
sensitive operation.

It is much simpler, we feel, if types are values in their
own right and we have a typeof operator which directly
yields the type of a value (by examining its tag). Consider,
for example, a routine for writing out its parameter along
with its type: which would be easier? To have a long test
sequence of predicates? Or a typeof-like operation? As
suggested above, predicates are actually impractical in a
type-extensible language. Where do all the predicates
come from for these user-defined types?

Thirdly, unless types are values how can we sensibly
parameterize with them and, most importantly, how can
we abstract over them?

To fully be able to exploit our form of polymorphism
(as opposed to other forms of polymorphism, see Section
11) it seems that types must be values. But should types
have the same ‘rights’ as other values?

The term ‘first class’, as applied to values, simply
paraphrases the case made by Strachey for the principle
of data type completeness (as it is now widely called).
This means precisely what is says: all values, whatever
their type, must be able to pass into and out of routines,
be assigned freely and stored away in data structures
without restriction, so long as there is a suitable receptacle
to receive them (in a strongly typed system). That is, no
bar is placed on their movements on the basis of their
type as such, unless it is a type-constancy specification.

If completeness is upheld when we make types values
in their own right, allowing arbitrary expressions of type
type, then we naturally have to forsake the hallowed
complete compile time checker because we have removed
the very prop which made it possible. That is, the type of
the result of an expression may not, now, be known
statically. Similarly, the type specification of a variable’s
cell may not be so-fixed, but be evaluated dynamically,
so that different incarnations of a given variable will give
rise to differently typed cells at run time. This is
polymorphism at work. It permits the user of such a
programming language to write truly general purpose
programs, the much sought after ‘software tool’, without
the ‘verbose static’ nature of today’s generic packages.

6. A PROPOSAL

If we accept, for the rest of this dicussion, that our
programming language has types as values, and that its
variables and cells for parameters of routines, and

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 49

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

D. M. HARLAND

similarly those within its composite types may dynami-
cally determine their type requirements, making them
polymorphic, then we can proceed to outline a further
type equivalence mechanism. One which it is felt is
superior to the above mentioned schemes.

A data type is defined here to be an abstract value-
space, occupied by values having that type, and for each
such data type there is an entry in the space containing
values of type type. In traditional parlance a ‘type
expression’is really what we shall call the ‘type definition’.
Since types are themselves values here it is obvious that
any expression yielding a type, whether it is a new type
or an existing one, is technically a type expression. We
shall regard each ‘type definition’ as being a call to a
‘generator’ which, when called at run time, yields a new
type value and has the effect of creating a new data space
for values of that type to reside in. This new type value,
yielded by the definition, is presumably stored by the
user in a suitably typed variable or data structure for
subsequent use. Note that there is no type-name as such,
simply a value of type type retained in a location in
memory, it is the storage cell which can be named.

A user-defined record type, forming an expression of
type type, could be specified as follows (using Wirth’s
meta-syntax®):

“record” ““(” [fields])"

where the fields are given by:

field .spec {*;” field . spec}

for a field specification:

literal {“,” literal} [*“.” “const” expression]

The optional expression clause in the field specification,
if given, is the type constancy of that group of field cells;
if omitted then the field cells are completely poly-
morphic—constancy is a property of the storage cell
itself.

It is important to recognize that, in contrast to popular
practice, the various field literals are values for selectors
which can be used to index into incarnations of the
corresponding records. The field selectors naturally have
full “civil rights’ in the language, so that they can be
stored and passed around with complete freedom.
Consequently, it is now possible to have generalized
accessing operations, which evaluate both the record
desired and the field to be selected, namely

search (ptr{ if . . . then left else right])

for an incarnation of a record given by ptr which has
fields left and right.

Notice that there is no restriction on the form of the
expression which gives the type-constancies of the field
cells of a record definition. In particular it is feasible to
have truly recursive record definitions, in the sense meant
by Hoare,® without the need for explicit pointer types.
Thus:

let tree = record(item ; left, right : tree)

which would serve for the above accessing example.
Naturally, in the implementation, when defining a record
only the general shape would be recorded, and when a
particular incarnation is created space is allocated in the
Iliffe-style, with records pointing at records. To terminate
the recursion in the allocation we need an ‘empty’ record

50 THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

of that type or a special universal ‘nil’ value. We prefer
tohave an empty value of the right type than a generalized
nil. The empty incarnation would be created as follows:

let empty const = tree|]

and subsequent real incarnations could use this, or create
them explicitly, since data structures are initialized on
creation:

let root = treel “TOP”, empty, empty |

Of course, we would have to have a predicate for testing
trees for being nil, unless we always want to test for
equality with an empty one explicitly. We therefore have
a ‘nil’ predicate which is polymorphic in that it takes any
type of data structure and reports whether or not it is a
trivial value.

Now we must move on to examine the behaviour of
type definitions in more detail, particularly with regard
to being values and hence being able to be abstracted
over. As we shall soon discover abstractions come in
various forms.

7. ABSTRACTING OVER TYPES

Obviously, as we encounter multiple in-line occurrences
of a similar type definition we find that we get a number
of distinct new types, irrespective of their internal
structure. If we recall that every value has its type
inseparably bound to it, like a tag, then we can always
tell the type of any value encountered during execution.
It is therefore impossible to confuse values arising from
similar definitions. This prevents inadvertent migration
of values; the problem with values from similar defini-
tions encountered by the static isomorphic equivalence
scheme. Our equivalence system is clearly not name
equivalence (there being no type names to compare). It
is a form of occurrence equivalence. But it is not the same
as the above occurrence system, as we shall discover
shortly.

We note in passing that there would be no problem
with the Pascal-like ‘anonymous type’, namely

var X : (red, green, blue)

as this forms the basis of the type definition clause, and
we now. have no type-names anyway. The problem for
Pascal is of course, what does this mean to a name
equivalence mechanism?

The principle of procedural abstraction requires that
any in-line syntactic clause may be ‘abstracted over’, to
form a routine body, so that calls to it are placed in the
program instead of each such occurrence. It further
demands that this be so with the minimum of reconstruc-
tion of the program and without changing the meaning of
the abstracted clause. The principle of procedural
abstraction is very important, as it provides the means
by which large complex programs are broken down into
numbers of individually simpler sections of program.
Any implementation of the principle which requires the
user to rewrite large parts of his monolithic program, in
order to abstract out common parts, is counterproductive.
Any implementation which discriminates against certain
syntactic clauses or data types, so that not all constructions
can be abstracted over, is similarly undesirable. It is
important, therefore, that the principle of procedural

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

USER-DEFINED TYPES IN A POLYMORPHIC LANGUAGE

abstraction be carefully and completely applied. To be
fully implemented procedural abstraction requires that
data type completeness and declaration correspondence
be completely supported, otherwise there are values,
types, declarations and operations which are context
dependent, which then hinder generalized abstraction.
But these are not by themselves adequate prerequisites
for unfettered abstractions, it is essential to have type
polymorphism so that parameters can abstract over a
range of in-line variablecharacteristics used by a common
algorithm; and polymorphism, when combined with
truly flexible data structures, particularly lists, gives the
heterogeneity seen in parameter sequences (so that
parameterization may be fully abstracted).

When combined, all of these generalizations enhance
expressive power, and hence aid abstraction. To demon-
strate that this kind of power is not only highly desirable
but strictly necessary we need look no further than the
classic write statements. In Pascal, for instance, this in-
built routine takes advantage of variable-length param-
eter lists, and if we regard this list as a data structure we
see that it exploits flexible heterogeneous lists, as it takes
a variety of parameter types. To be able to abstract over
the write statement we, as users, would need to have that
same power, at least. In Pascal we do not have it. Why
then is it built into the write statement? Because the
language is totally useless without it. If it is so obviously
useful why is this kind of expressive freedom denied to
the users for their own routines? We should, given
adequate adherence to procedural abstraction, be able to
write:

let p = procedure (x) write (x)

which takes in any value as a parameter and passes it on
to write; if this was in fact a list then this would be passed
on too. In a particular language there would have to be
some convention, of course, for exactly when a given
actual parameter list is passed as a list and when it is
stripped up for initializing a sequence of formal par-
ameters, but this is a trivial matter. The point is one of
principle. We should be able to abstract over any
syntactic clause, including not only the user’s own
abstractions but those which are built in for him.

Naturally we should then be able to abstract over types
too. To be able to abstract easily we make things values,
so that we can ‘compute’ with them. This is exactly why
we insisted that types be proper values. A type definition
is a clause, an expression, which yields a new type. As we
have already seen there is some contention as to exactly
when and how type definitions make these new types.
However this is finally answered, it is apparent that it
must be consistent with the notion of abstracting over
type definitions.

If we abstract over a record type’s definition, so that:

let x '=record (x1, x2 : int)

becomes:
!et S = function () record (r1, r2 : int)
let x=1()

the type, as a value, is passed out of the function almost
immediately that it is created. It is therefore manipulated
indirectly, via expressions of type type. The type has no
name, it is a value. Any expression which yields a value

of type type is therefore a ‘type expression’, irrespective
of whether it actually creates a new type. It is on a par
with ‘integer expressions’ and ‘function expressions’.
Types as such are only really strange objects when they
are ‘special’, that is when they are not actually values.
When they behave like normal values types lose their
mystique.

We also see that whereas the field literals were
originally in the same scope level as the variable x itself,
now they are within the body of the function, and so are
unavailable beyond it. All is well, however, because fields
are values in their own right, and so, if the fields cells are
to be accessible beyond the body of the function, the field
selectors, like the new record type itself, must be passed
out of the function. This is most easily done if the
language supports both a parallel assignment operation
and lists as a data type. Thus, we might write:

let x, /1,12 = f()
where the abstraction is now:
let f = function ()

begin

let r = record (rl, r2 : int)
- list[r, rl, r2]
end

which explicitly builds a list value as its result and
employs the notion of a block-expression to yield it.

If the field selectors were not first class values in the
language this would not be possible, and so it would not
be practical to abstract over the record definition, making
a restriction on the abstraction mechanism in contra-
vention of the principle of procedural abstraction.

We should, applying this principle, be able to abstract
over multiple in-line similar type definitions, making a
routine which does the same job, and call it wherever it
is needed, without adverse effects. Thus:

!et a =record (al, a2 : int)
l:et b =record (b1, b2 : int)

let ¢ = record (cl, c2: int)

should (ignoring the need to pass the field selector values
out too) be equivalent to:

let f = function () record (r1, r2 : int)

et a = /()
let b= £()
et =0

To be so we find that each call of the routine, which
executes the all-important type definition clause, needs
to create a distinct new type to be returned as its result,
or else we find that we have produced a form of
isomorphic equivalence for this construction as opposed
to the form of occurrence equivalence that we were
describing in the multiple in-line format. Our conclusion,
for distinct types from each call of the routine, is in direct
contrast to the static view of types described earlier,
where the same type would arise in all three schemes. If
we had adopted any of these earlier schemes we would
find, as we shall see soon, that side-effects could give rise

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 51

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

D. M. HARLAND

to wholly unacceptable situations which undermine the
logic of their strategies. Our new, essentially dynamic,
view of types can, however, handle such side-effects
sensibly and simply. Before we move on to explore this
further, it is necessary to outline a corollary to this
interpretation of the needs of procedural abstraction.

We view loops as being equivalent to a (dynamically
determined) number of in-line occurrences of the loop
body, as yet another form of abstraction. So, similarly,
any loop which includes a type definition must give rise
to a distinct new type, otherwise the effect will be
different from a number of in-line cases. The above
example would therefore be equivalent to:

leta,b,c =fori=1to3 eval record (x1, x2:int)

This is entirely consistent with procedural abstraction,
as the effect would be the same if we abstracted over the
loop body to form a routine and then called that as the
loop body. This demonstrates too that looping constructs
and abstraction are equivalent. This fact is encouraging,
since if it were otherwise we would have to recognize that
something was seriously wrong with the design.

The acid test, as indicated above, concerns the response
to side-effects. Since the type specification of a variable,
in our assumed polymorphic language, is evaluated
dynamically we might get differently typed variables at
different times from the same piece of program text. The
same facility applies for the cells which form the fields of
records. Side-effects in the environment of a record’s type
definition, giving rise to differently typed field specifica-
tions, must not have adverse effects on the type system,
more particularly the type equivalence system. In short,
these too must be orthogonal. Consider, for example, the
following program text:

let x =999

iet f = function () record (r1, r2 : typeof x)

iet x1=/()[42, — 1]

x = ‘a string typed value—it’s a polymorphic cell’

let x2 = SO [‘now they’, ‘are different’]

where individual types produced by this definition have
different internal structures, simply because we have
exploited the generality offered by our programming
language. Whereas our new language, with its dynamic
view of types, would be secure because each incarnation
would be a distinct new type, a language in the more
traditional stable, having a static view of types, would
find that a single lexical occurrence of a definition with
the same lexical template and the same type-name in a
given scope gave rise to completely different structures.
Would we still hold that they were equivalent under one
or other of the original trio of equivalence schemes? In
fact this particular problem never arises in traditional
languages since the generality or expressive freedom
demonstrated here is not possible: it is forbidden because
types are discriminated against, making it impossible to
abstract over type definitions and impossible to have
side-effects on type specifications for variables and record
fields. In short they do not support the polymorphism
which highlights the issue. Some, of course, might be
only too relieved to hear that such ‘side-effects’ are

52 THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

forbidden, and would forbid more sources of such
problems if they could. The main difficulty there, of
course, is that computation in traditional languages is
based upon the act of committing a side-effect, and such
restrictions, if they were introduced, as they are for types,
merely serve to undermine a language, not enhance it.

8. A NEW FORM OF TYPE EQUIVALENCE

We have seen that a ‘type definition’ clause is in reality a
call to a nullary operator, and that to be consistent this is
invoked dynamically every time it is encountered during
the ‘flow’ of the program.

In our model, therefore, types involve ‘spaces’ which
are generated dynamically within which values of that
newly defined type reside. In fact, to avoid all manner of
problems regarding reflexive types we must demand that
these spaces be complete continuous lattices, as described
by Scott in his data type model. The types themselves
are, however, really algebras. Each type, considered as
an algebra, encompasses a family of operator functions,
in addition to the carrier space for the values of that type.
It is these operator functions which provide the degree of
interpretation required to provide the abstraction in-
herent in the new type. To be acceptable to Scott’s thesis
these operator functions must be continuous functions.
This, then, is the type model. Our interpretation differs
from the popular view only in that these type spaces are
generated dynamically, with the consequence that a
given lexical type definition generated a whole range of
types, and not just one.

Now we come to the vital question of type equivalence.
We must specify the equivalence in terms of the type
model, so we can state straight away that it must be an
algebraic equivalence. To be equivalent two algebras
must have equivalent carrier spaces and equivalent
operator families. How might this work in practice?
First, since it is impossible to prove two arbitrary
functions to be equivalent in the general case we must
restrict ourselves to the decidability of particular cases.
In implementation terms we can compare function
closures, to see if they are the same function, but this is
about the best that we can do, since we cannot prove that
two different closures are equivalent. However, as the
language being discussed above only permits the user to
specify the form of the values which will reside in the
new carrier space, and does not allow him to ‘attach’ the
various operators which go along with it, the implemen-
tation has no idea which closures are relevant to which
type (although this situation might well be remedied in
the near future). All that we can do, therefore, to
determine type equivalence in this algebraic framework,
is to compare the carrier spaces. To be equivalent types
these carrier spaces must be equivalent. The best that
can be achieved when comparing a pair of spaces is to
say that they are equivalent up to isomorphism. For
infinite spaces this might prove rather difficult. All that
we can actually do, in implementation terms, is to decide
whether the two types arose from the same invocation of
a particular type generator. This is easiest done by a tag-
equivalence; each value being tagged with some repre-
sentation of its type, with a new tag being created on
every invocation of a type generator. Naturally, therefore,

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

USER-DEFINED TYPES IN A POLYMORPHIC LANGUAGE

we advocate the use of a tagged architecture’ for
implementing polymorphic languages.

Type equivalence is, then, a matter of tag equivalence
in an implementation in which machine support is
provided for tagging and type checking, this being the
closest one can come to a complete algebraic equivalence
(with or without the closure-tests for operator functions).

In order to achieve this, we must ensure that every
value has a type, as seems natural, with the further
constraint that a value has exactly one type. This merely
reflects the fact that any given value can exist only in one
type space [see discussion in Ref. 8], although it may well
be used in other data structure spaces, as a component.
In the same way as we use the nullary generators to bring
new types into being, we can, by a similar argument,
employ the generators for these new spaces themselves
to create new values of those types. This space-population
commonly occurs during the definition of the new type
itself, as in the case of scalars, or incrementally during
execution, in the case of a structured type. In an earlier
paper® we demonstrated the manner in which enumer-
ated types come into being, and showed how the values
created of such types may be granted the full freedom of
“first class’ status; indeed, they behave much as do the
record field selectors described herein. As noted above,
the ramifications of values being endowed with exactly
one type have been fully discussed elsewhere,® with
reference to the popular notion of a ‘subtype’. In this
paper we shall concentrate on the structured types.

Having finally discovered a type equivalence scheme
which is adequate for the highly dynamic view of types
required by the combination of type polymorphism and
type constancy, where types are values in their own right,
we shall resume our exploration of its consequences.

9. ITS CONSEQUENCES

So far we have looked at the influence of having types as
values in a language, and have examined the possible
consequences of side-effects on expressions for general
cell constancy. We have seen that this, within type
definitions for structured types, requires that we view
types in a highly dynamic way, much more so than is
traditional. We then discovered that this approach leads
to a clear view of type equivalence, and is wholly
consistent with the expressive power inherent in the
principle of procedural abstraction.

Above we saw how a dynamic view of types requires
that a given type definition clause give rise at run time to
distinct record types with differently typed field cells.
Now we shall move on to show why it is necessary to
allow different incarnations of a given record type to have
differently typed field cells.

If we consider further the nature of cell creation in
relation to the evaluation of the cell’s constancy clause
we discover that it is necessary to view composite types
independently of the field constancy requirements, rather
like divorcing the length and component type from the
array type, by making them attributes of individual
values of that single structured type.

We have already seen that in our polymorphic language
storage cells can have various degress of constancy, and
that this constancy is evaluated as the cell is created.
Consequently, as cell creation (or allocation) occurs

dynamically, a variable’s cell constancy may be different
on different invocations. In a similar manner a routine
parameter’s cell, although type constant, may be differ-
ently so on subsequent calls of that routine, because
parametric cells are created when the routine is called,
not when it is created—routines are values in our
language, remember. This, then, is the setting.

An identical argument concerning field cells of record
types demands that the constancy attributes are evaluated
each time that a record is invoked, not when the type is
created. This is so because a record specification is really
just another form of abstraction. In this case it is a means
of creating a group of related cells. The fact that it also
introduces a new type and makes available a number of
selectors for accessing the individual cells within the
group is quite another matter.

Each invocation of a record value from an established
structured type is effectively an abstract form of creating
an identical group of in-line variable declarations, so, to
preserve side-effects, we clearly must evaluate cell
constancy for field cells when a data structure is actually
created.

Thus we might write :

let stype = record (a,b)
letp = stype [2,3]

let q’=stype[‘A’‘B’]
where the fields are polymorphic by way of there being

no cell constancy at all. This, however, is not very secure.
We might prefer some degree of type constancy:

let stype = record (t : type ; a,b : t)
et p = stypeint, 2, 3]

let q = stype[char,‘A’, ‘B’

In practice this might turn out to be rather verbose if we
vary the type infrequently, so we might prefer to achieve
it via a side-effect on the definition cell’s constancy
expressions:

lett = int

let stype = record (a, b : 1)

let p =stype [2,3]

t = char

let g = stype[‘A’,‘B’]

which involves fewer arguments to passed each time.

10. ON ABSTRACT DATA TYPES

Recent years have seen much literature published on the
topic of ‘abstract’ data types. Many proposals have
adopted and extended the SIMULA ‘class’ concept,!®
with its property of environmental retention and the
exporting of local names for use outside. Proponents of
data abstraction via class-like objects argue that the
classic block structured scope rules of Algol-60 are
inadequate for information hiding activities. It is
precisely because the (extended) class feature selectively
exports its local objects that this scoping restriction can
be overcome.

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 53

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

D. M. HARLAND

Any language which adopts this programming meth-
odology must, therefore, abandon the very simple and
elegant scope rules of Algol-60. This seems to be a heavy
price to pay just for abstracting over types. It is, in fact,
really an unnecessary sacrifice because a little thought
reveals that it is not the classical scope rules of Algol-60
which are defective but the proliferation of ‘second class’
values in languages which prevents information hiding
operations. If types are full values and can be passed
around then scope becomes irrelevant as an issue.

Here we have already shown how to abstract over a
type definition, and we did so by employing functions in
a clean language. We could just as easily have written a
function which, in addition to defining a new type,
associates some access functions on it and passes these
values out to be used in the calling enviroment. Details
of the type’s implementation are invisible to the external
user, as required. To do this, though, as can be seen from
the example, we must be able to pass routines around,
including out of their defining scope, in such a way that
they retain their free environments. Although a number
of the Algols have experimented with first class functions,
most have also imposed ‘dangling reference’ restrictions
on passing them around. A non-LIFO storage manage-
ment facility, such as is required by first class routines
with environmental retention, is easily implemented in a
heap, the management of a heap, in turn, is greatly
simplified if a tagging scheme is employed, and this, it
turns out, is exactly what is required by dynamic type
checking in a polymorphic system where types are fully
manipulable values. Clearly these advanced aspects of
language design complement one another well; this is
encouraging.

Notice that we achieve our goal by passing values out
of a function, not by exporting names from special class-
like blocks. We have therefore unified, rather than
extended our concepts, merely by adopting Strachey’s
notion of ‘first class’ values as a fundamental design
tenet.

Consider the traditional ‘stack package’ example:

let new . stack =

function (s)

begin
let stack = vector size s value 0
letspint'=0

- list

[! make top, push and pop !
function ()
ifsp>0
then stack {sp}
else 0,
procedure (x const)
begin
sp=sp+1
ifsp>s
then begin . . . end
else stack {sp} = x
end,
procedure ()
ifsp>0
thensp =sp — 1
else begin . . . end

end

54 THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

let top, push, pop ‘= new . stack (15)

push (999)
leta=1tp()+1
write (a)

push (a)

write (top ()

The actual data structure, although invisible to the user,
is retained within the environments of the routines which
manipulate it. It is these access functions which we are
passing out.

A similar capability is available in Ada, with its
‘packages’ and ‘private types’, but in our view the
addition of the entirely new concept of the package, and
the extra scope-like private attribute for types, is a
language complication, not a simplification, whereas by
giving existing concepts (routines and types) a more
uniform treatment (as values) we achieve the same end
(if not even more so, as we shall argue later in this
section).

Whereas this particular example creates exactly one
‘stack’, known directly to it, we might have reason to
have an additional function which dynamically creates
the actual data structures and returns them to the outer
level, so that access functions can take as a parameter
the particular ‘stack’ to be operated upon.

Notice, however, that if we choose to pass the stack
itself out of the function which created it, then we really
do need a polymorphic language in order to do this,
otherwise we could never return such a ‘stack’ value to
the calling environment—there could be no suitable
typed receptacle in that environment unless we export
the type itself ... and to to this, in a value-oriented
language, we would need types as values, and hence
reacquire polymorphism.

Furthermore, observe that the stack in the above
example takes advantage of the polymorphic nature of
our language by being completely heterogeneous, en-
abling it to store up values of any type, all intermixed
along its length. In order to handle this stack, we permit
the parameter of the push operation and the result of the
top function to be general purpose. The sp variable,
however, is restricted to integer values (and if we
exploited the ‘subrange’ constraints of Ref. 8 we could
restrict it to integers in the range 1..s where s is the
dynamically specified vector size).

The stack so created is itself invisible to the user of
new.stack. In this particular case it was implemented as
a vector, but it need not have been so; the user has no
way of knowing. If a new type was actually created for
the stack then this would only be manipulable via its
‘operator functions’, to use the terminology of the
algebraic view of data types, the ‘carriers’ being hidden.
If we were to provide a means of tightly binding these
operators to the carrier space then we would have a more
realistic user-defined type mechanism. In this way,
whenever that newly created type is passed around it
carries with it the operators defined upon its values.
Something along these lines would seem to be the ideal
‘abstract data type’ mechanism. Clearly the type-equiv-
alence system outlined earlier would be adequate for this,
even when such types are themselves values.

Since we make the stack abstraction available without
explicit environmental linkage we see that this is a truly
‘modular’ piece of software, perhaps being worthy of the

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

USER-DEFINED TYPES IN A POLYMORPHIC LANGUAGE

term ‘software tool’. No ‘export™list is necessary, the
linkage is via parameters and function values, not via
naming conventions. Seen in this light the contemporary
drive towards techniques for enhancing modularity,
which rely explicitly upon environmental linkage for
their effect, must be seriously questioned: surely it is
better to link software together by passing values around
than by freezing in static naming linkage? In the event
that value passing is ever adopted as the primary linkage
mechanism (and surely it must, eventually?) then it is
obvious that all values, of all types, including types
themselves, must be fully manipulable.

11. OTHER POLYMORPHIC LANGUAGES

The polymorphism involved here is slightly different to
that of the few other languages which have experimented
with ‘general purpose software’ within the framework of
a typed system. In particular we combine polymorphism
with type-constancy for storage cells. This, as we have
seen, has a quite revealing effect on our view of types
themselves.

Milner has proposed a polymorphic language.!! This
is an applicative language in which updatable variables
are alien, and so he does not need the degree of type-
constancy that we invoke. Nevertheless, whereas his
parametric declarations involve specifying a type, his in-
line declarations do not, thus indicating that he does not
consider the principle of correspondence to be important
in his design. Furthermore, whereas his routine defini-
tions are ‘templates’ that take varying formats of inputs,
individual incarnations of these routines are very specifi-
cally typed. In particular heterogeneous data structures,
such as our stack, are ruled out.

The language RUSSELL'? has also explored type
polymorphism, but the nature of its type system restricts
‘type expressions with a particular signature’ to being
referentially transparent, thus hiding all of the conse-
quences of type-oriented side-effects that we have
discussed here. The designers of RUSSELL lament that
they had togotosuchlengths toachieve this transparency,
as it complicates their language’s scope rules.

Gladney has proposed a polymorphic language, which
bears a certain similarity to that discussed here, but he
rules out ‘first class’ types, commenting'? that he ‘has not
yet found a program that he could not write just as easily
without them’. Perhaps the above polymorphic stack is
such a program?

We feel, therefore, that polymorphism as it is usually
encountered, in the dynamically typed languages such as
LISP, is too insecure, and that it should be combined
with type-constancy for variables, where desired, while
enabling polymorphism when it is desired. When
combined like this we can achieve general purpose yet
secure software.

12. CONCLUSIONS

It is suggested that the present uncertainty concerning
the nature of type equivalence stems from the essentially
static, or lexical view of data types, and that to sensibly
determine the nature of type equivalence it is necessary
to take a much more dynamic, value-oriented view of
types.

To achieve this we require values of type type (which
is highly desirable on general semantic grounds in any
case), and general polymorphism on the type specifica-
tions of storage cells, in the form of variables and record
fields. We find that our programming language becomes
much simpler, and with the simplicity comes generality,
and hence expressive power.

It has been shown that the dynamic view of type
creation is consistent with the principle of procedural
abstraction, and with looping constructs. It is therefore
possible to abstract over type creation.

The new view of type equivalence has been shown to
be different from previous mechanisms (name equiva-
lence, isomorphic equivalence and occurrence equiva-
lence), being a highly dynamic form of occurrence
equivalence, and has been shown to be easily capable of
handling the possibility of side-effects in type specifica-
tions for variable and field locations arising from the first
class nature of values of type type. It is obvious that of
the four methods discussed this is the only one which
would suffice in such a powerful language, as all of the
others would give rise to compatibility problems.

The fact that complete compile time checking is no
longer feasible is not seen as important, since the prop
upon which such checking was based (the discrimination
against types in the language) is in itself undesirable, so
has been removed as a matter of principle. In our view,
in addition to the simplification of the language, the gain
in expressive power more than outweighs any possible
advantage to be had from compiler checks.

It is, we feel, important clearly to distinguish between
complexity in a programming language and complexity
in an application’s algorithm expressed in that language.
A language’s users should only have to contend with the
complexity in their application, they should not need to
contend with additional complexity in the language that
they employ; they should be able to rely upon a simple
yet uniformly powerful language which does not actively
interact with the design of their algorithms. It is therefore
the onus of the language designer to provide a language
which is both simple and sufficiently expressive. The
complexity in an application is part of the application
itself, this must be left to the user.

In such a scheme it is necessary to undertake dynamic
type checking. This is most easily done via a tagged
architecture. As noted earlier, however, this is not too
exorbitant as it at first appears, because we also need a
non-LIFO storage system in order to implement routines
as values, where environmental retention is required,
and a heap is the simplest such system. In a heap system,
a garbage collection facility is essential, and with self-
identifying data this is a greatly simplified process.

Dynamic type checking, in itself, is not necessarily the
evil that it is often made out to be, but the fact remains,
if it is necessary then the price must be paid. Type checks
need only be performed when type-constancy has been
specified, in the case of updating variables, or when
operators manipulate values; when values are passed
around within the polymorphic areas of a system they
need not be checked. Naturally, where operations can be
verified statically a compiler can plant optimized (non-
checking) code sequences; a ‘traditional’ program can
largely be checked in advance, only where the polymor-
phism is actually exploited by the programmer does a
dynamic check become necessary.

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 55

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

D. M. HARLAND

Acknowledgements

I would like to thank John Jeacocke, Arthur Allison and Les Smith for
various discussions during the writing of this paper, and Hamish Gunn

for earlier co-operation on the implementation of a tagged architecture
for such a polymorphic programming language.

REFERENCES

[<2 BN) B NV} -

[e BN}

. C. Strachey, ‘Fundamental Concepts In Programming Lan-

guages’, Oxford University Programming Research Group

(1967).

P. J. Landin, The next 700 programming languages. ACM

CACM 9, 157 (1966).

. D. M. Dungan, Bibliography on data types. ACM S/GPLAN 14,
31(1979).

. D.Scott, Data Types As Lattices, Lecture Notes In Mathematics
499, Springer-Verlag (1974).

. N. Wirth, What can we do about the unneccessary diversity of
notation for syntactic definition? CACM (November) (1977).

. C. A. R. Hoare, Recursive data structures. /nternational Journal
of Computer & Information Science, 105 (1975).

.~ G. J. Myers, Advances In Computer Architecture, Wiley (1978).

. D. M. Harland, Subtypes versus cell constancy with subrange
constraints. ACM SIGPLAN 17 (12), 65 (1982).

. D. M. Harland and H. I. E. Gunn, Another look at enumerated
types. ACM SIGPLAN 17 (7), 62 (1982).

10

11.

12

13.
14.

15.

. 0. Dahl, B. Myhrhaug and K. Nygaard, SIMULA 67—Common
Base Language, Norsk Regnesentral, Oslo, Norway (1968).

R. Milner, A theory of type polymorphism. CSR-9-77. Computer
Science Report, Edinburgh University (1977).

. A. J. Demers and J. E. Donahue, Data types, parameters and
type checking. ACM 7th Principles of Programming Languages
Conference,p12 (1980).

H. M. Gladney, Personal Communication (1982).

H. I. E. Gunn and D. M. Harland, Degrees of constancy in
programming languages. /nformation Processing Letters 13, 35
(1981).

J. C. Reynolds, A simple typeless language based on the
principle of completeness and the reference concept. ACM
CACM 13,308 (1970).

Received March 1983

56

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

202 udy 0 U0 1s8n6 Aq 95/ 811/ ¥/1//Z/101E/UlWwod/ W00 dno dlwspeoe)/:Sdjy Wolj papeojumMoq

