Concurrency Control in Admin

Parimala N, Naveen Prakash and N. Bolloju

R & D Group, Computer Maintenance Corporation Ltd, Jeevan Vihar, 3, Parliament Street, New Delhi—1 10001, India

A practical method for scheduling multiple users is described here. This has been done by defining two resource lists, a
retrieval list and an update list, which contain the resources required for retrieving and updating the database,
respectively. For each user these lists are built at the time of the definition of a subschema. The resource lists thus

prepared are used to schedule the users in a snitable manner.

INTRODUCTION

Concurrency control in database systems has been a
subject of research for several years. The problem of
concurrency control concerns itself with ensuring that,
when multiple users access the database, then each user
seesa consistent view of the database. The inconsistencies
which may arise include lost updates, dirty reads and
unrepeatable reads.!

In order to avoid these undesirable situations the
underlying principle in most systems is to define a unit of
locking.>* The lockable unit can be a field, a record
occurrence, a record type, etc. If the unit is fine (for
example a field) then there is a higher amount of
concurrency, but the overhead of the system managing
this locking protocol is higher. If the unit is coarse (for
example a file) then the level of concurrency falls, but the
management becomes simpler. Thus, there is a trade-off
between the degree of concurrency and the overhead and
this trade-off is determined by the granularity of the
lockable unit.” Ries and Stonebraker* have shown that a
relatively coarse granularity is sufficient to give enough
parallelism. Summarizing the results of a simulation
study carried out by them, these authors state, ‘Under
the assumptions mentioned in the description of our
model, it appears that a small number of granules is
sufficient to allow enough parallelism for efficient ma-
chine utilization. Furthermore, a large number of
granules, corresponding to locking a page or record, is
extremely costly. Any advantages due to additional
parallelism are outweighed by this cost’. In fact, these
authors go on to conclude that ‘a very crude concurrency
control scheme seems most desirable’.

In database systems, it is well established that a
resource is locked in exclusive mode for updates and in
shared mode for read only.> We shall use exclusive and
shared modes of locking a resource in the sense stated
above.

Once the units of locking have been defined, each user
locks the resources as dictated by his requirements. A
serious problem encountered is that of a deadlock. In
principle, one can handle deadlock by either preventing
it or by detecting and rolling back from a potential
deadlock situation. When deadlock is prevented there is
normally a loss in concurrency because some users may
not be scheduled even when resources are available.3

In Admin, we define a corec type (a record type of
CODASYL) as a resource. Whenever a subschema is
defined the DDL processor determines the resources that

would be required upon invoking the subschema in a
user program. The resource requirement is determined
only once for the lifetime of a subschema. Whenever a
user opens the database the resources of his subschema
are locked automatically by the DBCS and are released
when he closes the database. This protocol is invisible to
the user. The locking of resources and subsequent
releasing is done all at once, i.e. as an indivisible
operation. Furthermore, a user is allowed to proceed
beyond opening the database only if all the resources are
available to him. If partial resources are available then
the user shall not lock these but wait till all the resources
are available. Thus deadlock is prevented. It must be
noted that we do not incur major expenses at runtime, as
in Ref. 3, in preventing deadlock. This is because the
resource requirement is determined at compile time, i.e.
at the time of the definition of the subschema. This has
been possible because access rights are explicitly specified
in our system.’> Therefore, at the time of subschema
definition we are aware of all the permitted DML
operations on the data structures that are included.

The layout of the paper is as follows. In the next section
we identify the resources needed for operating on the
data structures and then describe the manner in which
the DDL processor determines the resources of a
subschema. The scheduling algorithm along with its
merits and demerits is discussed in the final section.

RESOURCES NEEDED

The basic structures, in Admin, are a corec type and a
coset type (record type and set type of CODASYL,
respectively). Further, a new corec type® constructed
using already defined corec types, which are referred to
as base corec types can be either an evolving corec type
or a virtual corec type (see below). A corec type which is
neither a new corec type nor a base corec type will be
referred to as non-base corec type. The coset types using
which a new coset type® is defined, shall be referred to as
non-new coset types. A new coset type itself can be either
atype 1 or a type 2 coset.

As stated above, a new corec type can be either an
evolving corec type or a virtual corec type. An evolving
corec type reflects all changes made to its bases and all
changes made to it are reflected in its base corec types. A
virtual corec type, on the other hand, cannot be updated.
Further, the occurrences which constitute a virtual corec
type are those which can be constructed at open-db time.

CCC-0010-4620/84/0027-0062 $02.50

62 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

© Wiley Heyden Ltd, 1984

20z udy | uo1senb Aq £8/81+/29/1//Z/a101E/UlWod/Wod dno dlwspeoe)/:Sdjy Wolj papeojumoq

CONCURRENCY CONTROL IN ADMIN

These occurrences remain constant till such time as the
database is closed.

In the rest of the paper, we shall use the terms corec
type and corec interchangeably. Further, an instance of
a corec type shall be referred to either as an occurrence
or as a record of this type. Similarly, we shall use the
terms coset type and coset interchangeably. We shall
refer to an instance of a coset as its occurrence.

Tables 1-5 give the resources required for operating
upon the data structures defined above. We shall first
consider the resource requirements for corec manipula-
tion followed by those needed for operations on a coset
and lastly the requirement for a field modification.

Corec retrieval

Consider Table 1. To traverse in a non-base or a base
corec it is sufficient to have available the corec type itself.
On the other hand, to find an occurrence of a new corec
type, fields from both the bases have to be picked up.
Therefore, the bases as well as the corec itself must be
available for retrieving a new corec occurrence.® It must

Table 1. Corec R—find/obtain

Resources
(1) Risanon-base orabase. R.

(2) Risavirtual corec or an evolvingview R, Base1, Base2.
corec built over the bases Base1 and
Base2.

be noted that, perhaps, it is possible to translate the
operations on a new corec to operations on the base
corecs and do away with the new corec as a resource
itself. But, in accordance with the rule that every corec
type is a resource we have included a new corec in the set
of resources. It must be noted that in doing so we have
not reduced the level of concurrency available in the
sytstem.

Corec update

We shall now consider the requirements for updating a
corec type. In doing so it must be borne in mind that no
update operations are allowed on a virtual corec.

Store. For storing a record the resources required are
given in Table 2. For the moment we shall postpone the
explanation of the base of a virtual corec and deal with it
when we are talking about the base of an evolving corec.

Whenever a record is stored it has to be linked in the
appropriate coset occurrences of all cosets in which it is
a member with INCLUSION automatic. Therefore, the
resources required, aside from the corec itself are owner
corecs of all such cosets.

When a record of an evolving corec is being stored
then a record of either or both the base corecs may also
have to be stored.® Consequently, not only the evolving
corec but also its two base corecs must be treated as
resources to be made available. It is possible, however,
that the base corecs themselves be members of cosets

Table 2. Corec R—store

Resources

R. Owners of all cosets in which
R is a member and which have
INCLUSION automatic.
(2) Risanevolving corec built R, Base1, Base2. Owners of all
over Base1 and Base2. cosets in which either Base1 or
Base2 is a member and which
have INCLUSION automatic.
(3) Risone of the base corecs R, R2, R3. Owners of all cosets in
of an evolving corec R3. which R is a member and which
Let R2 be the other base have INCLUSION automatic.
corec.

(1) Risanon-base orabase
of a virtual corec.

with INCLUSION automatic. This requires that the
base records just stored be linked in appropriate coset
occurrences. Therefore, the owner corec of all such cosets
must be made available as resources. It must be noted
that an evolving corec itself cannot take part as a member
in a coset with INCLUSION automatic.

The base of an evolving corec has to be treated
differently from that of a base of a virtual corec.
Whenever a record of the base of an evolving corec is
stored then zero, one or more records of the evolving
corec have to be created.® Therefore, in such a situation
the evolving corec as well as both the bases should be
available as resources. On the other hand, the occurrences
of a virtual corec are those which can be constructed
upon opening the database. Therefore, the base of a
virtual corec can be treated like a non-base corec.

Delete. As explained above the base of a virtual corec will
be treated like a non-base corec. Whenever a record is
deleted it has to be removed from all cosets in which it
takes part as a tenant.” Therefore, the resources required,
other than the corec itself, would be the owner of all
cosets in which the corec is a member together with the
members of all cosets in which the corec under consider-
ation is an owner corec. These corecs are referred to as
the other tenants in Table 3.

Table 3. Corec R—delete

Resources

(1) Risanon-base orabase of
a virtual corec.

(2) Risanevolving corec built
over Base1 and Base2.

(3) Risone of the base corecs
of an evolving corec R3
which represents either a
1:1 relationship between R’
and R orrepresentsa 1:1 or
1:N relationship between R
andR'.

(4) Risone of the base corecs
of an evolving corec R3 and
R3representsa 1: N
relationship between R’ and
R.

R. For all cosets in which R is a
tenant the other tenants.

R, Base1, Base2. For all cosets
in which one of R, Base1 and
Base2 is a tenant, the other
tenants.

R. R', R3. For all cosets in which
either R or R3 is a tenant the
other tenants.

R, R3. For all cosets in which
either R or R3 is a tenant the
other tenants.

THE COMPUTER JOURNAL, VOL..27, NO. 1,1984 63

20z udy | uo1senb Aq £8/81+/29/1//Z/a101E/UlWod/Wod dno dlwspeoe)/:Sdjy Wolj papeojumoq

PARIMALA N, N. PRAKASH AND N. BOLLOJU

Deletion of a record of an evolving corec might imply
the deletion of either or both of the base records
constituting the record just deleted.® Therefore, it is
necessary that both the base corecs and the other tenant
of the cosets in which the base corecs participate be made
available as well.

In order to understand items (3) and (4) in Table 3 a
note on the implementation of an evolving corec would
be worthwhile, as the implementation dictates the
resource requirements in these cases. Let r and r be the
occurrences of R and R’ respectively which constitute a
record r3 of an evolving corec R3. When R3 represents a
1:1 relationship between R and R’ then r has a pointer
pointing to r and " has a similar pointer but pointing to
r. When R3 captures a 1: N relationship between R and
R’ then only ' has a pointer pointing to r. However, more
than one record occurrence of R’ may point to r. Now,
when either r or r' get deleted then zero, one or more
records of R3 may get deleted.® In order to capture this it
may become necessary to zero out the pointer in either or
both the base records, as the case may be.

Coset-retrieval and update

Consider Table 4. We shall first look at the resource
requirement for purely retrieval operations and later
consider update operations. In order to navigate in a
non-new coset it is sufficient to have the tenants made
available. To find a member record of a type 1 coset
S(0, M) the system has to first navigate in the coset
S§'(0, R) and then find records of M by traversing in the
coset S”(R, M). Therefore, the resources required would

Table 4. Coset S(O, M)—find/obtain

Resources
o.m.
0. M,R.

(1) Sisanon-new coset.

(2) Sisatype 1cosetbuilt over S'(O, R)
and S”(R. M).

(3) Sisatype 2 coset with the tenant
which is an evolving corec built over
Base1 and Base2.

O, M, Base1, Base2.

Coset S(O, M)—remove, transfer, insert

Resources

(1) Sisanon-new coset. o.m.

be O, Rand M. In other words, the missing corec and the
tenants of the type 1 coset are needed. Similarly, for a
type 2 coset the tenants of the coset are required as
resources. However, a type 2 coset has a tenant which is
an evolving corec. Hence, the base corecs of the evolving
corec are also needed to navigate in such a coset.

In considering the update operation of a coset type we
have to deal only with a non-new coset. This is because
no update operations are allowed on a new coset. A little
thought will show that for any of the update operations
on a non-new coset the resources needed are just the
tenants of this coset.

64 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

Table 5. Field F of the corec R—modify

Resources

R. Owners of all cosets in which Fis
defined as a sorting field.

(1) Risanon-base corec
or a base of a virtual
corec.

(2) Risone of the base
corecs of an evolving
corec R3. Let the other

R. Owners of all cosets in which Fis
defined as a sorting field. If F is a join
field then R’ and the other tenants of
base be R". Let F3 be all those cosets in which R3 is a

the field in R3 tenant. Owners of all cosets in which
correspondingto Fin R. F3is defined as a sorting field. The
second base if F3 is a sorting field of
some coset.

R. R'. Owners of all cosets in which F
is a sorting field. The second base if F
is a sorting field of some coset.
Owners of all cosets in which F' is a
sorting field.

(3) Risanevolving view.
Let the field in the base
corec corresponding to
F be F' and this base
corecbe R'.

Field modification

Consider Table 5. As before a field belonging to a base of
a virtual corec will be treated like that belonging to a
non-base corec. To modify a field of a corec it is obvious
that the corec type must be available. Further, if the
corec takes part as a member in some coset type, the
members of which are sorted using the field being
modified, then this action may involve a reordering of
the member records. This implies that the owner of this
coset type must be available. In order to understand
items (2) and (3) in Table 5 the following points must be
noted:

(a) Modification of a join field of one of the base corecs
of an evolving corec might imply the deletion as well
as addition of zero, one or more records of the
evolving corec.

(b) If a field of a base is modified then the value in the
corresponding field of the evolving corec is also
considered to be modified and vice versa.

(c) According to the implementation rules, for any coset
in which an evolving corec is a member all coset
pointers are available with the second base.

The definition of resource requirement is, perhaps, not
very simple when either a corec type is updated or when
a field is modified. This is mainly due to the implemen-
tation strategy adopted for an evolving corec.

Constructing resource lists

Corresponding to each DML command there is an access
right which grants permission to perform that particular
operation. For example, in order to store an occurrence
of a corec type, the STORE right must be granted for this
corec type in the subschema. This correspondence allows
us to classify the access rights into two classes—the
retrieval set and the update set. We give in Table 6 the
retrieval and update sets of access rights for the data
structures of Admin.

For purposes of scheduling concurrent users we define
two lists called the retrieval list (R/ist) and the update list
(Ulist). Rlist specifies the list of resources required for

20z udy | uo1senb Aq £8/81+/29/1//Z/a101E/UlWod/Wod dno dlwspeoe)/:Sdjy Wolj papeojumoq

CONCURRENCY CONTROL IN ADMIN

Table 6

Structure Retrieval set Update set

Field — modify

Corec find, obtain store, delete

Coset find, obtain insert, remove, transfer

purely retrieval operations and Ulist gives that required
for update operations. These lists are prepared by the
processor at the time it is processing a schema/subschema
definition as follows.

When the processor comes across an access right on a
data structure it determines whether the right belongs to
the retrieval set or to the update set. In the former case,
the resource(s) required for operating upon this structure
is (are) entered in Rlist. A similar action is taken when
the access right belongs to the update set except that in
this case the resources are entered in Ulist.

The total resources available when a schema is defined
is the set of corec types of the schema. Since all access
rights are granted on each of the corecs and cosets
comprising the schema® the Rlist and the Ulist of the
schema will contain all the resources. When a subschema
is defined, however, access rights are explicitly granted
to the data structures. The Rlist and Ulist of this
subschema are constructed according to the rules given
above. It must be noted that a virtual corec defined in a
subschema is treated like any other corec type. However,
this resource is available only to this subschema and to
its subschemas at level 2,% if any.

SCHEDULING

In this section we shall describe how the resource lists
prepared at the time of a subschema definition shall be
used in scheduling users.

First, let us consider the manner in which the database
can be opened in Admin. There are three ways in which
a program can open the database, namely (1) retrieval
(b) debug and (c) update.” When the database is opened
for retrieval then the operations that can be performed
are determined by the retrieval set of access rights
granted in this subschema. For example, the access rights
for a corec type R could be FIND and STORE. When
this subschema is opened for retrieval, only find of R
should be allowed by the system even though there is an
access right to store R.

When the database is opened for update then the
operations corresponding to the update set as well as
those corresponding to the retrieval set of access rights
can be performed. The debug option is the same as the
update option except that the modifications made by the
program are not reflected in the database. These are
made in a local copy for the user and cease to exist when
the database is closed.

Now, let a user invoke a subschema S and open the
database using one of the options given above. Upon
encountering this statement the DBCS locks resources
according to Table 7.

When the database is opened for debug it is sufficient
to acquire resources in a shared mode as the updates are
not reflected in the database. However, when the update

Table 7

Option Resources Mode

retrieval Rlist shared

debug Ulist and Rlist shared

update Ulist exclusive
(Rlist—(Ulist n Rlist)) shared

option is chosen, resources belonging to Ulist must be
locked in exclusive mode and resources in Rlist which do
not figure in Ulist must be locked in a share mode. This
is because the latter resource can never be updated by
the user.

All the locks acquired are released by the DBCS when
it encounters the close-db statement. Also, whenever a
program terminates abnormally all the resources held by
the program are released by the system.

An analysis

We shall list below the merits and demerits of the
proposed concurrency control mechanism.

(a) For every subschema the resource requirement is
analysed at the time of its definition. If two users are
disjoint with respect to the resources needed by them
then they can open the database concurrently. Let us
now examine this general rule keeping in mind that there
are two resource lists, Rlist and Ulist, associated with
each subschema and every subschema can be opened for
either retrieval, debug or update.

Let R1, R2, R3 and R4 be resources. Further, let S1,
S2 and S3 be three subschemas having the resource lists
as given in Table 8:

Let P1, P2 and P3 be three users associated with S1,
S2 and S3, respectively. Table 9 gives the modes in which
P2 and P3 can open the database once Pl has already
opened the database.

Since S1 and S3 are disjoint, P1 and P3 can run
simultaneously. This, however, gives rise to the following
problem.

Let P1 open the database for update thereby locking
R1 and R2 in exclusive mode. Now, let P2 make a request
to open the database for update as well. P2 will have to
wait in the queue as R2 is locked by P1. Now, let P3
make a request to open the database for update. It must
be noted that the resources required by P3, namely R3

Table 8

Subschema Rlist Ulist

S1 R1,R2 R1,R2
S2 R2,R3 R2,R3
S3 R3 R3,R4

Table 9

P1 opens for P2 can open for P3 can open for

retrieval retrieval, debug retrieval, debug, update
debug retrieval, debug retrieval, debug, update
update — retrieval, debug, update

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 65

20z udy | uo1senb Aq £8/81+/29/1//Z/a101E/UlWod/Wod dno dlwspeoe)/:Sdjy Wolj papeojumoq

PARIMALA N, N. PRAKASH AND N. BOLLOJU

and R4, are not locked but P3 is behind P2 in the queue.
In such a situation P3 is processed thereby giving a
higher amount of concurrency. This, however, might
lead to P2 being starved.

(b) A program proceeds beyond open-db only if all the
resources are available and shall enter into a wait state
till the resources are freed. Further, acquiring the locks
as well as subsequently releasing them is performed as a
unit action. Therefore, deadlock can never occur in our
system.

(c) The locking mechanism is totally hidden from the
user. The runtime support does the locking and unlocking

of resources thereby requiring that the user know nothing
about concurrency to run his program.

(d) There are no lost updates, dirty reads or unrepeat-
able reads. These properties arise by virtue of the fact
that the granularity of locking is a corec type (not an
occurrence) and locks once acquired are released only
when either the database is closed or the program aborts.

(e) Itisidealif a system locks only those resources that
are operated upon by the user. However, in Admin, the
user intention is not considered and all resources that he
can possibly operate upon are locked at open-db time.
Perhaps, there is a trade-off between (b) and (e).

REFERENCES

1. James Gray, Notes on database operatingsystems./BM Research
Report RJ 2188, San Jose (1977).

2. J. M. Gray et al., Granularity of locks and degrees of consistency
in a shared database. /BM Research Report RJ 1654, San Jose
(1975).

3. D. B. Lomet, A practical deadlock avoidance algorithm for
database systems. Proc. ACM SIGMOD Conference, Toronto,
Canada (1977).

4. D. R. Ries and M. Stonebraker, Effects of locking granularity in
database management systems. ACM TODS 2 (3), 233-246
(1977).

. Naveen Prakash et al., Access control in a network DBMS, CMC
Technical Report 6 (under communication) (1982).

. Parimala N et al., New corecs and new cosets in Admin, CMC
Technical Report 5 (under communication) (1982).

. N. Bolloju et al., The DML of Admin. CMC Technical Report 9
(1982).

. Naveen Prakash, Parimala N and N. Bolloju, Data definition
facilities in Admin, The Computer Journal 26, 329-335 (1983).

0 N o o

Received January 1983

66 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

20z udy | uo1senb Aq £8/81+/29/1//Z/a101E/UlWod/Wod dno dlwspeoe)/:Sdjy Wolj papeojumoq

