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This paper illustrates a method for setting theoretically and empirically defensible prices for interactive computer
services. The theoretical rationale is that prices should reflect the marginal social cost for using interactive computing
measured by the delay imposed on other users. The empirical basis for the prices is the direct measurement of delay as
a function of load, and of average load levels as a function of time. An intrinsic problem of shared resources such as
interactive computer systems is congestion. Every user contributes to some degree to the general deterioration of
service quality (response time) as system loads increase. Since capital and operating costs of computer systems are
fixed irrespective of system load, the delay costs imposed on users by congestion are the predominant marginal costs
of system operation. It is an economic theorem that unless prices are set to marginal social costs, inefficient use of
resources results. Therefore, efficient use of interactive computing services requires setting prices to equal the expected
cost of marginal congestion delay. The paper shows that under plausible conditions, marginal congestion prices will
cover costs of operation. Furthermore, profitability with such prices in effect gives information on when to make
additional investment in capacity. We also show how to construct statistical models of response time from direct
observations. Direct observations can provide a robust and understandable empirical basis for marginal congestion
pricing. The empirical work needed is illustated by measurements on a VAX 11 /780 offering UNIX™ service. We

show the use of several statistical techniques to display the results understandably.

1. INTRODUCTION

This paper is about a method for pricing interactive
computer services. We believe that methods now in use
are socially inefficient and that better pricing methods
would lead to both greater productivity and to greater
fairness to users.

Our basic observation is that the capital and operating
costs of an interactive computer system are approxi-
mately independent of short run variations in the load on
the system. This is quite clear for the capital costs.
Purchase of a machine provides the same capacity at
3a.m. as at 3 p.m. whether or not that capacity can be
used. For a modern interactive computer system which
uses disk files rather than tape files, and which is capable
of running unattended for substantial periods of time,
the operating costs have also become largely independent
of load. It might still be argued that maintenance costs
are necessarily proportional to load. We believe the
remaining operating costs that are dependent on load are
small compared to the costs considered below, and have
built models on this assumption.

The more common approach appears to be to observe
that a permanent increase in load requires additional
investment in capacity and to allocate the capital costs to
specific components of load. A substantial portion of the
literature on pricing computer services takes this ap-
proach (see the survey by McKell, Hansen and Heitger!).
This approach can only accidentally result in socially
efficient prices. It typically results in prices that are both
inefficient and unjust. Nor is it necessary to ensure
recovery of capital costs.

The most important social cost which does vary with
the load is the cost of congestion in sharing the resource.
In an interactive computer system, the resources of the
machine are devoted to different tasks in rapid succession
so that no task need wait long for some service. This
means that if one user creates an additional load, it will

necessarily create extra delay for all other users. Given
the salaries of people who use computer services, these
congestion costs are not small. During peak hours on the
system we have studied, we estimate the total value of
waiting time at 2863/h. Of this, 122$/h is the total user
waiting for their own jobs, and 164$/h is the cost of
waiting on others jobs. These costs can be compared to
the 568/h revenue collected during these times.

Naturally, users are familiar with the impact of
congestion on themselves, and to some extent react to the
expected congestion levels. However, barring an assump-
tion of altruism, the user is thus only accounting for a
small fraction of the total congestion cost—the part
affecting him or her personally. Altruism may be effective
if only a few people use a given system and if they are
working on a common task. Ordinarily these conditions
do not hold for interactive computer services, and it is
for this reason that simply providing better information
on what congestion is expected does not lead to efficient
use.

Rather, it is a well established economic principle that
if individuals must pay an amount commensurate with
the costs they impose on others, individually rational
behaviour will lead to socially efficient results. The basic
fairness of this principle is also evident. Lerner? provides
a very lucid explanation of this view. The costs one user
imposes on others are the marginal costs of congestion.
Therefore we term the proposed pricing method marginal
congestion pricing.

2. THEORETICAL RATIONALE

Marginal congestion pricing rests on a sound economic
basis. The purpose of this section is to illustrate the
principles of reasoning by developing a simple model.
The model supposes a simple computing environment
with scalar measures of system load, ¢, and system
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PRICING INTERACTIVE COMPUTER SERVICES

capacity k. If cpu time is the most important single load
dimension, the units of these scalar measures might be in
cpu seconds per second. The private cost as seen by an
individual user generating an increment dgq of system
load is composed of two parts: a pecuniary part and a
temporal part which we express as,

p(dq) = rdq + vw(g, k) dg 1

where r denotes the money price of the service g, w(q, k)
is the wait incurred at system load ¢ and system capacity
k for a unit of system load, and v is the value of waiting
time to users.* We will assume throughout that behaviour
is influenced only by expected waiting time and that this
expectation is a smooth, known function of system load
and capacity levels. The social cost of doing dq is simply
the value of its initiator’s wait plus the value of other
users’ incremental congestion delay,t which may be
expressed as,
ow
0q
If p (dg) < s(dg) then individual users are apt to initiate
tasks like dg which may be justifiable in terms of their
private costs, but whose benefits do not exceed their
social costs. As a consequence too much congestion will
occur. On the other hand, if private costs exceed social
costs, some tasks whose benefits exceed their social costs
will not be initiated and the service will be underused.
The discrepancy between private and social costs is
obviously resolved if the following pricing policy is
adopted: set

s(dg) = vw(g, k) dg + qv—dgq 2

ow(g, k)
vq g

Under this policy, private incentives coincide with social
incentives, and efficient use of the shared resource
occurs.} Our pricing rule is a thinly disguised variant of
the[price = marginal cost] rule which pervades economic
reasoning. However, marginal costs are borne in this
case by other consumers rather than directly by the
producer of the service as is usually the case. Pigou*
developed the essential ideas of marginal congestion
pricing in the context of highway tolls, see also Ref. 5.
Naor® and Marchant’ have studied the theory of
congestion pricing in queueing models with and without
priority classes.

Tables 1 and 2 may give some feeling for the magnitudes
of the numbers involved in Eqn (3). The tables show the
results of considering each of three resources cpu, i/o,
and memory in turn as the single resource described by
the model of this section. The entries give the total value
for all users of revenue collected based on the resource,
and of the value of user waiting time. The waiting time
is split into two components according to Eqn (2). The
columns with totals give an approximate overall picture

3)

* The assumptions of (i) scalar load and capacity and (ii) homogeneity
of v across users may be easily relaxed.?

T We assume at this point that an increment in load causes no increase
in the direct operating costs of the system. Such costs could be easily
incorporated, but for most interactive computing environments the
capital and operating costs of the machines are fixed, essentially
independent of the load.

1 Here we assume that individual users are price-takers, and either
cannot or do not respond as a coalition to the announced pecuniary
price r.

Table 1. Congestion costs and revenues—afternoon

CPU 1/0 Memory  Total

$h  $/h S/ $/h
Revenue rq 56 0O o0 56
Own wait vwq 67 43 12 122
Otherswait  vg? éw/éq 98 57 9 164
Private cost Revenue + ownwait 123 43 12 178
Social cost Own + other waits 165 100 21 286

Table 2. Congestion costs and revenues—early morning

CPU 1/0 Memory  Total

$/h  $/h  $/h $/h
Revenue rq 140 0 0 1.40
Own wait vwgq 2.00 2.88 3.40 8.28
Otherswait  vg? éw/éq 0.12 0.24 0.34 0.70

Revenue + ownwait 340 288 3.40 9.68
Own + other waits 212 3.12 3.74 9.98

Private cost
Social cost

of revenue and costs. (The amounts neglected by this
simple approach can be seen graphically in Fig. 9.)

It can be seen in Table 1 that waiting time costs are
substantial and that private cost was less than social cost
by a factor of about two. It can also be seen that cpu is
the single most important resource, and i/o is also
important, but memory could be neglected. These results
apply to a particular machine, and may not be general. It
is probably reasonable to study all resources infrequently
to establish which resources to study closely more often.
Table 2 shows a better balance of private and social costs,
but mostly because the value of own waiting time is the
bulk of the cost in the early morning. The monetary price
being charged is a factor of ten above the cost imposed
on other users.

A geometrical expression of the theory can also be
given, as in Fig. 1, which shows the situation for cpu
time in the afternoon during a prior period of rates on
the machine we studied. The demand curve labelled D(p)
may be regarded as the (hypothetical) demand which
would arrive if there were no perceptible processing
delay. The demand curve d(r) describes the dependence
of demand upon the pecuniary price, r, accounting for
the effect of the congestion delay. At any r, d(r) < D(r)
since some demand is suppressed by the additional cost
imposed by the congestion delay. As demand approaches
capacity and the congestion becomes large the discrep-
ancy between d(r) and D(r) becomes larger.

At the current price* of $46.50/cpu hour the peak
demand is roughly 0.56 cpu h/h. Thus revenue is given
by the lower rectangle in the Figure, whereas the upper
rectangle labelled ‘congestion’ depicts the value of time
lost due to congestion delay. Had there been enough
capacity to yield a negligible congestion delay, r ~ $160
could have been charged and the congestion effect could
have been entirely appropriated as revenue. The triangle
labelled ‘surplus’ is a measure of the excess in users’
benefits, or willingness to pay, above and beyond the
costs, both pecuniary and temporal, which they incur.

* Section 5 discusses our method of linearizing the study period pricing
policy which was non-linear in memory usage.
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Figure 1. Marginal congestion pricing graphically.

The upward sloping curve in Fig. 1 labelled SMCC is
our estimate of the social marginal congestion cost,
vq 0w(q)/0q, as a function of cpu load. Here, and elsewhere
we have set v, the value of time, to $50/h. At the current
peak load of 0.56 cpu h/h another cpu hour of load creates
roughly $160 of additional congestion delay to other
users, yet the perceived price is less than one third this
amount. Some activities which appear worth while at the
latter price may well appear frivolous at the former,
which reflects the real costs imposed on the user
community. Equating the pecuniary price and the social
marginal congestion cost gives Fig. 2, in which demand
is suppressed slightly, revenue is considerably larger, and
congestion is considerably reduced. Now users are forced
to pay the full value of the delay costs they impose on
others.

In contrast, we illustrate the current off-peak (late
evening) situation in Fig. 3. The cpu load is now only
15% of capacity despite a 609, evening price discount.
Social marginal congestion costs are negligible at this
low load, and therefore we have the opposite difficulty to
that illustrated previously. The perceived price to users
is much higher than the real costs imposed by computing
tasks and thus there may be worthwhile activities which
are discouraged by misleading price signals. Figure 4
illustrates a rectified off-peak situation in which the price
is equated to social marginal cost, revenue falls, conges-
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Figure 2. Marginal congestion pricing graphically.
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Figure 3. Marginal congestion pricing graphically.

tion increases slightly, and the evening utilization
increases.

2.1 Capacity planning and cost recovery

To this point we have said nothing about the direct costs
of owning and operating the physical resources which
provide the computing services under study. It may seem
unseemly, even fiscally irresponsible, to promulgate
pricing policies without explicitly considering these costs.
How do we know that a system operated with our
proposed pricing rule can break even? To answer this
question we must extend our simple model slightly to
explicitly incorporate capacity choice.

Suppose the waiting time function is homogeneous of
degree zero in load and capacity, i.e.

w(z, k) = w(Ag, Ak), A>0 4

This seems plausible if capacity is expanded by adding
essentially independent machines. Further, assume that
capacity costs are linear,

c(k) = pk )

If the preceding two quite plausible conditions are met,
then not only can the operation of the system break even,
but the break-even condition becomes a crucial invest-
ment signal.
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Figure 4. Marginal congestion pricing graphically.
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A socially efficient investment policy would adjust
capacity to equate the value of an incremental reduction
in user waiting to the price of an additional unit of
capacity, i.e. it would choose k so that,

ow(g, k)
Framialy (6)

(Again we make differentiability assumptions for conven-
ience.) In terms of Figs 1-4 expanding capacity has the
effect of shifting d(r) towards D(p). We would like to do
this until the savings in the congestion rectangle are
exceeded by the cost of the new capacity. The rate of
profitability of the system is simply

_qv

m=rq — pk (M
which under our proposed pricing rule becomes
ow(g, k)
=qg*p—2 8
0%, Pk ®
but (4) implies
ow(g, k)  , ow(g, k)
= 9
L ©)
so we have
ow(g, k)
= - - 10
T gkv % pk (10)

Hence n = 0 is equivalent to the equilibrium capacity
condition (6). If # > 0, then

ow(g, k)
ok

which implies that an increment in k costs less than the
value of its resulting reduction in user waiting time. Thus,
positive profit is a signal to expand capacity. Conversely,
negative profit is a signal to contract capacity. Not only
does the marginal cost pricing rule (3) induce individual
users of the service to behave efficiently, but via the
profitability of the system operation it provides an
informative signal of socially productive investment
opportunities. When conditions (4) and (5) are violated
then the profit signal becomes somewhat ambiguous. For
example if (4) holds but c¢(k) is concave (suppose, for
example, that it is linear in & but has a positive fixed cost)
then = > 0 is sufficient but not necessary for capacity
expansion.

(11)

3. EMPIRICAL BASIS: CONGESTION

Extending the simple scalar model to the much more
realistic context of vector-valued load and capacity
variables is quite straightforward. Let e R% denote an
m-vector of load variables which might be distinguished
by generic tasks, time of submission or any number of
other considerations. Let ke R” denote an m-vector of
capacity variables. The function w:R% x R” - R"
maps load and capacity configurations into a vector of
waiting times whose elements correspond to each of the
load variables.

Again, equating private and social (marginal) costs
leads to the pricing rule

- aW(q, k) .
rn=vy ——>2—¢q, i=1,...,n
j=1 6ql !
This pricing rule, which is a vector analogue of (3) gives
prices r; for loads of different kinds such as cpu, i/o and
memory. An individual with usage ¢; of each load type
would pay

(12)

n

Z riq;

i=1

(13)

This is an easily understood means of pricing and it is
easily administered since it only requires keeping a sum
for each user of the total use of each kind of resource.

Equation (12) gives a rule for establishing r, as a
function of

v—the value of user’s time

g—the total system load of type i

0w;/0g—the incremental waiting time for resource j
as load i increases.

The value of user’s time can be estimated from an average
salary. To illustrate, we use $50/h, which is a representa-
tive loaded salary in our environment. The loading
reflects support services provided to technical employees
by others. The total system load is commonly measured
in computer installations. We return to an analysis of it
in the next section. What is not immediately available is
the factor dw;/dg;. In this section we show how it can be
obtained.

3.1 Experimental techniques

Although we are interested in the delay caused by an
incremental job, we can most easily measure the delay to
a test job as a function of the concurrent background.
We will then be able to estimate the delay to our test job
caused by an increment in the background load.

It is desirable that the resources required by a test job
be independent of the load on the machine. In a complex
system, this may not be possible, but some jobs will be
more dependent than others. For instance, a job that
checks how many users are present will have more to do
when there is a greater load, and hence is undesirable.
Likewise, a program that can be used by re-entering may
have less to do when the system is busy, because the code
may not need to be loaded. Because unexpected load
dependencies like these are most likely for standard
system utilities, creating small test programs is a
reasonable approach.

Tofacilitate extending the measured results to a typical
load, we selected test jobs that exercised primarily one
computer resource. After preliminary study of the
execution time of the test jobs, we found that most (90%)
of the variance in execution time could be explained by
concurrent use of two resources: cpu and disk access.
Realizing that a large price was placed on memory use
we decided to study memory closely too. Accordingly we
built test jobs that emphasized cpu use, disk use, and
memory use. The cpu intensive job counts for one second
on an unloaded machine. Similarly, the disk intensive
job copies files for one second. The memory job gets
several hundred kilobytes of memory then sleeps, waking
every second for ten seconds.

We used these test jobs with two different kinds of
backgrounds. The first background was the daily load.
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Under system control the test jobs were run every fifteen
minutes, measurements taken, and the results appended
to a file. The test jobs were run a random number of
minutes following each quarter hour, the random number
uniformly distributed on [0,9]. The second background
type was of synthetic loads, each composed of multiple
copies of one of the test jobs. These loads were generated
between 3 a.m. and 6 a.m. when the activity on the
system is normally extremely low.

With either kind of background, the information
gathered for each test job was the elapsed time it took to
run, and the total use of a variety of system resources
while the test job was running. These included cpu use
by other users and by the system, normal disk access,
disk access for swapping, characters transferred on data
lines, and references to system tables.

These measurements are made by timex,® a UNIX
system utility. Since memory use is not measured by
timex, it was measured immediately before each test job
ran, using a program that examined system memory
tables. The measurements we used for the daily back-
ground load were made during a fifteen week period in
1981.

3.2 Functional form

The following arguments gave us fairly strong expecta-
tions about the form of dependence of elapsed timie for a
test job on concurrent load. Consider a very simple case
first: a machine that has but a single resource. Suppose it
takes an average of T seconds to respond to each request
for the resource. A test job requires Q, requests for the
resource and, while it is running, a total of Q other
requests are made. Then the elapsed time, w, for the test
job to run will be

w =10+ 1Q
=wy + 10 (14)

where w, is the time for the test job to run when no other
load is present. We measure the concurrent requests, and
equations of this form could be used for estimation.
However, a model that specifies the rate of arrival of
requests, rather than the total requests in some period is
more useful analytically. If requests arrive at the average
rate g per second, then Q depends on was Q = gw so

w = wo/(1 — 1q) (15)

Thus the linear Eqn (14) for elapsed time as a function of
concurrent requests implies a non-linear dependence of
elapsed time on a request rate. The form of (15) requires
that as ¢ — 1/7 the elapsed time increases without bound.
Thus 1/7 could reasonably be interpreted as the capacity
of the system—the maximum requests per second that it
could handle.

The literature on queueing gives a more rigorous and
broader rationale for the same functional form. The
expected waiting time in the classical M/M/1 queue is
given by

1/u
T
where 4 is the rate of arrivals, and 1/u is the expected

service time. For this case, the expected service time for
the test job was wy, = 1/u, and we can also identify 7 = 1/

(16)
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u and g = 4 to relate this result to the simple exposition
above. Under a processor sharing discipline, a small test
Jjob taking w, < 1/u service time would also satisfy (15)
in an M/M]/1 queue. A much broader class of queues that
will give a similar result are the networks of queues

described by Jackson,” see Ref. 3.
Thus for a job testing resource j we have considerable

reason to expect a dependence such as

Wy = (7

]
The models cited predict no dependence of waiting time
for a job test resource j on use of resources other than j.
However, in a real system, it seems prudent to consider
this hypothesis empirically. We wish to introduce into
Eqn (17) terms to test whether the waiting time for the
Jjth resource depends only on the rate of use of that
resource. It is natural to introduce such terms additively,

giving
M
w; = Wjo/<1 - Z TW:‘) (18)

i=1

In Eqn (18), the parameters of greatest interest are the
7;, the marginal effects of load of type i on response of
type j. These parameters can be conveniently estimated
without bias in the linear form

M
l/wj = BOj + z ﬁuq, + error (19)

i=1
where By, = 1/w;and B; = 1;/w;. We use the term marginal
thruput for the reciprocal of the elapsed time for a test
job. From estimates of (19) we may compute estimates of

n 2
k=1

where the g, are now interpreted as expected system

loads.

3.3 Presentation of results

This section illustrates the use of partial residual plots to
present the results of a multiple linear regression. It also
shows that the system performance may change over
time, requiring caution in making estimates. Our data
span a quarter of a year, and are too numerous to display
in complete detail. We will show detailed plots for the
week of 6 April 1981, and summaries for other weeks.
We have examined similarly constructed plots for several
other weeks and months, and have found their appear-
ance to be similar to those shown.

We have defined marginal thruput as the reciprocal of
the waiting time for a test job. We have considered
marginal thruput as a function of three variables
representing loads on three different facilities. The load
on the central processing unit (cpu) is measured in cpu
seconds per second. In practice it is noted by the
operating system every 1/60 second whether the cpu is
busy or waiting. The cpu load rate is the fraction of ‘busy’
observations of all observations. The load on disk access
equipment is measured in input or output counts per
second. One count represents the transfer of one 512 byte
block of data from or to the disk. The memory load is
conceptually the number of byte seconds/second. In

20z Iudy Gz uo 1sonb Aq 22981 1/8/1/.Z/2191E/|ulwoo/ w00 dnoolwapese/:Sd)y Woly papeojumMod



PRICING INTERACTIVE COMPUTER SERVICES

practice we measure the bytes in use at one point of time
shortly before a test job runs. Although we included many
other variables in original exploratory work, these
variables explained the bulk of the variance in our
observations of response time.

Figures 5-7 show the dependence of marginal thruput
for cpu test probes on each independent variable through
partial residual plots. A partial residual plot gives a view
of dependence of the dependent variable on one among
several independent variables by controlling for the
influence of all other independent variables.!® The
method of controlling is to regress the dependent variable
as well as the chosen independent variable on the set of
other independent variables, taking the residuals in each
regression to represent the part of the variable not
explained by the other variables. The partial residual
plot then is one set of residuals plotted against the other.
The coefficient from a simple regression fitted to such a
plot is algebraically the same as that for the chosen
independent variable in the multiple regression including
it and all the variables controlled. The plot can then be
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Figure 5. Partial residual plot: cpu wait vs. cpu load.
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Figure 6. Partial residual plot: cpu wait vs. i/o load.
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Figure 7. Partial residual plot: cpu wait vs. memory load.

interpreted as an ordinary scanner plot to check visually
for linearity, outliers, and influential subsets of data.

In Fig. 5, showing the dependence of the cpu intensive
probes on cpu load, a linear dependence is clear. The
slope of the line is negative, giving a positive t,,, as
expected. Figure 6 shows some relationship. The impres-
sion of greater dispersion is primarily an artifact of the
smaller range of the adjusted marginal thruput in this
plot, but there is still a clear negative slope. There is also
a hint of a vertical line through the centre of mass. If so,
it would represent some fairly rare occurrence for which
we have not controlled. An important value of a partial
residual plot is in examining a lesser effect after
controlling for a greater effect, as in Fig. 7, examining
dependence on memory. Here we can see not just a
fuzziness induced by the other stronger variables, but a
zero slope to an elongated cluster of points, with some
outliers near the mean, again.

Tables 3 and 4 present summary coefficients from the
fifteen weekly regressions for the cpu and i/o test probes.
Since variability of the coefficients over time ‘exceeded
the formal standard errors of coefficients for any one
week, we suggest these summary coefficients as approxi-
mate values. The tables present the median coefficients,
together with two measures of variation about the
medians.

Table 3. Coefficient estimates from CPU probe

Lower Upper
Median quartile quartile Minimum Maximum
cpu (h/cpuh) 0.950 0.939 0.964 0.904 0.984
i/o(h/MB)  0.00080 0.00071 0.00116 0.00061 0.00149
Memory
(h/MB h) 0.011  0.003 0.013 —0.001 0.019
Table 4. Coefficient estimates from I/O probe
Lower Upper

Median quartile quartile Minimum Maximum
cpu (h/cpu h) 0.26 0.19 0.30 0.12 0.43
i/o (h/MB) 0.0067 0.0053 0.0091 0.0040 0.0107
Memory
(h/MB h) 0.024 0.001 0.060 -0.049 0.092
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In addition to the information collected under normal
operating conditions, we collected similar measurements
against artificial backgrounds. The backgrounds were
formed by running multiple copies of jobs similar to the
test probes. Although congestion could not be generated
to order, it generally increased with more jobs and could
be approximately controlled. The synthetic backgrounds
did not exceed the observed range under normal
operations for cpu use or i/o use (although we were
explicitly trying to stress the machine) but we did get a
larger range of observations of memory use. We regard
the information collected during the synthetic back-
ground experiments as supplementary to that collected
with actual backgrounds. However, they did provide
information on the role of memory. The data from such
experiments can also be displayed by partial residual
plots.

Table 5 summarizes the coefficients for the three kinds
of probes based on synthetic backgrounds.

Table 5. Coefficient estimates from synthetic backgrounds

cpu probe

User cpu (h/cpu h) 0.83+0.02 0.13+0.10 0.34+0.08
System cpu (h/cpuh) 0.88+0.03 0.62+0.10 0.29+0.11

i/o probe Memory probe

Disk (h/MB) 0.00059  0.0022 0.0024
+0.00027 +0.0016  +0.0017

Memory (/MBh) 0012+ 0040+  0.084+
0.003 0.013 0.013

The first column of Table 5 can be compared with the
first column of Table 3. The two lower cpu coefficients in
Table 5 may result from not combining the two effects,
which for the cpu probe seem similar. The disk coefficient
of Table 5 lies within the inter-quartile range of Table 3
and the median disk coefficient of Table 3 lies within one
standard error of the coefficient in Table 5. Thus these
are not significantly different. Likewise the memory
coefficients are not significantly different. We have used
the coefficients from Table 3 in the following sections.

In comparing column 2 of Table 5 with Table 4, we see
that the synthetic background produced different results.
The disk coefficient is smaller and the waiting time has
been ascribed to the other system cpu instead. These are
more collinear when measured in the synthetic back-
ground data, and we distrust this result. (The simple
correlations of system cpu time and disk access counts
are 0.69 and 0.56 in the synthetic background and in the
daily background.) We have used the coefficients from
Table 4 in the following sections.

We do not have data for a memory intensive probe in
the daily background, because we did not expect the
daily background to have sufficient range. Therefore, we
have used the coefficients in the third column of Table 5
in the following sections.

4. LOAD VARIATION MEASUREMENT

A UNIX system utility, the system accounting report (sar),
gathers information on cpu and disk activity rates. It
reports total usage during each hour, and is a rich source
of information on cyclical patterns of load variations in
cpu and disk activity.

Figure 8 shows plots of hourly loads during the work
week. The top panel shows cpu loads, the middle panel
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i/o loads, and the bottom panel memory loads. The data
for cpu loads and i/o loads are from a standard system
report detailing all usage. This is preferable to our own
data which sample usage, but which had to be used to
estimate memory usage. Within each plot the solid dots
represent a central estimate from the data—medians for
the top two panels which had four or less observations at
each hour and 10% trimmed means for the bottom panel
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Figure 8. Weekly load cycle.
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which had up to sixty observations at each hour. The
vertical bars represent an indication of scale—ranges for
the top two panels and 109, trimmed standard deviations
in the bottom. The solid line represents a (24 hour period)
Fourier fit to the solid dots in each panel. The coefficients
were first fitted on a daily basis, but the coefficients were
not significantly different by day. For instance, an F test
of the hypothesis that the coefficients of the Fourier fit to
the i/o load were the same day-by-day yielded 1.18 on 32
and 240 degrees of freedom. Therefore the Figures show
the results of fitting over the period of a week.

Figure 8 illustrates several points. First, there is a
systematic variation in load by hour of the day. This can
be seen from the central points, and is highlighted by the
amplitudes of the Fourier fits. Secondly, there is consid-
erable variation from the central estimate at most hours—
especially during the daytime. Thirdly, we do not see any
need for distinguishing the weekdays. Each day seems
fairly well fit by the 24 hour period Fourier fit.

A few other less consequential points need comment.
A day’s peak usage for cpu and i/o was sometimes in the
early morning during the time of our experiments. This
was the effort expended to implement the non-linear
pricing system discussed below. It did not require large
amounts of memory, however. We have dropped this
period from our Fourier fit and from our calculations of
marginal congestion prices below. The memory load does
not drop very near to zero late at night, which suggests
that we have included memory used by system processes.
We deliberately excluded the space used by the operating
system itself, however.

A final point is that the usage patterns are quite similar
for each resource. The day usage is considerably higher
than the night, with the afternoon usage higher than the
morning, and with a noon-hour drop. The evening usage
exceeds the late night usage.

The variation shown by this Figure, and apparently
typical of computer loads elsewhere, has led some to
suggest dynamic pricing mechanisms that will charge
low prices when the actual load is low or high prices
where the actual load is high. See Refs 11 and 12 for
examples of such suggestions. In discussing this possibil-
ity with the system administrators, we were convinced
that such a pricing system would have considerable
administrative costs. A key point is accountability—the
need to have verifiable records when a customer
complains of a misbilling. (We know as users that
suspected misbilling is not uncommon.) The necessity of
maintaining a separate database on system usage levels
to interpret prices charged would lead to greater difficulty
in keeping sufficient records for accountability. Another
issue is whether the non-cyclical variation is predictable.
If it is purely random, then dynamic schemes basing
prices for [now + ¢] on the load at [now] would not be any
better than using our Fourier predictions. Accordingly
we do not suggest instantaneously varying prices, but
prices which account for the average load variation by
hour of the day.

S. DERIVING A PRICING POLICY

This section brings together the pricing rules of Section
2 and the empirical results of Sections 3 and 4.
In Section 3.3 we presented estimates of a waiting-

time (or thruput) function based on VAX-UNIX perfor-
mance at Bell Labs, and in Section 4 we presented
estimates of a smoothed form of the daily load cycle.
Thus we may compute idealized marginal cost pricing
policies based on the current load, if we are willing to
choose a value for waiting time. This is doubtless a
controversial choice, but for purposes of illustration we
have chosen v = $50/h. Other choices may be accommo-
dated by linearly rescaling the vertical axis in our
subsequent figures.

In Fig. 9 we illustrate the ‘marginal congestion prices’
which are implied by the marginal cost pricing rule (A.3)
with current loads, our estimated thruput function, and
this hypothetical value of time. The solid line in each
panel represents the time-varying price of a particular
resource: cpu in $§ per cpu hour, i/o in $ per megabyte
transfer, and memory in § per megabyte hour. Each price
can be decomposed, see Eqn (A.3), into three components
attributed to cpu, i/o, and memory loads. These compo-
nents are illustrated in Fig. 9 by dotted, dashed, and dot-
dash lines, respectively. Note that cpu load is the largest
effect for both cpu and memory jobs, for cpu it is the
predominant effect. I/O activity is the most important
determinant of the i/o price. The shape of the price cycle
imitates the load cycle illustrated in the previous section,
but the peaks are accentuated owing to the non-linearity
in the congestion function.

We must emphasize that these prices are designed for
current load patterns. Their implementation would
doubtless have a serious effect on those patterns where-
upon these prices would no longer be appropriate.
Nevertheless, these prices do provide valid directions for
pricing policy changes. A movement in the direction of
these marginal congestion prices is essentially a gradient
step in an iterative pricing scheme. We believe as a
practical matter, that theories of demand response
sufficiently accurate to predict user response to pricing
changes are not likely to be available. Therefore, it will
be impossible to know exactly how much to move in the
direction indicated by current load prices. A simple
model developed in more detail elsewhere suggests that
moving half way to a set of prices based on current loads
would not be unreasonable.’

In Fig. 10 we compare our cpu and memory marginal
congestion prices with the study period prices for the
system under study. The marginal congestion prices are
linear in cpu and memory so if we plot the price of a cpu
second as function of memory size we obtain a simple
affine function with a positive intecept representing the
pure cpu effect. We plot this price function in Fig. 10 for
4 times-of-day: 3 p.m.—the system peak, noon—the
midday dip, 7 p.m.—the evening dip, and 7 a.m.—the
morning trough. Because the memory price is small,
these functions appear to be flat, even though they do in
fact have positive slopes. In contrast the price in use was
non-linear in memory use: linear up to 64 Kbytes and
proportional to the square root of memory use after 64
Kbytes. There was a 60% discount for usage in non-
working hours; we illustrate both day and non-day rates
in the Figure.

Several important differences between prices used and
marginal congestion prices emerge from the Figure. The
marginal congestion price of memory is very low and
therefore the marginal congestion price of small jobs
tends to be much higher than their charged price and
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Figure 9. Decomposition of marginal congestion rates.

large jobs tend to be cheaper. This is in accordance with
our earlier observation that current memory loads exert
negligible impact on response time. The daily range of
the marginal congestion prices was much greater than
the range of charged prices. At the peak the marginal
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Figure 10. Cpu and memory marginal congestion prices.

congestion price of any job less than about 50 K bytes was
higher than its charged price. In the early morning, jobs
larger than about 10 Kbytes had lower marginal
congestion prices than their charged price. The disparities
between charged prices and marginal congestion prices
could be quite large, suggesting, as we pointed out in
Section 2, that serious over use of capacity may have
occurred in peak periods and serious under use may occur
in the evening and early morning. Recall that the
marginal congestion price is an estimate of the tasks’
social marginal cost imposed on other users in the form of
delayed response.

Another practical point is that smoothly varying prices
would be administratively impossible. Given the large
range (a factor of 32) over which the marginal congestion
prices need to vary, it seems reasonable to suggest a few
price levels which differ from their neighbours by factors
of two. That is, a level of price appropriate to daytime
peak use would be selected. The next lower price would
then be half that level, and in our case might apply in
hours starting at 8 a.m., 12 noon, and 5 p.m. The next
lower price would be a quarter of the peak level, etc. This
will define a set of fixed time periods during which prices
are constant. For each user a record would be needed of
their use of each priced resource in each price period.
This is comparable to records currently kept for admin-
istering prices.

We want to repeat, we are not suggesting dynamically
varying prices (prices that vary depending on the load
level at the time), and we are not suggesting instanta-
neously varying prices. Such pricing systems do not seem
feasible now. A discussion of priority pricing in this
framework may be found in Ref. 3.

6. CONCLUSIONS

We have argued above that prices are potentially valuable
tools for controlling congestion, improving utilization,
and informing investment decisions for: interactive
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computer systems. To achieve these ends, prices should
reflect estimated marginal costs of providing computing
services. The predominant component of these costs is
the value of time lost by users due to the congestion delay.

We have estimated models of response time and the
daily load cycle on a VAX 11/780 UNIX system at Bell
Laboratories to show the feasibility of marginal conges-
tion pricing. Based on these estimated models we have
computed marginal congestion prices which would be
appropriate if user response to prices were negligible.
The calculated prices varied considerably from the prices

in effect. This shows the considerable room for gains in
efficiency and fairness available from adopting a marginal
congestion approach to pricing.
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