The Colour Towers of Hanoi: A Generalization

M.C.Er

Department of Computing Science, The University of Wollongong, P.O. Box 1144, Wollongong, N.S.W. 2500 Australia

The colour Towers of Hanoi problem is proposed. In this variant, discs are coloured white and black. The white and
black discs are required to move in the clockwise and the counterclockwise directions, respectively, subject to the usual
constraints of the standard problem. Initially, the discs are stacked on the pegs randomly without violating the
constraints. The objective is to move them to a specified peg in increasing order with the largest disc at the bottom. A
recursive solution to the problem and the unerlying strategies are presented.

INTRODUCTION

The Towers of Hanoi problem and its variants have
attracted a good deal of attention in the recent literature.
An earlier version of the recursive solution to the Towers
of Hanoi problem is discussed by Dijkstra;' and a slightly
different form is described by Hayes.? Various iterative
solutions to this problem have been discovered by
Buneman and Levy,* Dijkstra,' Er,* Hayes? and Walsh.>
A variant, known as the cyclic Towers of Hanoi problem,
is proposed by Atkinson® who also presents a recursive
solution to it. A generalization to the Towers of Hanoi
problem has recently been proposed by Er;’ and a
recursive solution to this generalized problem has also
been discovered.

In this paper yet another variant of the Towers of
Hanoi problem is proposed. In this variant, every disc is
painted either white or black; and it is required that all
white discs are moved in one direction and all black discs
are moved in the opposite direction so that they end up
on a specified peg subject to the usual constraints of the
standard problem. This colour Towers of Hanoi problem
seems to be extremely complex ; however we show that a
surprisingly simple recursive solution is indeed possible.

THE PROBLEM

The colour Towers of Hanoi problem may be described
simply as follows. Three pegs are arranged in a circle;
and thus the clockwise and the counterclockwise direc-
tions may be defined in the usual sense when viewed
from the top. There are n discs of different sizes, each of
which is coloured white or black, initially stacked on
these three pegs with the larger discs below the smaller.
The objective is to move these discs around until they are
stacked on a specified peg subject to the following
constraints.

() Only one of the top discs may be moved at a time.
(ii) No disc may ever stack on a disc smaller than itself.
(iii) White and black discs may be moved to their
neighbouring pegs only in the clockwise and the
counterclockwise directions, respectively.

STRATEGY

In problem solving, the most difficult and essential task
is to discover a strategy or a set of strategies which will

win under all circumstances. We therefore first of all
describe a set of strategies which will lead to a feasible
solution before spelling out the details of an algorithm.

One important observation is that a disc dominates all
smaller discs, owing to the constraints on disc moves. In
other words, when a disc is moved from a source peg to a
target peg, all smaller discs have to be stacked on a spare
peg before the move can take place without violating any
of the rules. This important observation immediately
leads us to a recursive solution. At any moment, the
largest disc among all subtowers is located and its
immediate destination is computed. Then all smaller
discs must be cleared to a dictated spare peg. This
subproblem obviously could be solved recursively. And
this strategy forms a basic framework for developing a
simple recursive solution to the colour problem.

Of course, if all discs are already stacked on a specified
peg, we have trivially done. However, in a general case,
it is more likely that all discs are spread on all pegs. So,
at each decision point, we select the largest disc among
the given towers and determine its movement. If the
largest disc is already on the target peg it should move to,
we recursively solve the subproblem by excluding the
largest disc from consideration, i.e. all smaller discs are
to be moved to the same target peg. If, however, the
source peg occupied by the largest disc and the target peg
it should move to are different, then we have four cases
to be considered.

Case (i): The largest disc is white and the target peg is
clockwise from the source peg. In this case, all
smaller discs could be cleared to the spare peg
in the counterclockwise direction from the
source peg; and the largest disc is then moved
to the target peg; and finally the smaller discs
are moved to the same target peg.

Case (ii): The largest disc is black and the target peg is
counterclockwise from the source peg. The
case is similar to Case (i), but the black largest
disc should be moved counterclockwise to the
target peg instead.

Case (iii): The largest disc is white and the target peg is
counterclockwise from the source peg. In this
situation, the largest white disc cannot be
moved to the target peg in one step. However,
the situation can be converted to an instance
of Case (i) by moving all smaller discs to the
target peg and then moving the largest white
disc to the spare peg. After such moves, the

CCC-0010-4620/84/0027-0080$01.50

80 THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

© Wiley Heyden Ltd, 1984

20z udy 01 uo 1s9n6 Aq ZZ881+/08/1//Z/2101E/UlWod/Wod dno dlWspeoe)/:SdjY Wolj paPeojuMoq

THE COLOUR TOWERS OF HANOI: A GENERALIZATION

largest white disc is on a peg such that the
target peg is clockwise from it.

Case (iv): The largest disc is black and the target peg is
clockwise from the source peg. This situation
is similar to Case (iii) as the largest black disc
requires more than one step to move to the
target peg. We thus apply the same strategy to
convert the situation to an instance of Case
(ii).

The subproblem of moving all smaller discs to the
target peg is similar to the original problem and thus can
be solved recursively by treating those smaller discs as
subtowers to be moved.

The outline is made precise in the form of an algorithm
described in the next section.

RECURSIVE ALGORITHM

Here, we adopt a convention that white discs are

represented by positive integers and black discs are

represented by negative integers. Further, we assume

that the pegs are numbered 1, 2 and 3 so that the

clockwise and the counterclockwise directions are defined

byl—-2-3-1and1—-3-2- 1, respectively.
Assuming the following type definitions:

peg =1..3;

colourdisc = —maxdisc . . maxdisc;

tomove =0..maxdisc;

subtowers = array [peg] of tomove;

discstack = array [1 . . maxdisc] of colourdisc;

we may declare the following global variables:

towers : array [peg] of discstack ;
stackpointers : array [peg] of tomove;

The recursive solution may be described by the following
Pascal program.

procedure ColourTowers (var n: subtowers; target : peg);

{ When called with the number of discs in each
subtower, indicated by the variable parameter n, this
procedure moves them to the target peg. The total
number of discs in all subtowers is invariant before
and after an activation of this procedure, but not so
during its course of execution. }

var source, spare: peg;

bigdisc : colourdisc;
begin
if n[1] + n[2] + n[3] < > n[target] then
begin

source = Choose MaxPeg(n);
bigdisc = LargestDisc(source, n[source));
n[source] = n[source] — 1;
if target = source then
begin
ColourTowers (n, target),
n[source] = n[source] + 1
end
else begin
spare =6 — target — source;
if IsWhite (bigdisc) = IsClockwise (source, target)
then

begin
ColourTowers (n, spare);
MoveDisc (source, target);
ColourTowers (n, target);
n[target] = n[target] + 1
end

else begin
ColourTowers (n, target);
MoveDisc (source, spare);
n[spare] = n[spare] + 1;
ColourTowers (n, target)
end

end

end
end { ColourTowers };

The function ChooseMaxPeg locates a peg where the
largest disc among the given subtowers resides. Its details
may be described as follows.

function Choose MaxPeg (n:subtowers): peg;

{ Given the number of discs in each subtower, n, this
function returns the peg where the largest disc among
them resides as a result. }

var maxpeg, p: peg;
begin

maxpeg = 1;

forp=2to3do
if abs(LargestDisc(p, n[p)))

> abs(LargestDisc(maxpeg, nlmaxpeg)))
then maxpeg =p;

Choose MaxPeg '= maxpeg

end { ChooseMaxPeg };

Note that the function abs returns the absolute value of
its argument.

The function LargestDisc locates the largest disc of a
given subtower on a specified peg, and may be described
as follows.

function LargestDisc(p:peg; height: tomove): colourdisc;

{ When called with the height of a subtower on a peg p,
this function computes the largest disc in the sub-
tower by a simple offset (height) from its top disc. }

begin

if height = O then LargestDisc =0
else LargestDisc = towers| p][stackpointers| p] —

end { LargestDisc }; height + 1]

Here, we assume that stackpointers| p] always points to
the top disc of the tower on peg p. When the tower is
empty, LargestDisc returns the ‘null disc’ of value zero as
aresult.

The function IsWhite determines whether or not a
given disc is white as follows:

function IsWhite (d: colourdisc): boolean;
begin IsWhite =d > 0
end { IsWhite };

The function IsClockwise tests whether a given target
peg is clockwise from a given source peg by using a
simple arithmetic calculation as follows.

function IsClockwise (source, target: peg): boolean;
begin
IsClockwise = (target — source = 1) or (target — source

end { IsClockwise }; =2

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 81

20z udy 01 uo 1s9n6 Aq ZZ881+/08/1//Z/2101E/UlWod/Wod dno dlWspeoe)/:SdjY Wolj paPeojuMoq

M. C. ER

Finally, we note that the procedure MoveDisc calls the
standard stack manipulation routines, Pop and Push in
turn to update the global array towers.

procedure MoveDisc (source, target: peg);

{ This procedure calls the routine Pop to pop a disc
from the source peg, and then calls the routine Push
to push the disc onto the target peg. }

begin

Push (target, Pop(source))

end { MoveDisc };

CORRECTNESS

To prove that the procedure ColourTowers is correct, we
need to verify all possible cases.

First of all, we observe that ColourTowers is trivially
correct if all towers are empty. Now, we may assume that
ColourTowers is correct for m discs randomly distributed
on the pegs but satisfying the constraints. Then we prove
by induction that the procedure is also correct for
(m + 1) discs randomly distributed on the pegs. Also, we
must show that the total number of discs registered in the
variable parameter n is invariant before and after an
activation of Colour Towers and that nis updated correctly.

When ColourTowers is called with (m + 1) discs and a
target peg they should move to, it first of all computes the
largest disc among the three towers and the source peg
on which this disc resides. There are three cases to be
considered given the source peg of the largest disc and
the target peg it should move to.

Case A: The target peg is the source peg. In other words,
the largest disc is already on the target peg, and
thus need not be moved. ColourTowers is then
called recursively to move the m smaller discs to
the target peg, that, by assumption, is correct.
The largest disc is subtracted from and added
back to the source peg before and after such a
recursive call respectively. Hence n is updated
correctly, and the total number of discs is
invariant before and after the activation of
ColourTowers.

Case B: The largest disc could be moved from the source
peg to the target peg in one step. Cases (i) and
(ii) discussed in Section 3 satisfy this condition;
namely, the largest disc is white and is to move
to the target peg clockwise, and the largest disc
is black and is to move to the target peg
counterclockwise. In either case, ColourTowers
is called recursively to move m smaller discs to
a spare peg; then the largest disc is moved to
the target peg in one step; and finally Colour-
Towers is called recursively again to move m
smaller discs to the target peg. By assumption,

the two recursive calls are correct; thus the
above sequence of disc moves will move (m + 1)
discs to the target peg. Further, we see that the
largest disc is subtracted from the source peg
before the first recursive call, and is added to
the target peg after the second recursive call.
Since the two recursive calls maintain m as an
invariant, so the total number of discs is
invariant. Also by assumption, the two recursive
calls update n correctly, thus ColourTowers will
update n correctly in this case.

Case C: The largest disc can only be moved from the
source peg to the target peg in two steps. This
condition covers Cases (iii) and (iv) discussed in
Section 3. Namely, the largest white disc is to
move to the target peg counterclockwise; and
the largest black disc is to move to the target
peg clockwise. ColourTowers converts this case
to an instance of Case B by calling itself
recursively to move the m smaller discs to the
target peg, and then moving the largest disc to
the spare peg from where the target peg could
be reached in one step. Since, by assumption,
the recursive call maintains m as an invariant
and updates n correctly, and that the largest disc
is subtracted from the source peg and added to
the spare peg, Colour Towers thus updates n with
(m + 1) discs correctly and maintains the total
number of discs as an invariant up to this point.
Finally, a recursive call to ColourTowers is
carried out to move (m + 1) discs to the target
peg, and such a call must fall into Case B. By
the arguments of Case B, we thus prove that
Case C is also correct.

As only one of these cases must be true during each
activation of ColourTowers, by induction, we thus prove
that ColourTowers is correct.

REMARKS

The colour Towers of Hanoi problem at first sight seems
rather complex. However, by discovering a crucial
strategy that larger discs dominate smaller discs and
analysing all possible cases carefully, we have shown that
a simple recursive solution to the problem is feasible.

It is also interesting to discover an iterative solution to
the colour problem and to analyse the average-case
performance. It seems that the colour Towers of Hanoi
remains a challenging problem to human players who
have no pencil and paper to work with.

Acknowledgement
This research was supported by RGC under grant 05-143-105.

REFERENCES

1. E. W. Dijkstra, A Short Introduction to the Art of Programming,
EWD316 (1971).

2. P. J. Hayes, A note on the Towers of Hanoi problem. The
Computer Journal 20, 282-285 (1977).

3. P. Buneman and L. Levy, The Towers of Hanoi problem.
Information Processing Letters 10, 243-244 (1980).

4. M. C. Er, A representation approach to the Tower of Hanoi
problem. The Computer Journal 25, 442-447 (1982).

5. T. R. Walsh, The Towers of Hanoi revisited: moving the rings by
counting the moves. /nformation Processing Letters 15, 64-67
(1982).

6. M. D. Atkinson, The cyclic Towers of Hanoi. /nformation
Processing Letters 13, 118-119 (1981).

7. M. C. Er, The generalised Towers of Hanoi problem. /nformation
Processing Letters, in press.

Received January 1983

82 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

20z udy 01 uo 1s9n6 Aq ZZ881+/08/1//Z/2101E/UlWod/Wod dno dlWspeoe)/:SdjY Wolj paPeojuMoq

