6. Conclusion

The importance of simple intuitive semantic
rules for language constructs should be re-
spected. If we have no simple way to describe
a semantic rule, then we had better face it by
showing the odd rule explicitly with an
explanation.

For the use of the principle of exclusion, we
should be careful for the implicit inclusion of
undesired alternatives. Thus for the new ISO
Pascal standard, we propose to explicitly
specify only the look-ahead I/O and the lazy I/
O as alternative implementations. The user
will understand this kind of approach as he
knows the reason.

For the use of the principle of intersection,
we should make sure that the resultant rule
can be described by a new simple rule without
a quantifier such as ‘for all input files..."
Thus for the Ada specification, we propose to
formally specify the compiler time ‘no aliasing
conditions’ for parameters of array, record or
private types. The run-time aliasing error
should not be allowed since the user can hardly

SHORT NOTES

test all input files. If there is a chance of a run-
time error, then the program cannot be released
for use. So compiler time detection should be
enforced. The error report from the compiler
informs the user to consider efficient parameter
passing problems for all array, record and
private parameter types. If it is necessary to
do the information copying for some parame-
ters, then the user ought to do it explicitly.

Acknowledgement

I would like to thank Dr. Cynthia Brown for
her patient reading and helpful advice on this
paper.

CHINGMIN JIM LO
Computer Science Department
Indiana University
Bloomington

Indiana 47405

USA

References

1. D. M. Berry, Remarks on R.D. Tennent's

language design methods based on se-
mantic principles: Algol 68, a language
designed using semantic principles. Acta
Informatica 15 (1), 83-98 (1981).

2. A. M. Addyman, A draft proposal for
Pascal. SIGPLAN Notices 15 (4), 1-66
(1980).

3. K. Jensen and N. Wirth, PASCAL User
Manual and Report, 2nd Edn, Springer-
Verlag (1976).

4. J.B.SaxeandA. Hisgen, Lazy evaluation
of the file buffer for interactive /0. Pascal
News 13, 93-94 (1978).

5. Ada Reference Manual, United States
Dept. of Defense (July 1980).

6. H. Perkins, Lazy 1/0 is not the answer.
SIGPLAN Notices 16(4),81-86 (1981).

7. K. Tai, Comments on parameter passing
techniques in programming languages.
SIGPLAN Notices 17(2),24-27 (1982).

8. Formal Definition of the Ada Program-
ming Language—Preliminary Version for
Public Review, Honeywell Inc. (1981).

Received June 1982

Factoring Medium-Sized Integers

The factoring of integers is an important
problem, and one well-suited to computers, and
many algorithms have been proposed for this.
This paper compares various algorithms, and
discusses the choice of parameters for the
algorithms, based on experiments with numbers
from 10'* to 10°°. We conclude with recommen-
dations on the design of a factoring algorithm.

1. Introduction

For the purpose of factoring numbers, it is
possible to classify the integers (at least
roughly) by size:

(a) smallintegers, typically those less than 232,
or some such machine-related bound (nor-
mally those that will fit in one or two
words)

(b) medium-sized integers, which are larger
than small integers, but less than about
10%° or 10%°

(c) large integers, which are larger than the
previous classifications.

Throughout this paper, N willdenote a number
which it is intended to factor.

The small integers are easy to factor, since a
search through all primes less than /N is
relatively economical (there are 6542 primes
less than 2'6, for example), and, if space for
this cannot be afforded, then the search should
be for factors of 2, 3, 5, and those numbers
congruent to 1, 7, 11, 13, 17, 19, 23 and 29
(mod 30). This will give 17479 possibilities up
to 2'¢, substantially more than a direct table.

When it comes to large integers, as defined
above, the problem is, if not totally intractable,
at least very difficult. Not only are larget

T We note that Ref. 1 talks of ‘a couple of days
CPU time’, and Ref. 2 refers to a program that
ran for over 18 months.

amountsof computer time required, but special
theory, adapted to the form of the number to
be factored, is generally necessary (for some
recent examples, consider Refs 1 and 2).

The aim of this note is to provide a guide to
the intermediate field of medium-sized inte-
gers, where several algorithms exist (see Ref.
3 section 4.5.3 (pp. 369-398)) and can be run
practically in a few seconds or minutes. We
develop no new mathematics in this paper,
but hope that the reader will find our recom-
mendations useful if he wants to implement a
factoring package for medium-sized integers.

2. The algorithms
Knuth? quotes the following algorithms:

1. Algorithm A (Factoring by division) on pp.
364-365

2. Algorithm B (Monte Carlo factorization)
on p. 370 (see also Refs 4 and 5)

3. Algorithm C (Factoring by addition and
subtraction, often known as Fermat’s
method) on p. 371

4. Algorithm D (Factoring with sieves) on p.
373

5. Algorithm P (Probabilistic primality test)
onp. 379

6. Algorithm E (Factoring via continued
fractions) on pp. 381-382 (see also Refs 6
8)

Other general-purpose algorithms include:

7. Draim’s algorithm (see Ref. 9 or Ref. 10,
pp. 32-35)

8. Deterministic primality test''

9. Schnorr’s method.'?

We can immediately remark that the prob-
abilistic primality test is far faster than the
deterministic one, as well as being much
simpler to program. There therefore seems
little point in using the deterministic test, and,
as Ref. 3 points out, the difference in running

84 THE COMPUTER JOURNAL, VOL. 27, NO. 1, 1984

times can be so great that the probability of
undetected hardware error while running the
deterministic test is greater than the probabil-
ity of several applications of the probabilistic
test all failing. The existence, and asymptotic
complexity, of a deterministic test is, neverthe-
less, of theoretical interest.

Draim’s algorithm is essentially a variant of
the standard method of dividing by all the odd
numbers, though it can be adapted so as to
divide by those not divisible by 3 or 5, or even
to divide by just the primes. It is more
complicated to program, but has the advantage
that the dividend decreases, at least for a
while, rather than remaining constant. The
second author has used this method to advan-
tage on machines without a hardware division
instruction, when decreasing the dividend can
bring substantial gains.

Schnorr’s method is, asymptotically, the
fastest method (known to the authors) of
factoring large numbers. We do not have a
complete implementation of it, but do not
expect it to be competitive with the methods
Knuth quotes in the medium-sized range.

We have already dealt with Knuth’s Algo-
rithm A, and we note that Algorithm C is only
useful when the number has two factors which
are very close to its square root. In general,
this is unlikely to happen, and Algorithm C is
not recommended, since its asymptotic time is
v— \/N, where v is the larger factor of N that
this algorithm finds. There are several variants
on this algorithm: one, due to Lehman'? finds
factors whose ratio, instead of being close to
one, is close to simple rationals, and this has a
running time O(N'").

Knuth’salgorithm Disa varianton Fermat’s
method, which uses precomputed tables of
residues to decide if x> — N can be a perfect
square. This can speed up the operation quite
significantly (and special sieving hardware,
such as D. H. Lehmer® uses, can give very

202 udy 60 U0 1s9n6 Aq 9¥88L1/¥8/1//Z/101E/UlWOd/ W00 dNo"dlWspeoe)/:SAY Wolj PaPEojUMOQ

substantial performance gains). Even on a
conventional machine, this method has a
variety of optimizations that can be applied to
it:

1. We can avoid many square-root operations
by keeping tables of possible endings of
square-roots (we chose to work modulo
10 000).

2. We can build in special checks for the
values of N modulo 8 and modulo 9.

3. We can work modulo p,p,, rather than
modulo p; and p, separately, thus trading
storet for time.

One decision that has to be made is the number
of moduli to be used: our experience was that
numbers around 10" factored most efficiently
with max (4,n/2) moduli.} However, it is our
experience that this algorithm is only faster
than the methods to be described below in
special cases.

3. The main contenders

This leaves us with two algorithms, both of
which Knuth mentions, viz. his algorithms B
and E.

3.1. Monte Carlo

Algorithm B has a running time (in terms of
arithmetic operations) of O(~p,_,), where
Pi-1 is the second-largest prime factor of N.
This is, of course, bounded by N'/*, but is often
much lower (indeed, <N®'°¢ half the time,
see Ref. 3, p. 368). Thus this method is best
when the factors are not evenly balanced.
However, there is a large element of random-
ness in this algorithm: we found the factor
2962963 of 10378 154 203 801 in 13.7 s, but
the factor 1375951, approximately half the
size, of 15 000 000 000 001 was found in 2.8 s.

This algorithm can fail, in the sense that,
given a number which we know not to be
prime, it will still terminate saying ‘no factors
found’. If this happens, we can either switch
to the method of the next section or use the
same algorithm with a different generating
function, e.g. x* + 2 instead of x? + 1. This
failure appears to be extremely rare, and
indeed we have never encountered such a
number. The improvement of Ref. 5 requires
knowing something about N — 1, and is not
truly a general method.

3.2. Continued fraction

This algorithm, originally suggested by
Lehmer®, is probably the most difficult to
implement of the algorithms we are suggesting,
but also the most efficient. In fact it factors a
number kN, where k is small, rather than N
itself. It also depends on the number of primes
one wishes to use in the linear equation phase.
It appears likely (Ref. 3, p. 383), that the

1 In our implementation (more details can be
found in Ref. 14), we were restricted to moduli
greater than 32, and we used moduli 2*19,
3*17,5%13,7*11,37,41,43

I Note that this formula does depend on
various details of the implementation, and
suitable experiments have to be performed for
each implementation, though our figures may
serve as a starting point.

SHORT NOTES

running time is subpolynomial, in fact
O(le/(ln In N)/(In N)).

The choice of & is interesting, since it both
determines the set of admissible primes (and
we would like a large number of small
admissible primes in our factor base), and also
determines the period of VkN, which must not
be too small. Ref. 3 gives a function that must
be maximized for the optimal choice of k, and
Ref. 7 reports that, for factoring 2'*® + 1, they
eventually decided on k = 257 after numerous
experiments. It appears to us that, nearly all
the time, k = 1 will suffice, and, indeed, we
never encountered a number for which we had
to choose a different k (other than 2'28 + 1,
which wastoolarge for our computer allocation
in any case).

The other parameter that has to be chosen
is the number of primes to be used. It appears
tousthat K = n>-%/80is about right for numbers
in the neighbourhood of 10", though this
number will depend on the implementation.
The algorithm requires K words of storage
for the system of linear equations, and is the
only algorithm we recommend that requires a
non-trivial amount of working storage.

Extensive experiments® show a N%'5* be-
haviour, though the granularity effects of two-
word numbers versus three-word numbers (in
a 32-bitimplementation) mean that the behav-
iour observed is bound to be complicated.

4. Conclusions

A simple program for factoring medium-sized
integers can be written as follows:

1. Remove all small factors.

2. Test if the number is prime (three applica-
tions of the probabilistic primality test).

3. If not, try the continued fraction method.

For a more subtle program, the Monte Carlo
method can be tried between steps 2 and 3,
but it should be given a time limitt of perhaps
109 or 20% of the time that the continued
fraction algorithm is expected to take. This
will not cost much more if the Monte Carlo
attempt fails, but will lead to substantial
savings if it succeeds (which it should do if the
factorization is unbalanced, or if N factors
into the product of three or more primes).

The other conclusion is that the time taken
is nearly all spent in multiple-precision arith-
metic routines, and that these will probably
need to be written in machine code (we
observed a factor of about 3 when we converted
the kernel of the multiple-precision package
from BCPL into machine-code). However, the
numbers involved are not very large (on a 32-
bit machine they will typically be double or
triple length), so careful attention has to be
paid to the overheads of calling subroutines to
do multiple-precision arithmetic.

Acknowledgements

We are grateful to the referee for his remarks,
and to Prof. D. J. Wheeler for reading the
drafts.

t A feature that many operating systems lack,
or at least make very difficult to use.

R. J. MACMILLANt
J. H. DAVENPORT}
Emmanuel College
Cambridge CB2 3AP
UK

References

1. J. P. Buhler, R. E. Crandall and M. A.
Penk, Primes of the form n!+ 1 and
235...p+ 1. Math. Comp. 38, 639-
643 (1982).

2. G. B. Gostin and P. B. McLaughlin, Jr.,
Six new factors of Fermat numbers.
Math. Comp. 38, 645-649 (1982).

3. D. E. Knuth, The Art of Computer
Programming, Vol. I, Semi-numerical
Algorithms. Second Edition, Addison-
Wesley, 1981.

4. J. M. Pollard, A Monte Carlo method
for factorization. B./..T. 15, 331-334
(1975).

5. R. Gold and J. Sattler, Modifikationen
des Pollard-Algorithmus. Computing
30, 77-89 (1983).

6. D. H. Lehmer and E. Lehmer, A new
factorization technique using quadratic
forms. Math. Comp. 28, 625-635
(1974).

7. M. A. Morrison and J. Brillhart, A
method of factoring and the factoriza-
tion of F;. Math. Comp. 29, 183-205
(1975).

8. M. C. Wunderlicht, A running-time
analysis of Brillhart's continued fraction
factoring algorithm. In Number Theory
Carbondale 1979 edited by M. B. Na-
thanson (Springer Lecture Notes in
Mathematics 751, Springer-Verlag,
Berlin-Heidelberg-New York) 328-
342 (1979).

9. N.A.Draim, An algorithm on divisibility.
Mathematics Magazine 25, 191-194
(1952).

10. H. Davenport, The Higher Arithmetic.
5th edn revised by D. J. Lewis and J. H.
Davenport, Cambridge University
Press, 1982.

11. L. Adleman and F. T. Leighton, An
O(n"'°%) primality testing algorithm.
Math. Comp. 36, 261-266. Zbl.
452.10011. MR 82¢: 10009 (1981).

12. C. P. Schnorr, Refined analysis and
improvement on some factoring algo-
rithms. Journal of Algorithms 3, 101-
127.2Zbl. 485.10004 (1982).

13. R. S. Lehman, Factoring large integers.
Math. Comp. 28, 637-646 (1974).

14. R.J. Macmillan, The implementation of
a program which factorizes large inte-
gers on the IBM 370/165. Dissertation
for the Computer Science Tripos, Uni-
versity of Cambridge (1982).

15. D. H. Lehmer and R. E. Powers, On
factoring large numbers. Bull. AM.S.
37,770-776 (1931).

Received February 1983

t Present address: 5 Overcombe Drive, Wey-
mouth, Dorset, UK.

{ Present address: School of Mathematics,
University of Bath, Claverton Down, Bath
BA27AY, UK.

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 85

202 udy 60 U0 1s9n6 Aq 9¥88L1/¥8/1//Z/101E/UlWOd/ W00 dNo"dlWspeoe)/:SAY Wolj PaPEojUMOQ

